

Lining of pressure tunnels

Philippe Lazaro

Kolloquium «Untertagbau für Wasserkraftanlagen» ETH Zürich, Professur für Untertagbau

Zürich, 12.12.2013

Lining of pressure tunnels

Contents of presentation

- 1. Introduction
- 2. Types and role of the lining
- 3. Pervious pressure tunnel (overburden and lateral extension)
- 4. Case studies
 - Repair works of Estí headrace tunnel (Panamá)
 - Repair works of Pucará headrace tunnel (Ecuador)
 - Rehabilitation of the Navizence headrace tunnel (Switzerland)

1. Introduction

2. Types of linings

- No lining (permeable)
- Reinforced shotcrete lining (semi-permeable)
- Unreinforced concrete lining (semi-permeable)
- Reinforced concrete lining (slightly permeable)
- Pre-stressed concrete lining (slightly permeable)
- Steel lining (impermeable)
- Composite membrane lining (impermeable)

4 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

2. Role of the lining of a pressure tunnel

Design considerations about final lining

- Water losses reduction
- Head losses reduction
- Groundwater table sustainability
- Guarantee rock chemical and mechanical integrity
- Guarantee long term tunnel operation
- Minimisation of maintenance works

2. Role of the lining: hydraulic requirements

6 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

3. Unlined tunnel

The problem of Hydrofracturing

"Hydraulic jacking"

3. Pervious pressure tunnel

The Norwegian rule (Bergh – Christensen, 1974) "rule of thumb"

3. Pervious pressure tunnel

The Norwegian rule (Bergh – Christensen, 1974)

4. Case studies

Rehabilitation of Estí pressure tunnel (Panamá)

4.1 Estí pressure tunnel (Panamá)

General layout of Estí HPP

4.1 Estí pressure tunnel (Panamá)

Typical cross section

- Horseshoe cross section
- ~67 m² Area:
- Internal diameter: 8.80 m
- Lining type: shotcrete and grouted bolts
- Design flow:
- Max. head: 180 m

180 m³/s

13 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Geological setting in the main collapse zone

Main collapse probably due to a combination of:

- sub-vertical faults and
- horizontal water-sensitive rock layers

Main collapse estimated dimensions:

Length: $\geq 40 \text{ m}$ Width: 23 m Height: $\geq 15 \text{ m}$

Main tunnel collapse in 2010 (after 7 years of regular operation)

Huge rock blocks in the main collapse zone

15 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Minor tunnel collapses in 2010

Collapses in tunnel roof controlled by rock-mass stratification. Sub-horizontal rock layers were separated by water-sensitive mudstone layers. Maximum collapses height: 5 m.

Lining (shotcrete) detachments probably occurred in the dewatering phase

16 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Collapses at tunnel walls probably occurred in the dewatering operation consequent to the main collapse.

Complete obstruction of the tunnel section due to a collapse

Repair solutions – Main collapse

17 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Repair solutions – Main collapse

Cement mortar pumping from the surface to partially fill the void.

Main collapse crossing works.

Main collapse crossing works. Is possible to see the installation of the forepoling umbrellas.

Repair solutions – Minor collapses

Operation sequence:

- Installation of steel ribs (HEB140 spacing 0.75 -1.00 m) and Bernold plates to form a shield for workers and a formwork for the void filling;
- Partial filling of the voids with pumped concrete in order to form a "cap" of concrete over the ribs;
- Completion of the void filling;
- Realization of contact grouting in order to assure the contact between the filling material and the rock-mass.

Repair solutions – Minor collapses

Steel ribs installation phase

Steel ribs completion phase

LALEN AROUNT 10:57

Preparation of the void filling phase with pumped concrete

Final result of the repair process

Final lining to imrpove HRT efficiency, safety and durability

Realization of the final lining with cast in place concrete. Minimum thickness = 30 cm Reinforced with steel ribs (minimum dosage 35 kg/m³)

Realization of a flat invert. Minimum thickness = 30 cm.

4 Case studies

Rehabilitation of Pucará pressure tunnel (Ecuador)

- Owner: Corporación Eléctrica del Ecuador (CELEC EP)
- Plant located about 160 km South East of Quito, in the province of Tungurahua
- Construction: 1972-1977
- First main plant of Ecuador's power supply system
- Installed capacity: 75 MW
- Average annual energy production: 230 GWh

General layout of Pisayambo HPP

Pisayambo reservoir (2012)

• Rockfill dam: H=41.20 m

- Crest elevation: 3'569.20 m asl
- Storage volume: 90 Mio. m³
- Embedded intake structure
- Headrace tunnel: L=5.5 km, D=2.60 m
 with concrete lining
- Surge shaft: H=117 m, D=5.00 m
- Pressure shaft with steel lining: L=685 m, D=2.20-1.90 m
- Underground powerhouse at 3'086 m asl 2 Pelton units, gross head: 479 m, installed capacity: 75 MW
- Tailrace tunnel and channel between powerhouse and Yanayacu river

General layout of Pucará headrace tunnel

Pucará headrace tunnel in the damaged zone (2011)

- Tunnel length: 5'475 m
- Internal diameter: 2.60 m
- Concrete lining with reinforcement at final part (higher pressures and lower coverage)
- Design discharge: 18.6 m³/s
- Max. head: 65 m (at surge tank)

20.2-PPT-131212

Landslide and damages of concrete lining occurred in 2011

Landslide occurred in September 2011

- After 34 years of operation a landslide occurred in 2011 at the final part of headrace tunnel
- Very complex geology contest with many faults, discontinuities an open fissures
- Zone with high seismic activity called "Pisayambo Seismic Nest"
- After tunnel dewatering and inspection damages in the concrete lining were observed

Collapse of concrete lining in 2011

 Location and shape of the fissures indicate tensile stresses caused by internal water pressure

- Fissure propagation destroyed/affected arch effect in the concrete lining
- Compression of semicircumferential concrete parts
- Rock spalling at the tunnel roof

Lateral and vertical rock coverage

- Position of the affected headrace tunnel not adequate with respect to the distance to slope surface
- Lateral and vertical rock thickness not sufficient to ensure long term stability
- Rock mass characteristics progressively reduced due to water circulation

20.2-PPT-131212

\rightarrow Construction of a bypass tunnel to the damaged section

New bypass tunnel

- Bypass tunnel displaced some 70 m into the mountain (L=519 m, D=2.70 m)
- Access tunnel (380 m) to allow safe bypass excavation
- Drainage holes from the existing tunnel to drain the nearby rock slope

- vertical boreholes from the surface (70-100 m)
- sub-horizontal (10°) boreholes from the existing tunnel (15, 30, 55, 60 m)
- sub-vertical (30°) boreholes from the existing tunnel (12 m)
- boreholes from the bypass during construction

UG6

UG7

IV-V

V-VI

112 m

14 m

Geotechnical characterisation of the project area

30 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

20.2-PPT-131212

22%

3%

Construction works

32 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Temporary service of the existing tunnel during

GRP pipe DN1600 in the existing headrace tunnel (D=2.40 m)

- Duration of repair works (plant shutdown): 2011-2013
- Rehabilitation costs: 22 Mio USD
- Support measures of the most strongly damaged tunnel section (70 m) with circumferential steel ribs and 15 cm of shotcrete with steel mesh reinforcement
- Installation of a GRP pipe DN1600 in the existing tunnel
- Operation 24 h/day of one unit (36.5 MW, 9.3 m³/s) for 8 months, during bypass construction

Rehabilitation of the Navizence headrace tunnel (Switzerland)

Characteristics of the Navizence HPP

- Inauguration: 1908
- Rehabilitation: 1950
- Capacity:
 - Generation: 290 GWh/y
 - Net Head: 540 m
 - Discharge: 10.5 m³/s
- Nb of units
- Unit type:

•

٠

7 horizontal Pelton

50 MW

Layout of the free flow headrace tunnel (L=8.3 km)

36 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Typical cross sections

Rehabilitation works: pressure tunnel

38 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Horizontal section: qualitative analysis (geology, overburden and lateral extension

39 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Structural & hydraulic analyses

Study of alternatives: GFRP Inliner

41 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Study of alternatives : carbon fiber tissue and resin In situ tests (Sika Travaux et Freyssinet CH)

42 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013

Final proposal: New headrace excavated by TBM

Lining of pressure tunnels

THANK YOU FOR YOUR ATTENTION

Philippe Lazaro

44 Lombardi SA Ingegneri Consulenti, Zürich, 12.12.2013