Structural use of fibre reinforced concrete in precast segments

24 May 2018 – Zürich

Lessons from Twenty Years of Application

Giuseppe Tiberti⁽¹⁾, Giovanni Plizzari⁽¹⁾, Elena Chiriotti⁽²⁾

Authors

Giuseppe Tiberti (*Italy*)

Associate Professor of Structural Engineering in Department of Civil Engineering, Architecture, Land, Environment and of Mathematics of the University of Brescia. He got a Ph.D. in Materials for Engineering in 2009, from the University of Brescia. His domains of specialization include tunnel linings made by precast segments in Fiber Reinforced Concrete, concrete pavements and nonlinear analyses of reinforced concrete structures.

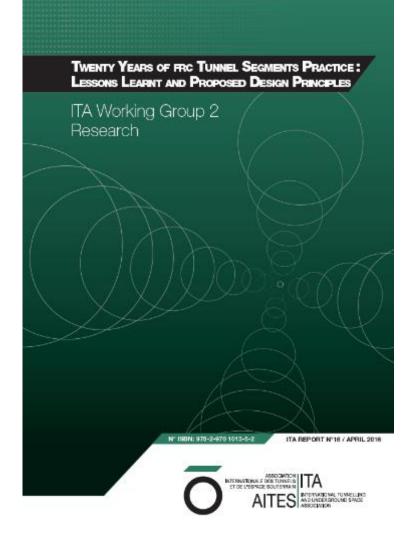
Giovanni Plizzari (Italy)

Professor of Structural Engineering in Department of Civil Engineering, Architecture, Land, Environment and of Mathematics of the **University of Brescia**. His research domains include material properties and structural applications of high-performance concrete, fiber-reinforced concrete, concrete pavements, fatigue and fracture of concrete, and steel-to-concrete interaction in reinforced concrete structures. He is **member of fib Task Group 8.3 "Fiber Reinforced Concrete"** and he was involved in Chapters devoted to FRC of fib Model Code 2010.

Elena Chiriotti (France)

Graduated in Civil Engineering from the Politecnico of Turin, Italy, she obtained a PhD in rock mechanics in 1997. After spending 11 years at Geodata, Italy, she joined SYSTRA, from 2007 to 2015, as director of Tunnels and Underground Structures Department. Since 2015 she is the co-founder and CEO of INCAS Partners, consulting company in the domain of technical, strategical and contractual issues related to underground works. Elena is an active member of AFTES and ITA, she participates in several national and international working groups. Since 2016, she is the animator of ITA Working Group 2 – Research.

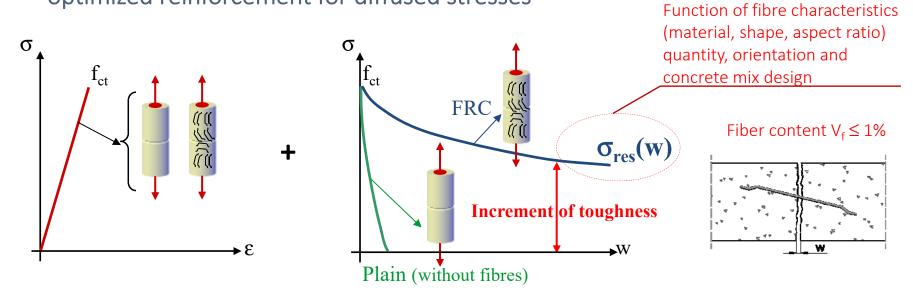
Content of the presentation


- ITA WG02 Report n.16/2016 FRC in precast segments
- Why Fiber Reinforced Concrete?
- 20 years of case histories lessons learned
- Standards and recommendations on FRC: what is missing ?
- Contribution of ITA WG02 Report n.16/2016
- Concluding remarks & future developments

Scope of ITA WG02 Report n. 16/2016

- Take advantage of more than 20 years of FRC practice in precast tunnel lining → feedback from real cases
- Support a performance-based design of FRC structural elements → all kind of fibers respecting long-term requirements
- Provide additional design principles to complete the existing standards and recommendations for the specific case of segmental lining for tunnels
 - \rightarrow loading conditions
 - \rightarrow recent research advances
 - → analytical and numerical design procedures to consider the post-cracking residual strength provided by fibers

Content of ITA WG02 Report n. 16/2016



1. PREFACE
2. GLOSSARY
3. LIST OF SYMBOLS AND ABBREVIATIONS
4. TABLE OF CONTENTS
5. INTRODUCTION11
6. SCOPE
7. IDENTIFICATION OF APPLICABLE STANDARDS AND GUIDELINES
8. LESSONS LEARNT DURING 20 YEARS OF APPLICATION
9. BACKGROUND FOR AN APPROPRIATE DESIGN APPROACH
10. FRC PROPERTIES
10.1 Classification
10.2 Constitutive laws at Ultimate Limit State (ULS)
10.3 Constitutive laws at Serviceability Limit State (SLS)
11. PRECAST SEGMENTAL TUNNEL LINING: LOADING CONDITIONS
11.1 General design aspects concerning thrust jack phase
11.2 General design aspects related to segmental lining behaviour during service conditions
12. DESIGN PROCEDURE OF FRC SEGMENTAL LINING
12.1 FRC mechanical properties
12.2 De-moulding of tunnel segments
12.3 Storage of segments
12.4 Transportation and positioning of segments by erector
12.5 Thrust jack phase
12.6 Ring behaviour of the tunnel lining during grouting process
12.7 Introduction of normal ring force in longitudinal joints
12.8 Ring behaviour at the final stage
12.9 Ring behaviour during fire event
13. CONCLUDING REMARKS
ANNEX I: CASE STUDIES
ANNEX II: GENERAL TENDENCIES EMERGING FROM THE CASE STUDIES
REFERENCES 70

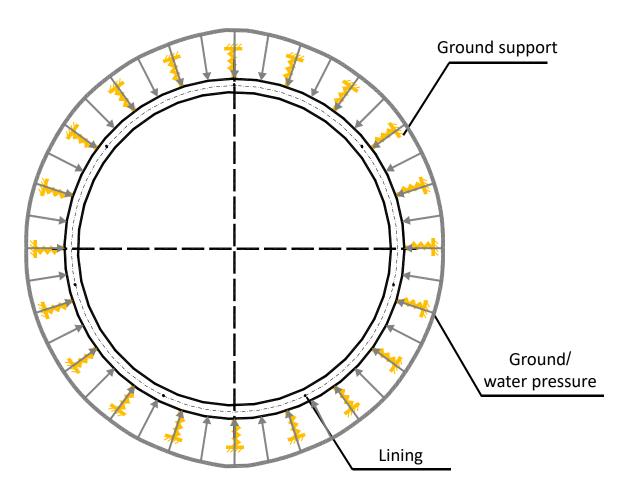
Why Fibre Reinforced Concrete (FRC)

FRC is a **composite material** with a **cementitious matrix** and a discontinuous reinforcement, the **fibers** (e.g., metal, glass, synthetic or natural materials) offering:

- enhanced resistance to crack development (post-cracking strength)
- considerable increase of toughness (i.e., ability to resist internal crack propagation) of FRC considered as a composite
- optimized reinforcement for diffused stresses

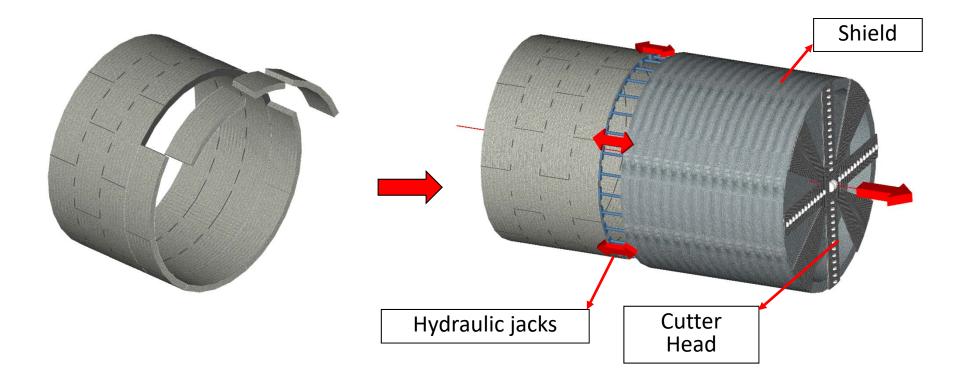
Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Precast tunnel lining


Temporary load conditions: flexural demand on tunnel segments

- Storage load condition
- Placing process / de-moulding

Precast tunnel lining


Final load condition: the lining is loaded by the ground/water pressure: so called lining embedded soil load condition. Favorable condition, the lining is mainly under compression

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Precast tunnel lining

Temporary load conditions: Tunnel Boring Machine thrust phase. The TBM is pushed forward by thrust jacks in order to guarantee the excavation process (thrust phase). These hydraulic jacks push off on the last placed ring.

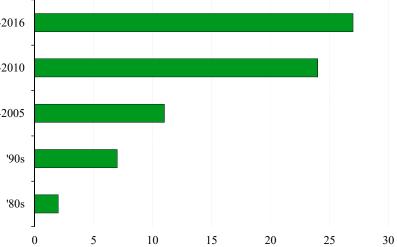
Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Use of FRC in precast tunnel lining – key factors

Enhancement of structural behaviour

- high resistance against impact loads during transportation and handling
- stable development of splitting cracks
- reduction of stirrups and replacement of shear reinforcement
- reduced spalling / damages to corners
- combines with reinforcing bars to cope with high localized stresses
- Improvement of precasting process
 - time reduction in shaping, handling and placing rebars
 - reduction/elimination of storage areas for traditional reinforcement

20 years of FRC applications – case histories


TUNNEL NAME	YEAR	COUNTRY	FUNCTION	M	H	DUH H	TYPE OF FRC	RDRE CONTENT KG/m/j	FIERE VOLUME FRACTION (N)	REBARS	
Matrosud	1982	Italy	Subway	5.8	0.90	19.5	SFRC	NA'	NA'	No	
Fanaco	1080	Italiy	Water Supply	80	0.20	150	SFRC	NA"	NA"	No	
Heathrow Baggage Handling	1003	England	Senice	4.5	0.15	30.0	SFRC	30	0.39%	No	
Heathrow Express	1004	England	Ralway	5.7	0.22	25.0	SFRC	30	0.39%	No	
Napoli matro	1005	Italy	Subway	5.8	0.90	19.3	SFRC	40	0.51%	No	
Lasotho Highlands	1005	South Ahica	Water Supply	45	0.90	150	SAL	50	0.64%	No	
Hachinger	1998	Germany	Water Supply	2.2	0.18	122	SFRC	NA'	NA.	No	
2nd Heinencord	1000	Natharlands	Road	7.6	0.95	217	SFRC	NA'	NA.	No	
Jubika Lina	1000	England	Subway	4.5	0.20	22.3	SFRC	30	0.59%	No	
Trasvases Manabi (La Esperanza)	2001	Ecuador	Water Supply	9.5	0.20	175	SFRC	30	0.39%	No	
Essen	2001	Germany	Subwey	7.9	0.95	20.0	SFRC	NA'	NA'	No	
Soranberg	2002	Switzwriend	Gas Ppelne	3.8	0.25	152	SIRC	40	0.51%	No	
Canal de Navarra	2005	Spain	Water Supply	5.4	0.25	21.6	NA'	NA*	NA'	No	
Careberg tunnel	2008	Switzerland	Rativay	108	0.30	080	NA"	NA'	NA'	NA' No	
Centberg-TEM	2003	Switzerland	Railway	11.4	0.40	29.5	SFRC	30	0.99% Vac		
Otroberg-Shield	2005	Switzenland	Raiway	11.4	0.40	29.5	SFRC	60	0.76%	No	
Barcelona Metro Lin 9 - Can Zam Stretch	2005	Spain	Subwey	10.9	0.35	31.1	SFRC	60	0.76%	No	
Channel Tunnel Rail Link (CTRL)	2004	England	Railway	7.2	0.95	20.4	SAL	90	0.000	85.	
Heathrow Express Extension (HexEx)	2005	England	Railway	6.7	0.22	25.9	SIAC	90	- 1		
Metropolitan Expressivay Central Circular Shinjuku Route tunnel	2005	Japan	Road	10.9	0.45	24.2	SFRC	63	c	-	
San Vicente	2008	USA	Water Supply	3.2	0,18	17.8	SFRC	30	2011-2	2016	
Heathrow-SWOT	2006	England	Water Supply	2.9	0.20	14.5	SFRC	30	c		
Barcelona Metro Line 9 - Stratch I	2006	Spain	Subway	8.4	0.32	20,3	SFRC	30 and 25	0		
Lotschberg	2007	Switzerland	Temporary pilot	4,5	0.22	20.5	SFRC	NA'	2006-2	2010	
Baacon Hill Tunnais	2007	USA	Road	6.7	0.30	22.3	NA.'	NA"	R - 34		
Hofoldinger Stollen	2007	Germany	Water Supply	2.9	0.18	10.1	SFRC	40	0	-	
Madrid Matro	2007	Spain	Subway	8.4	0.30	28.0	SFRC	25	2000-2005		
Gold Coast Desaination Plant	2006	Australia	Water Supply	3.4	0.20	17.0	SFRC	35	0		
Big Walnut Sawar	2006	USA	Wante Water	3.7	0.23	10.1	SFRC	35	0	-	
Heathrow - PiccEs	2006	England	Subway	4.5	0.15	30.0	SFRC	30	6	'90s	
Heathrow Express Ext. Tunnel to To	2008	England	Raileny	5.7	0.22	25.9	SFRC	30	c		
Hobson Bay	2009	New Zeeland	Waste Water	3.7	0.25	14.8	SFRC	40	0	-	
Sao Paulo Matro Line 4	2009	Brazil	Subway	8.4	0.35	24.0	SFRC	35	. 0	'80s	
Copenhagen District Heating Tunnel	2009	Danmark	Water Supply	4.2	0.30	14.0	SFRC	35	0	005	
Docklands Light Railway (DLR) Extension	2009	England	Raiteray	5.3	0.25	21.2	SFRC	NA'	1	_	

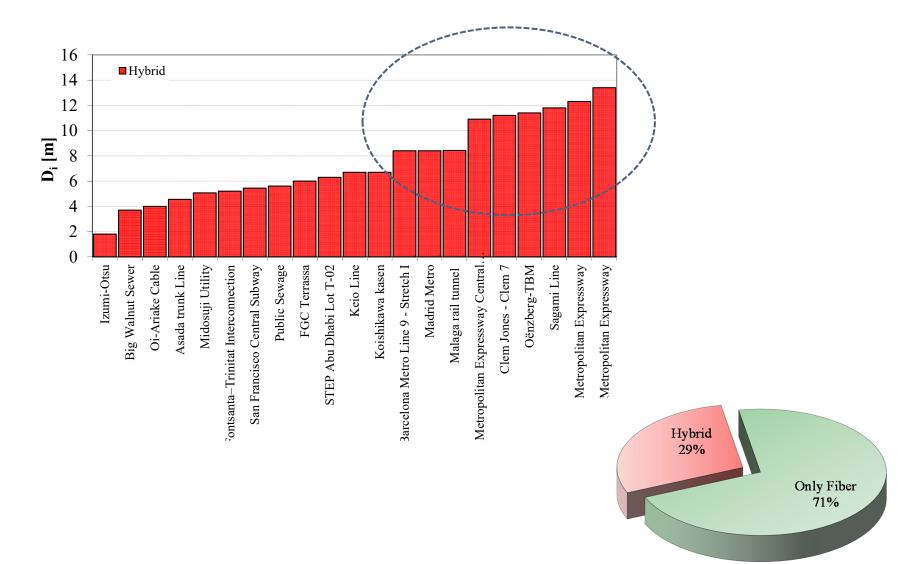
Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

□ 73 case histories

- 37 in America, Asia, Australia
- 36 in Europe
- From the '90s to 2016 (with two cases in the 80's, in Italy)

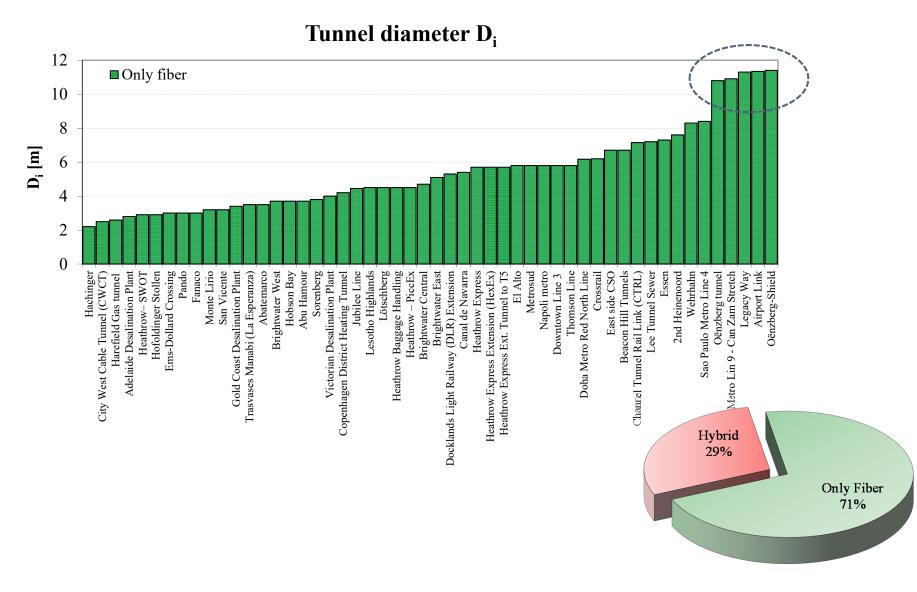
Case studies over the years

Collected case histories


16 case histories documented in detail

A.J.10 LEGACY WAY

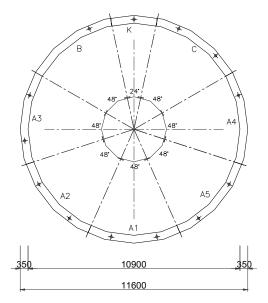
PROJECT PARTICULARS				METHOD OF EXCAVATION					
Location		Brisbano, Queansiand (Australia)				ook dhil and blast activities. Mechanis	ad tunneling method by means of	two 12.4 m diamater c	louble shield Turnel
Construction period		April 201 1-2015		Eoring Machines (TBMs) [7 TEM DATA	4				
Owner		Bishana Gtu Council		Manufacturer			Henenimecht		
Designer(s)	DDOID			TEM Tipe			Two double shields TBM (2) 12.34		
Contractor(s)	PROJE	CT DESCRIPTION		N, jacks			INO COUDIA BHAICS FAMILIES 12.24	a maharaj	
Engineer(s)			BO						
GENERAL PROJECT DESCRIPTION				T _{methin}	FXC/	ΔΥΔΤΙΩΝΙ Μ	IFTHOD		
parallal twin-lane tunnels linked by o	cross passages every 1	at will connect the Western Freeway at Toowong with the In (20 metros.							
v.	Ath precest segment is	equal to 300 mm, thus the internal diameter of the tunnel is	11.2 m.	Back-up langth					
TUNNEL CHARACTERISTICS				REINFORCEMENT DESIGN:	SOLUTION PROPOSED				
Total Tunnel Length		4.0 km		Sketch of the reinforcement		Conventional reinf. [kg/m ²]	. Fibre reinf. [kg/m²]	Total reinf. [kg/m ²]	Buf.#
Boring diameter		12.4 m		renewicentern		No (Hybrid solution		[e@ard]	
Overburden (min-max)						used only in highly loaded length of	1		
Lining type		Sagmental	11411	Original solution	-	loaded length of	40		[80]
Ringtypa		T 11818171	223 - T. 19		TDAAF	os pessage			
Thickness		TUNNEL	A CALLER OF COMPANY		TBM C				
Internal diameter Di				Solution adopted					
Turnel aspectratio (July) CHARACTERISTICS			the state of the			-			
Average segment aspect ratio				REMARKS.CONCERNING TH	HE SOLUTION PROPOSED				
NP. of segments		0	87						
Segment length/e/dth		4.2 m/2 m		REMARKS.CONCERNING TH	HE SOLUTION ADOPTED				
Connectors				The universal type ring with bots and guiding rods in the	an 8+1 division has been desig	ned with trapezoidal/ihomboidal shap	ed segments, waterproof gaskets, s	hear/tension connector	s in the ring joint, spare tudinal joints to cope with
CONCRETE MIX DESIGN				the splitting force.					
Concrete class of strength		Csa/so	the and the second second	For grouting the annulus gas regroping of the TBM and in	REII	NFORCEME	ENT OF	war section of the	tunnel during the
Cemant CBM 52:5R			and a second						
Sand Coarse aggregate	MIX	DESIGN			SEC	GMENTAL L	INING		
Coarse aggregate		· · ·	JEN/						
Wester									
Admixtures									
ENVERONMENTAL AND GEOLOGICAL	L CONDITIONS								
During tunneling, the TBMs will to western suburbs. In unstable gro installed concrete segments.) [81	EN	VIRONMENT & G	EOLOGY						


Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Collected case histories

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Collected case histories



Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Barcelona Metro Line 9 (2004-2005)

TUNNEL CHARACTEERISTICS

Total Tunnel Length	41.4 km
Boring diameter /TBM	12.1 m / EPB
Overburden (min-max)	30-70 m
Lining type	Segmental
Ring type	Universal ring
Thickness	0.35 m
Internal diameter D _i	10.9 m
Tunnel aspect ratio (D _i /h)	31.14
Average segment aspect ratio	13.88
No. of segments	7 segments+1 key segment
Segment length/width	4.7 m/1.8 m

Lessons from Twenty Years of Application ITA WG02 – Tiberti, Plizzari, Chiriotti

One of the first pilot project for the application of SFRC in precast segments

Barcelona Metro Line 9 (2004-2005)

2/2

Reinforcement design solution studied	Rebars [kg/m ³]	Fibres [kg/m ³]	Total [kg/m ³]	Reference
Original solution (structural contribution of fibres not considered)	97	25 SFRC 50/1.0 $L_f/\phi_f=50$ $f_{t,fibre}=1100$ MPa	122	Gettu et al. 2004
Experimental solution 01		60 SFRC 50/1.0 $L_{f}/\phi_{f}=50$ $f_{t,fibre}=1100$ MPa	60	Gettu et al. 2004
Experimental solution 02	46 (in 2 chords along the longer segment sides)	25 SFRC 50/0.75, $L_f/\phi_f = 66.67,$ $f_{t,fibre} = 1100$ MPa	71	Plizzari et al. 2005

Main learned

30 rings of Solution 01 constructed, installed and instrumented in the Bon-Pastor to Cam-Zam section. Occurrence of splitting cracks and local lessons failures (contact irregularities). Solution not generalized to the whole tunnel (original solution adopted, conventional rebars not optimized by fully exploiting the fibres contribution)

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Legacy Way Tunnel, Australia (2011-2015)

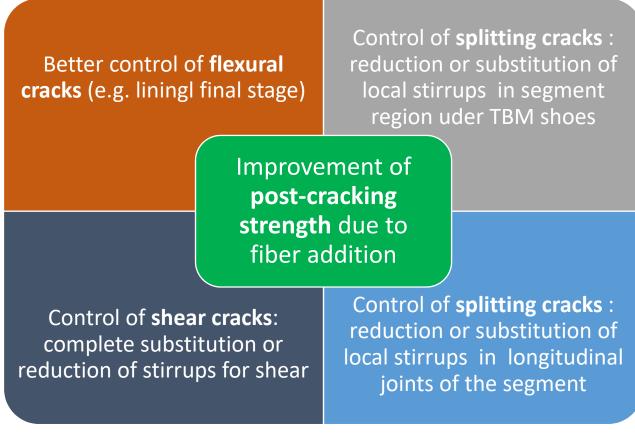
TUNNEL CHARACTEERISTICS

Total Tunnel Length	4.6 km
Boring diameter / TBM	12.4 m / double-shield
Overburden (min-max)	
Lining type	Segmental
Ring type	Universal ring
Thickness	0.35 m
Internal diameter D _i	11.30 m
Tunnel aspect ratio (D _i /h)	32.3
Average segment aspect ratio	12.10
No. of segments	9
Segment length/width	4.2 m/2 m

Large diameter tunnels where a solution with fibres only was adopted. Hybrid reinforcement used only in highly loaded sections of the tunnel and at the cross-passage locations.

Monte Lirio Tunnel, Panama (2005-2010)

TUNNEL CHARACTEERISTICS


Total Tunnel Length	7.9 km
Boring diameter / TBM	3.9 m /
Overburden (min-max)	-
Lining type	Segmental
Ring type	Universal ring
Thickness	0.25 m
Internal diameter D _i	3.20 m
Tunnel aspect ratio (D _i /h)	12.8
Average segment aspect ratio	7.75
No. of segments	6 segments
Segment length/width	1.84 m/1.2 m

Design according to the fib Model Code 2010, assisted by full scale bending and thrust tests (the latter to reproduce the TBM action on the segment during excavation). The full-scale tests were developed on FRC segments, without conventional reinforcement.

20 years of FRC applications – lessons

Enhancement of structural behaviour

Towards a **performance–based FRC design** based on the ability of the composite material to resist internal crack propagation (i.e., toughness)

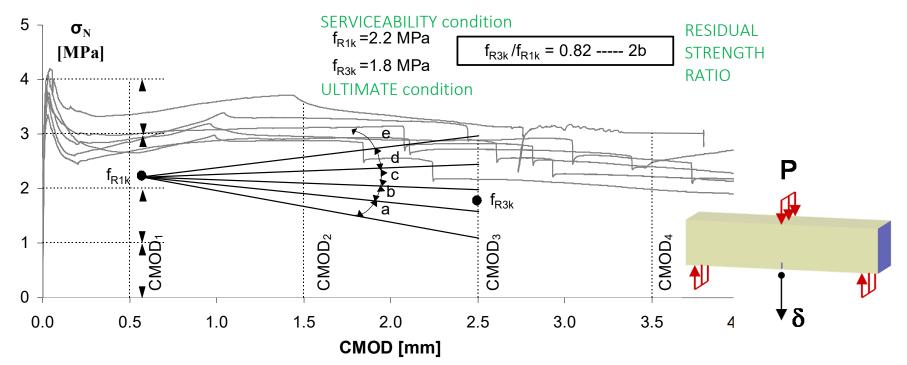
Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

20 years of FRC applications – lessons

- Localized stresses are better resisted by conventional rebars
- Diffused stresses (e.g., splitting stresses) are better resisted by fibres
- Fibre content is not a complete information \rightarrow residual post-cracking strength

- Localized bending stresses can be due to acting **ground loads** or can be generated by **contact irregularities** occuring during the **TBM thrust phase**
- Nature/frequency of load conditions (both ground & excavation) → High localized stresses in the specific project ? Where/when? Possible to reduce / avoid contact irregularities during TBM thrust? Etc.

Lessons

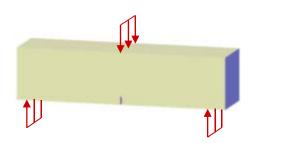

learnt

Keys

- If not → high-performance FRC or hybrid solution (rebars and FRC); in alternative, use FRC only and foresee hybrid in critical alignment sections (intersections, bad ground conditions, etc.)
- Design considering post-cracking strength and prescribe FRC performances the necessary boundary conditions
- Composite material → specific mix-design (workability, durability, etc.) and fibres selection vs. concrete strength (pull-out rather than rupture)

Existing standards and recommendations

- Model Code 2010 and some other relevant codes [RILEM TC 162-TDF, CNR-DT 204, DafStb Guideline] provide the performance-based design approach and classes based on FRC post-cracking residual strength
- The ITA-Report n.16 of WG02 refers directly to Model Code 2010 (*)


 $\begin{array}{l} \textbf{CMOD} = \text{Crack Mouth Opening Displacement, from a 3-point bending test on a notched beam} \\ \textbf{f}_{\textbf{Rjk}} = \text{characteristic residual flexural tensile strength corresponding to CMODj} \\ \end{array} \tag{*) The} \end{array}$

(*) Then published in 2012

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Existing standards and recommendations

Evaluation of post-cracking FRC residual strengths	Design of FRC	Design of FRC for tunnel linings
- EN-14651 - ASTM C1609/C1609M - ASTM C1399/C1399M - ASTM C1550/1550M	- fib Model Code 2010 - RILEM TC 162-TDF - CNR-DT-204 - DafStb Guideline	 AFTES recommendations ^(*) DBV recommendations ^(*) DAUB recommendations ^(*) ACI report 544.7R-16

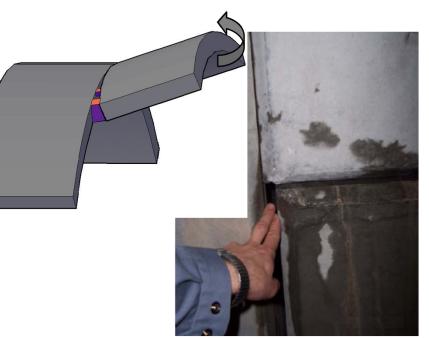
- DIN 1045-2

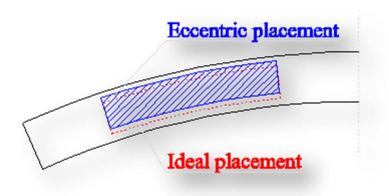
Material behavior on small samples)

Behaviour of Structural Elements (e.g., slab or beam)

FRC precast tunnel segments (*) refers only to the design Steel Fibre Reinforced Concrete (SFRC)

NOTE: fib bulletin n.83, WP 1.4.1, *Precast tunnel* segments in fibre-reinforced concrete (2017), appears one year after ITA WG02 publication n.16

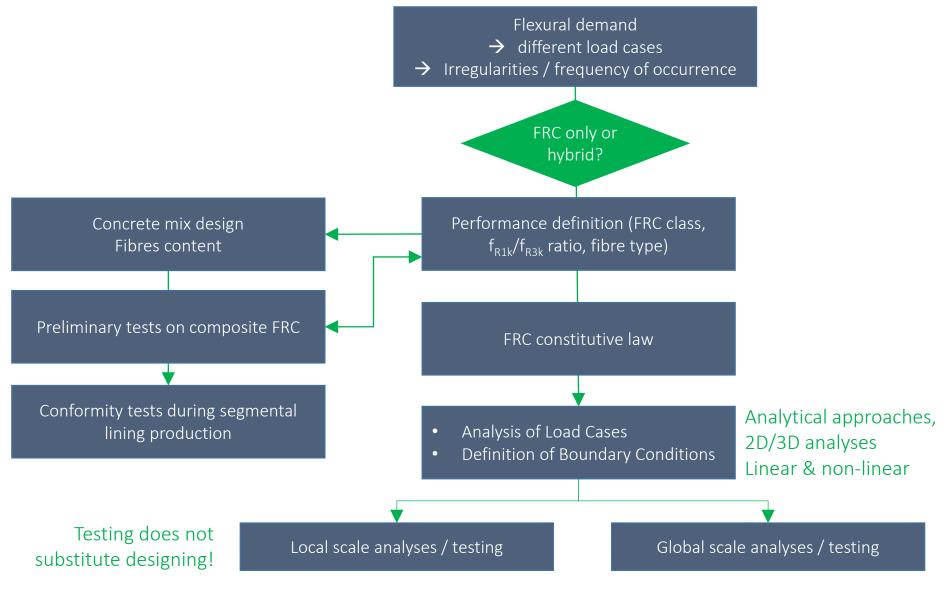

> Lessons from Twenty Years of Application ITA WG02 – Tiberti, Plizzari, Chiriotti


Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

What is missing in standards/recommendations?

fib Model Code 2010

- Describes the **performance approach** for FRC design
- easily applied for beams or slabs,
- needs to be contextualized to precast tunnel segments (e.g., temporary loading condition during excavation
 → eccentricity, TBM thrust, injections, etc.).


Post-cracking residual strengths **can be exploited during these stages** even if no specific recommendations are given by Model Code 2010

DEVELOP SPECIFIC BASES FOR DESIGN

NOTE: fib bulletin n.83, WP 1.4.1, *Precast tunnel* segments in fibre-reinforced concrete (2017), appears one year after ITA WG02 publication n.16

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

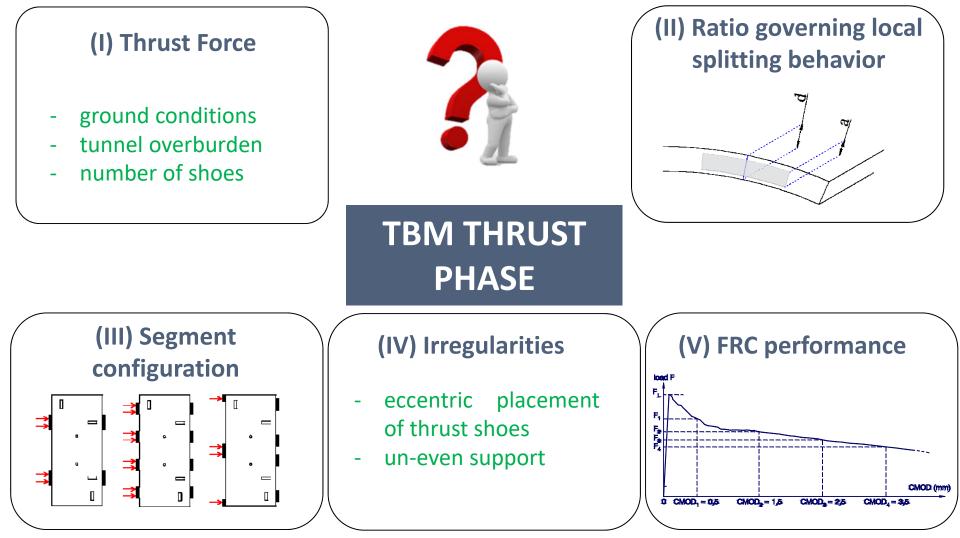
Our recommendations – General approach

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Our recommendations - Tools

Introduction of the post-cracking strength of FRC in the segmental lining design approach

ANALYTICAL APPROACHES: proposed by standards (e.g., Model Code 2010) for typical flexural behavior (beam theory: the segment is assimilated to a beam during demoulding, handling, transportation, and final stage)


NUMERICAL NON-LINEAR METHODS: recognized by standards (e.g., Model Code 2010). In case of tunnel segments, such models are necessary for capturing FRC contribution under TBM jacks and in longitudinal joints

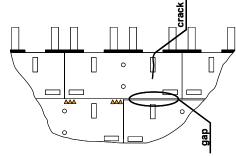
EXPERIMENTAL TESTS on small scale samples or full-scale tunnel segments **CONFORMITY TESTS**: during the production of precast FRC segments, the residual post-cracking strength shall be systematically verified

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Our recommendations – Ex. TBM thrust phase

Identification of issues

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

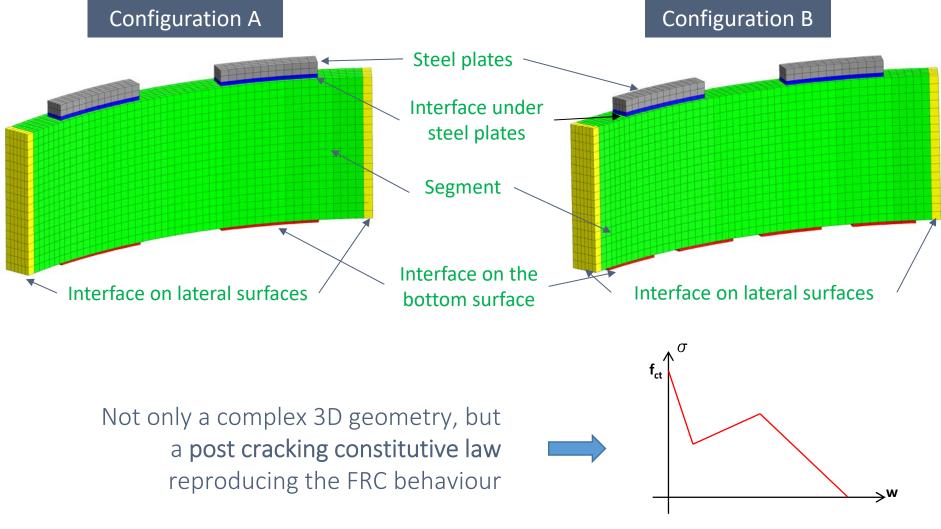

Our recommendations – Ex. TBM thrust phase

ANALYSIS OF LOCAL BEHAVIOUR: analyse the tensile transverse stresses (splitting or bursting stresses perpendicular to the loading direction)

Force exerted by jacks

Specific experimental tests prove that FRC enables a stable propagation of cracks compared to plain concrete → appropriate design tools → non-linear numerical analyses and experimental tests

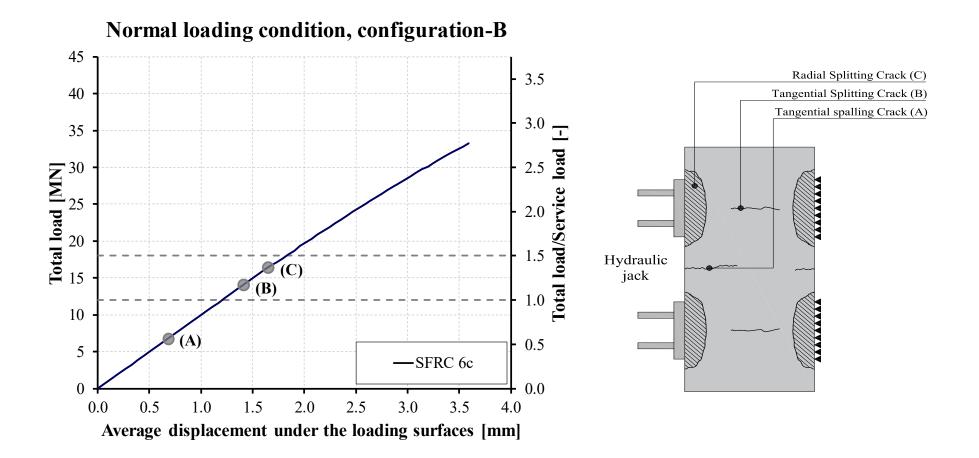
ANALYSIS OF GLOBAL BEHAVIOUR : consider possible irregularities of contact (e.g., eccentricity of thrust shoes, uneven support, etc.)



FRC tunnels segments (fibres only) more vulnerable to irregular load conditions increased localized stresses of such irregularities analysis with different boundary conditions

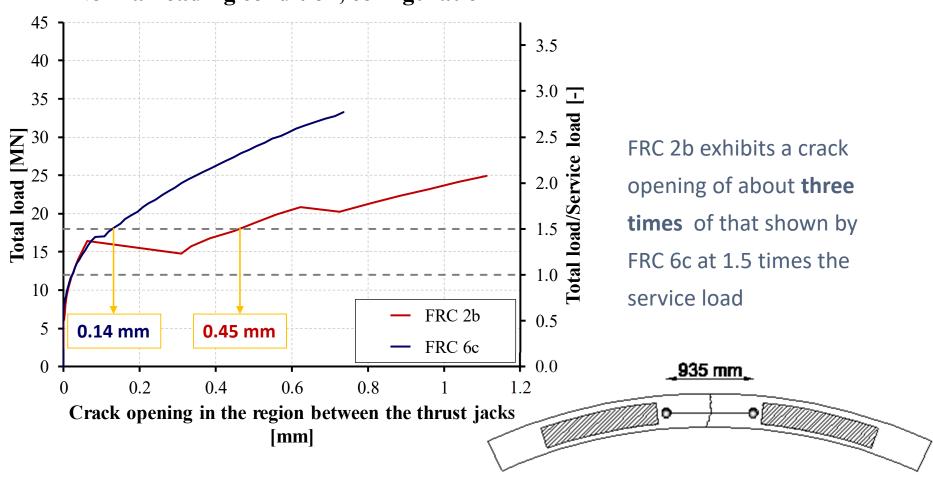
Our recommendations – Step-by-step analyses Proposed procedure Advanced segment 3D model – non-linear Simplified segment 2D model – non-linear UNI 2 А Simplified local, 2D, m linear or non-linear в 1 2 numerical model or analytical formulations С 2 1 Evaluation of local and global mechanism with respect to Evaluation of local splitting stresses possible use of FRC. Capture the post-cracking FRC contribution.

Asses the maximum crack width (if any) at service condition (with crack control due to fibers)


Our recommendations – Modelling 3D advanced numerical model

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

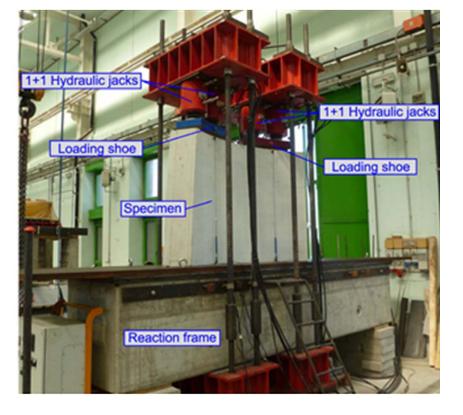
Our recommendations – Modelling


<u>Global behavior</u>: bearing capacity & development of cracks

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Our recommendations – Modelling

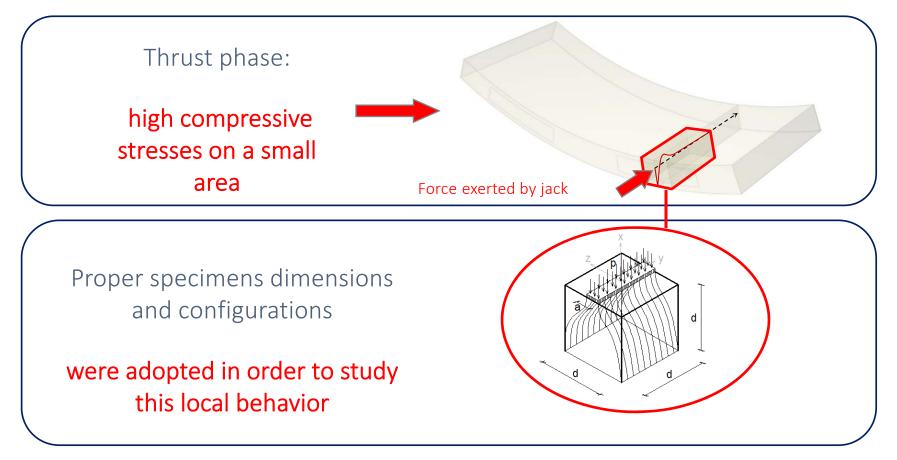
Local behavior: influence of FRC performance on spalling crack


Normal loading condition, configuration-B

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

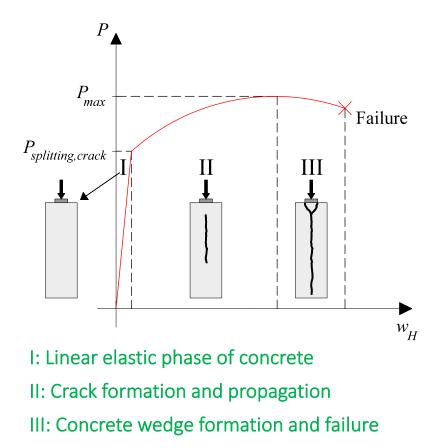
Our recommendations – Testing

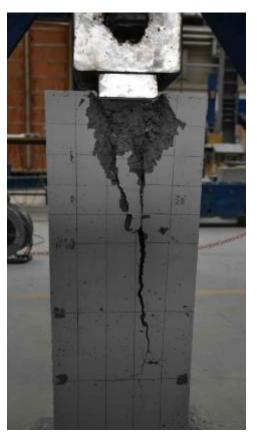
Experimental tests on small samples (local behaviour) or full-scale tunnel elements (local and global behaviour) as useful tools for proving the design approach


SMALL SCALE TEST reproducing the local behavior under TBM thrust jacks

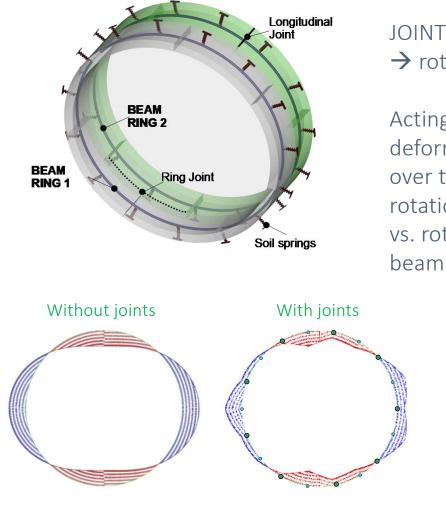
FULL SCALE TEST: local behavior and boundary conditions of the segment are considered

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

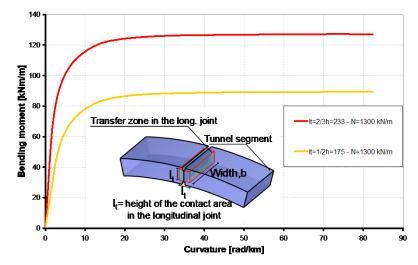

Our recommendations – Testing


SMALL SCALE TEST - typical behavior of **FRC samples** for evaluating local splitting behavior

Our recommendations – Testing

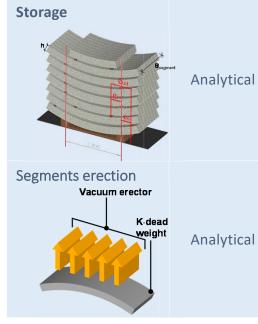

SMALL SCALE TEST - typical behavior of FRC samples having adequate postcracking strengths (FRC class 2e or higher)

Our recommendations – Modelling joints


Long term condition – Consider the interaction between 2 adjacent rings for FRC segments

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

JOINTS (between perfect continuity and perfect hinge) → rotational spring in a bedded -beam model


Acting load \rightarrow transfer zone (contact area) \rightarrow deformations \rightarrow rotation by integrating the curvature over the depth of the contact area \rightarrow stiffness of the rotational spring by calculating the bending moment vs. rotation relationship of the equivalent concrete

Lessons from Twenty Years of Application ITA WG02 – Tiberti, Plizzari, Chiriotti

Our recommendations – Other load cases

Avoid cracks as much as possible during these stages.

SLS

Analytical

The SLS verification is independent by fibre resistant contribution (since fibres act after cracking)

Segment internal forces (N, V, M) are calculated

Control of σ 1,2 (principal tensile stress) in the most critical tunnel segment section, calculated by means of Mohr's circle according to the combination of N, V, M

 $\sigma_{1,2} \leq f_{ctk,0,05}(demoulding)$

Attention to misalignment of the supports of piled tunnel segments

 $\sigma_{1,2} \leq f_{ctk,storage}$

Evaluation (or estimation) of FRC fracture parameters (fRi), at the time of storage (an experimental campaign on testing samples is recommended)

Concrete mechanical and fracture properties at 28 days

 $\sigma_{1,2} \leq f_{ctk}$

Minimum required bearing capacity that segments must provide for not collapsing

ULS

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Concluding remarks & future developments

- □ We follow the *fib* Model Code 2010, adding recommendations for a complete segmental lining design procedure
- □ We support a performance-based FRC design
- We help clarifying for which loading conditions or stress conditions fiber contribution can be exploited
- □ In doing that, we promote the use of non-linear modelling
- We consider testing fundamental for proving the design approach (not to substitute it)
- Expected future developments: analytical simplified approach (adequate for practitioners) for taking into account:
 - the fiber contribution (at least bearing capacity) against local splitting behaviour
 - the local FRC contribution in longitudinal joints

...also missing in fib bulletin 83 (2017)

Thanks you for your kind attention!

For detailed questions: giuseppe.tiberti@unibs.it; giovanni.plizzari@unibs.it

Structural use of fibre reinforced concrete in precast segments 24 May 2018, Zürich

Useful papers/books on this topic

- 1. ACI Committee 544 (2016), *Report on Design and Construction of Fibre Reinforced Precast Concrete Tunnel Segments*, ACI 544.7R-16, American Concrete Institute, Farmington Hills, MI, pp. 36.
- 2. Caratelli A., Meda A., Rinaldi Z. (2012), *Design according to MC2010 of a fibre-reinforced concrete tunnel in Monte Lirio*, Panama, Structural Concrete, V.13, No. 3, 2012, pp. 166–173.
- 3. Di Prisco M., Plizzari G.A., Vandewalle L. (2009), *Fibre reinforced concrete: new design perspectives, Materials and Structures*, ISSN: 1359-5997, DOI 10.1617/s11527-008-9385-7, Vol. 42, No. 9, pp. 1261-1281,.
- 4. EN-14651 (2005), *Test method for metallic fibre concrete Measuring the flexural tensile strength (limit of proportionally (LOP), residual),* European Committee for Standardization, 18pp.
- 5. FIB (2012), *fib Model Code Final Complete Draft*, fib bulletins 65 and 66, March 2012-ISBN 978-2-88394-105-2 and April 2012-ISBN 978-2-88394-106-9.
- 6. fib Working Party 1.4.1 (2017), *Tunnels in fiber reinforced concrete*, fib Bulletin 83, "Precast tunnel segments in fibre-reinforced concrete", ISSN 1562-3610, ISBN 978-2-88394-123-6, October 2017
- 7. Kasper T., Edvardsen C., Wittneben G., Neumann D. (2008), *Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments*, Tunnelling and Underground Space Technology 23, pp. 574-587.
- 8. AFTS Recommendation n.GT38R1A1 (2013), *Design, dimensioning and execution of precast steel fibre reinforced concrete arch segments*, Tunnels et espace souterrain, n. 238, July-August, 2013, pp. 312-324
- 9. Tiberti G., Conforti A., Plizzari G.A. (2015), *Precast segments under TBM hydraulic jacks: experimental investigation on the local splitting behaviour*. Tunnelling and Underground Space Technology, Vol. 50, pp. 438-450, doi: 10.1016/j.tust.2015.08.013.
- 10. Conforti, A., Tiberti, G., Plizzari, G.A., Caratelli, A., Meda, A. (2017). "Precast tunnel segments reinforced by macro-synthetic fibers", Tunnelling and Underground Space Technology, Vol. 63, March 2017, ISSN 0886-7798, pp. 1-11, doi: http://dx.doi.org/10.1016/j.tust.2016.12.005.
- 11. Conforti, A., Tiberti, G., Plizzari, G.A. (2016). "Combined effect of high concentrated loads exerted by TBM hydraulic jacks", Magazine of Concrete Research, Vol. 68, Issue 21, November 2016, ISSN: 0024-9831, pp. 1122-1132, doi: http:// dx.doi.org/10.1680/jmacr.15.00430.