

L2 Metro Lima: TBM excavation design (Settlement – PAT) & construction follow up

ETH – Zurich, December 2022

Agenda

- 1. Overview L2 Metro Lima
- 2. Geotechnical context
- 3. Settlements & pressures definition
- 4. Soil conditioning
- 5. Construction follow up

Overview

Metro Lima General Layout

Legend:

1	37 km	Line
2	27 km	Line
3	31.50 km	Line
0	26 km	Line
5	13.90 km	Line
6	30 km	Line

Line 1: operating Line 2: under construction Line 3: design stage Line 4: design stage Line 5: under evaluation Line 6: under evaluation

General information of the Line 2:

_First underground fully automated metro in Peru' (Vmax = 90km/h)

~ 660'000 passengers per day

_Total cost > \$ 3 Billion

_Main benefit → Environmental sustainability (strong reduction of vehicular traffic)

🕒 Lombardi

Metro Lima Line 2 – TBM section

Key facts (Line 2, TBM section):

- 17.3km of mechanized excavation 1 TBM - EPB Shield
- _1 TBM Multi-mode (EPB / Slurry)
- Excavation diameter $\Phi_{exc} = \sim 10.3 \text{ m}$
- Max. Overburden = 19.5 m
- Min. Overburden = 4.5 m
- _19 Stations + 18 Ventilation shafts

🕒 Lombardi

Metro Lima Line 2 - Urban context

Alignment in a highdensity urban area, under the road

Lima Geotechnical context

Geotechnical context

CL/ML	C
SM	Si
GP	G

R

1st Stretch - Typical condition from ST19 to ST4

2nd Stretch - Typical condition from ST4 to ST1

Face condition NATM

Geotechnical context Excavation face

Settlements & pressures definition and building damage estimation

Methodology

Volume loss definition

The ratio of the volume of the surface settlement trough to the excavated face area usually expressed as percentage.

Volume loss procedure definition

<u>1 Geometrical volume loss</u>: difference between excavation diameter and tail shield diameter (conicity of shield).

<u>2 Evaluation of efficiency:</u> according to N. Ruse & H. Schwarz graph

<u>3 Risk analysis</u>: evaluation of the key factor can generate volume loss (face pressure, grout pressure, weight of excavated material, grout volume injection...) and definition of the mitigation measures (excavation control, topographic control, quality system for excavation procedure...)

_ 4 Evaluation of the increment on the efficiency of the excavation through a risk analysis

_ 5 <u>Definition of Volume loss</u> for calculation

Analytical assessment: results of settlement evaluation and damage estimation

Settlements

Isolíneas de asentamientos absolutos					
Asentamiento mínimo [mm]	Color				
0	5				
5	10				
10	15				
15	20				

Admissible level of deformation

	Índice de vulnerabilidad de la estructura, l _v							
Categoría de daño	Despreciable	Bajo	Ligero	Moderado	Alto			
	0 <i<sub>v<20</i<sub>	20 <i<sub>v<40</i<sub>	40 <i<sub>v<60</i<sub>	60 <i<sub>v<80</i<sub>	80 <i<sub>v<100</i<sub>			
	Factor de reducción, F _R							
	F _R =1.0	F _R =1.25 F _R =1.5		F _R =1.75	F _R =2.0			
	Deformación límite por tracción, ε _{lim} [%]							
0	ε _{lim} <0.05	ε _{lim} <0.04	ε _{lim} <0.033	ε _{lim} <0.029	ε _{lim} <0.025			
1	$0.05 < \epsilon_{lim} < 0.075$	0.04<ε _{lim} <0.06	0.033<ɛlim<0.05	0.029<ε _{lim} <0.043	$0.025 < \epsilon_{lim} < 0.038$			
2	0.075<ε _{lim} <0.15 0.06<ε _{lim} <0.12		0.05<ε _{lim} <0.1	0.043<ε _{lim} <0.086	0.038<ε _{lim} <0.075			
3	0.15<ε _{lim} <0.3	0.12<ε _{lim} <0.24	0.1<ε _{lim} <0.2	0.086<ε _{lim} <0.171	0.075<ε _{lim} <0.15			
4 y 5	0.3<ε _{lim}	0.24<ε _{lim}	0.2<ε _{lim}	0.171<ε _{lim}	0.15<ε _{lim}			

Damage category

Índice vulnerabilidad [-]	ε _{max} [%]	Categoría de daño
0-20	0.07	1
20-40	0.06	2
20-40	0.06	2
20-40	0.11	2
		-

🕒 Lombardi

Excavation pressures: How to define it?

Results of the calculation

57

20

0

1200 8 8

8

8

Caquot & Kerisel (1956)

D Figura 27: Equilibrio de fuerzas que actúan en el bloque de deslizamiento del frente [27].

Presiones de excavación al eje de la TBM - EDI 1B-14 desde E12 hasta E19 ----- Presión de excavación al eje ----- Rango de presiones de excavación 260 240 220 200 180 160 excavación (kPa) ión 12 ación 14 6n 17 5 2 18 -----5 50 -6 -S -----Estaci 5 Ē t Est 5 E3 - mi ------------_____ Presión de 80 ----------_____ -----60 ----..... 40 $s' = F_0 \gamma' D - F_1 c' + F_2 \gamma' \Delta h - F_3 c' \frac{\Delta h}{D}$

Lombardi

300

000 8 200 8 5100

8

100

PK [m]

19

ų,

Results of the calculation: PAT (plan for advance of tunnel)

		- 1995 A 1995 A	econdecimients de naite es la cience de escanción importa, politica della La presión de tatisfación en estatuen en espectar a informa parte de presente folicidar en el forme en elevenca. La calence de apresente de tatisfacione en el presenta y unalta de la estatuente presente de la calence de la calence de la calence de la calence de la calence de la calence de la calence de la calence en el calence de la calence de la calence de la calence de la calence en el calence de la calence de la calence de la calence de la calence de la calence de la calence en el calence de la	MODOS DE EXCAVACIÓ	ÓN TBM EF	РВ
	Â		Les previons au la prévion y autôtic de la restationes sur déclarise en el interne 1612 a de la control de la control de la control de la control de assemble d'artes moliticas la control de la control de la control de la control de la control de massion de la control de la control de la control de la control de Marcino de la control de massion de la control d	Modo A Modo Abierto		
		1	Variación admisibile &= = -1976 × presión de trabajo al eje	Modo B Modo Semi Cerrado	Aire-Espuma	
			LETINA CECO COA MARCIO LETINA CECO COA SOLUZIONI A MARCIO	Modo C Modo Cerrado Espun	na/ Polímero/ Si	uspensión
Multi-free mp			B More transmission of intercalization is more in plane. 0%-bit Streps information of intercalization of inte			
Point in spar of gib The [A] Image: Control of the [A] <th< td=""><td></td><td></td><td>Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction</td><td>LIMITES DE ALERTA Y ALARMA PAF</td><td>RA EL CONTROL</td><td>DE PARAMETROS -EPI</td></th<>			Construction	LIMITES DE ALERTA Y ALARMA PAF	RA EL CONTROL	DE PARAMETROS -EPI
			2 (0.52.25) Par OA Lat. Tecan resolut 1 (0.52.25) AA OA Lat. Suppr Section 3 (0.52.25) AA OA Lat. Suppr Section 3 (0.52.25) AA OA LAA Super Section 1 (0.52.25) AA OA LAA Super Section 1 (0.52.25) AA OA LAA Super Section 1 (0.52.25) AA OA SUPPR SECTION 1 (0.	Presión en el Frente (PF)	Volumen d	e inyección (VI)
ESSERVICE LINESCONTEC ESSERVICE LINESCONTEC EDUCATE IN FRANT CO. TRU	AALLOS ADBIDLIN MAAMETROG 4PB	11. CRICKINGGOD	Lines 2 y Ramal Av. Faucett – Av. Gambetta de la Red Básica del Metro de Lima y Callao	Alertas Alarmas	Alertas	Alarmas
	MODOS DE EXCA Modo A Modo A	AVACION TENTERS MODOS DE EXCAVACIÓN TEM PMB to Consta Av-Equina Modo 1 Mada Canada Equinata Equinata Interaparta par unta Consta Av-Equina Modo 2 Modo Canada Equipanta Antiquina Sumporte par unta	Terre Elapa 1 Terre Servicios para el seguimiento de la excavación de las 2 TEMS de la Línea 2 del Metro de Línea Presiones de ecuandos n. D. 12.2-13.A	0.85 PF 1.15 PF 0.80 PF 1.20 PF	0.90 VI 1.10 VI	0.80 VI 1.20 VI
	Annon et Lunder Million C. Mildle Cerra Million C. Mildle Cerra	dia Espanal Polineari Espanaliti 7 - Moli 2 Moli Canada Espanalis (Stary) semporte per las Adarias de ausparador	Num Num <td>Presión de invección (PI)</td> <td>Peso del ma</td> <td>terial excavado (P)</td>	Presión de invección (PI)	Peso del ma	terial excavado (P)
				Alertas Alarmas	Alertas	Alarmas
				Lim.Inf. Lim.Sup. Lim.Inf. Lim.Sup.	Lìm.Inf. Lìm.Sup.	Lìm.Inf. Lìm.Sup.
				0.85 PI 1.15 PI 0.70 PI 1.30 PI	0.95 VI 1.05 VI	0.90 VI 1.10 VI
					Ì	
Progresiva	5+100		5+150	5+200		ESQUEMA DE UBICACIÓN DE SENSORES EN FRENTE DE TE
Modo de operación TBM	Modo (c	Modo C	Modo C	S1 Escudo delantero Ø=10210 mm	+ +
Asentamiento máximo eje tunel (mm)	13		14	14	<u>82</u> -	
25	S1 84		84	84	<u></u>	
PF - Presión de trabajo de TBM (kPa)	- S2		120			
5			110	10	_	
20	53 140		140	140	-	
Presión de agua al eje de TBM (kPa)			0	ļ ļ		
P - Peso material excavado (t/m) (*) ver notas	1.72		1.74	1.74		
29	S1 104					
			104	104	-	
PI - Presión de inyección de mortero (kPa)	s2 140		104	104 		
PI - Presión de inyección de mortero (kPa)	S2 140		-140 -140	104 		

Lombardi

3.10 .50 2.30

Soil Conditioning for EPB excavation

Soil Conditioning laboratory test

Laboratory test carried out:

The half-life time of a foam:

defined as the time required by a foam to drain 50% of the weight of the initial conditioning liquid used in foam generation (EFNARC, 2005)

_ The fall cone test:

measures the penetration hf of a cone dropped under its own weight after being released from the standardized support

_ The pull-out test:

represents a family of widespread systems for measuring the adhesion between a metallic element and the soil.

_ Slump test and flow table test:

the slump test is carried out using the Abrams cone, the flow table test or flow test is a method to determine the consistency of specimens.

Figure 1. Half-time life test apparatus.

Figure 5. Slump test (left) and flow table test (right) apparatuses.

Soil conditioning Gravel

Product	ID	Wadd	FER	FIR	TR	Wcond	Slump	Abrasiveness
		(%w)	(xx:1)	(%)	(l/m ³)	(%)	(cm)	(g)
	SP1	0.00	15.00	20.00	0.27	11.49	15.50	0.11
	SP2	5.00	15.00	30.00	0.40	17.32	16.50	0.10
CLB F5/M	SP3	2.50	15.00	30.00	0.40	13.83	11.50	0.08
	SP4	5.00	15.00	20.00	0.27	16.52	10.00	0.14
	SP5	5.00	12.00	25.00	0.42	19.98	10.00	0.14
	SP6	5.00	15.00	30.00	0.40	20.86	8.50	0.14
	SP7	5.00	15.00	40.00	0.53	20.75	11.50	0.12
ACTISOYL 20W	SP8	2.50	15.00	72.50	0.97	17.19	21.50	0.10
	SP9	5.00	15.00	50.00	0.67	16.06	16.50	0.10
	SP10	5.00	12.00	25.00	0.42	20.60	8.00	0.16

Laboratory test results carried out with two foaming agents: CLB F5/M (CONDAT) and ACTISOYL 20W (TNL18)

The samples have been conditioned with different dosages, prepared at a natural water content $w_n=10\%$. The concentration of the foam Cf was set as fixed parameter and equal to 2%. The foam expansion ratio FER was chosen based on the granulometry between 12÷15. The added water w_{add} and foam injection ratio FIR were then adjusted to obtain a good soil paste, according to slump test, flow table test and visual inspection. Starting from those parameters, the treatment ratio TR was calculated.

FER: foam expansion ratio. Ratio between the volume of the foam and the volume of foaming solution used. FIR: foam injection ratio. Ratio between the volume of foam injected and the volume of soil.

Cr: concentration factor of the foam. Percentage ratio between the weight of the foaming agent and the total weight of the foaming solution TR: treatment ratio. Volume of foaming agent used to treat a unit volume of soil.

wn: initial water content of the soil.
 wadd: amount of water added for conditioning (% on the weight of the soil).
 wcond: water content of the conditioned soil

Excavation parameters control

Asentamiento y avance

TBM excavation control (face pressure – tail void injection and volume pressure – weight of excavated material)

Conclusion

_With a correct definition of the soil conditioning is possible to achieve the requested:

_stability of the face

_level of settlements (with a mitigation of the risk of damage)

_rate of the advance of tunnel excavation

_The strict control and continuous analysis of excavation and monitoring data are necessary to ensure that TBM advancement takes place with the requested level of safety

_After approx. 2.5 km of excavation of TBM 1 and 1km of excavation of TBM2 the settlements assessment has been respected using the face pressure and other machine parameters defined in the design stage

Antonio Logarzo antonio.logarzo@lombardi.group

Francesco De Salvo francesco.desalvo@lombardi.group

