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3 GEOLOGICAL CONDITIONS 

The project area is completely situated within the 
Swiss Aar massive. The rock units comprise of 
Magmatides, which intruded into the crystalline rock 
mass. The intake structure in the lake of 
“Räterichsboden” to the north is located at the 
boundary of the central Aare granite and the intrud-
ed Grimsel Granodiorite in the south. In order to es-
tablish a reliable geological and geotechnical model 
a vertical borehole extending to the depth of the 
planned cavern structure of Grimsel 3 was drilled to 
investigate the conditions below the existing struc-
ture of Grimsel II. The rock structure, as encoun-
tered, is characterised by a subdominant parallel fo-
liation texture due to alpine deformation. The 
foliation is dipping steep to SSE. The fracture inten-
sity is very low and the overall rock-mass conditions 
are massive with large interlocking blocks with a 
generally low permeability in the range of 10E-9 m/s 
up to 10E-14 m/s. Due to the dense characteristic of 
the rock mass, no crack water table is expected in 
the area, with overall dry and damp conditions for 
the tunnelling works. 
The orientation of the geological structures towards 
the cavern orientation is subordinate influence on 
gravitational driven stability problems. 

 

 
Figure 2. Geological conditions.  

3.1 Rock types 
The main rock types within the area are granodio-

rite, a coarse grained gneiss and minor aplitic medi-
um grained, slightly foliated gneiss. The brittle be-
haviour of these rock types were investigated by 
intense rock mechanical testing performed at the 
ETH Zürich and EPF Lausanne. The rock types 
show a general small distribution in strength. The 
typical values for intact rock are summarized for 
granodiorite and aplitic gneiss in Table 1.  

Crack initiation for the rock types is found ap-
proximately at 50 % of the intact rock strength. 

Table 1. Typical values for rock types. 

 Unit 
Grano- 
diorite 

Aplitic  
Gneiss 

UCS, dry  [MPa] 130 - 150 180 - 190 

UCS, wet [MPa] ~110 ~180 

BT  [MPa] 7.0 - 12.5 9.0- 12.0 

Unit weight  [g/cm3] 2.73 2.61 

Porosity, 48 h [%] 0.26 0.31 

Porosity, 4 mo. [%] 0.34 0.51 

E50, tangent, dry [GPa] 56 56 

E50, tangent, 
wet 

[GPa] 49 53 

4 GEOMECHANICAL MODEL 

The construction of Grimsel 2 as well as the out-
puts of NAGRA test facility gives a detailed insight 
of the geomechanical boundary conditions for the 
design on the Grimsel 3 hydropower extension. The 
Grimsel area is well known for the high tectonic 
stresses, which is indicated by various surface paral-
lel detachments and sudden bursts during construc-
tion of open excavations. Egger (1980) reports on 
stress induced failure (surface parallel spalling) oc-
curred during the construction of Grimsel II cavern 
at the transition of the sidewalls to the invert. Nu-
merical back (internal document) calculations could 
reproduce the spalling mainly located at the stress 
raisers of the shallow placed cavern structure. All 
underground structures of the KWO are situated 
more or less near surface, allowing no prediction of 
stress development for Grimsel III cavern structure. 
Minor water ingress occurred during the heading of 
the access tunnel of Grimsel 2.  

4.1 Initial Stress Conditions 
Especially in steep alpine morphologies, the pri-

mary stress state is influenced by the shape of the 
valley (absence of lateral confines of the slope), the 
tectonic history and the elastic properties of the 
gneisses. The initial stress conditions (magnitude 
and orientation) may significantly affect the cavern 
stability in case of unfavourable orientation. In total, 
seven hydraulic fracturing tests were conducted at 
the 600 m deep borehole providing essential infor-
mation of the local stress. The orientation of the 
stress field varies within the area where else the 
magnitude of the stress data is in line with the over-
all stress regime (see Fig. 3). The general orientation 
of the major horizontal stress is about E - W with a 
magnitude of two (in fractured zones) to three times 
(in massive zones) exceeding the vertical stress 
within the depth of the cavern. Local borehole 
breakouts at the depth of the cavern prove the orien-
tation of the hydraulic fracturing analyses.  
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