
Partners

Real-Time Processing of Spatio-Temporal
Data: Taxi Scheduling in New York City
Geomatics Master – Master Thesis Spring 2018

Roswita Tschümperlin

Geoinformation-Engineering, ETH Zurich

Supervisors: Dominik Bucher, Prof. Dr. Martin Raubal

4 Results and Discussion

The incoming data streams are split into small batches of a given
duration. In order to perform real-time matching the processing time for

the data within a batch must be smaller than the batch duration (resp.

interval). The ideal batch interval depends on the data throughput and
must be found in a trial-and-error procedure.

The Cartesian pipeline exceeded the batch interval of 2 sec already for

small client throughputs due to its expensive join computation. The

Separated pipeline performed well for small throughputs but was
overburdened with more than 100 clients per batch. The Base-partition

and Multi-kNN pipelines performed best,

even for large client numbers. The
superior performance of Multi-kNN

over Base-partition might be due

to its use of a spatial index.

The duration for each OSRM route query
was measured and resulted in an aver-

age of 20 ms. Considering that for each

client at least k queries have to be per-
formed it can be said that the routing is

too expensive for real-time matching.

1 Introduction

The emergence of autonomous mobility as well as the increasing

amount of available mobility data ask for changes in the field of

information technology. A possible deployment of autonomous taxis and
the rising demand for car-sharing services require flexible and scalable

systems that can automatically match available taxis to a large number

of clients while considering the clients’ demands.

In this thesis a Big Data streaming framework is used to develop an
exploratory carpooling application that can match vehicles to client

requests in real-time based on their current locations. Different

approaches for a nearest neighbor matching will be compared and it will
be assessed how well an external routing service can be integrated into

the streaming architecture.

2 Application Architecture

The application receives client requests and taxi updates from two
different input streams. The partial object updates are then combined to

full taxi and client representations using a stateful stream.

Nearest Neighbor

The top-k closest taxi candidates for each client are found using a

nearest neighbor search. For this task four different approaches have

been developed:

The Cartesian and Base-partition pipelines find the nearest taxis using
the Euclidean distance between each taxi and client pair. The Cartesian

performs a join between all taxi and clients and distributes the pairs

across the cluster. The Base-partition pipeline first distributes the taxis,
then collects the clients and sends them combined to each worker.

The Separated and Multi-kNN pipelines use a spatial index for a
collection of point objects (PointRDD). The Separated creates a

PointRDD with all taxis and stores is locally. The nearest neighbor

search is performed for each client separately using the taxi PointRDD.
The Multi-kNN builds a PointRDD for both taxis and clients and performs

a distributed nearest neighbor search.

Routing

In a directed road network the nearest candidate is not necessarily the

candidate that can reach the client fastest. The Open Source Routing
Machine (OSRM) is used to compute the exact routes for all client-

candidate pairs. The results from OSRM are further used to perform a

route similarity check to find car-sharing options. The best candidate is
assigned base on a minimal duration criterion.

5 Conclusion and Future Work

A streaming application for carpooling has been developed and four

different pipelines for nearest neighbor matching are introduced. The

Base-partition and Multi-kNN pipeline present promising results and
show that real-time nearest neighbor matching is possible. With an

average route query duration of 20 ms real-time assignment of a taxi to

a client request is not possible.

For a better evaluation longer performance tests must be run. The
utilization of the cluster capacity should be further analyzed to gain

better scalability. As a critical issue the routing procedure must be

optimized in order to reach real-time processing times.

Fig. 1. Architecture of the carpooling application

3 Performance Tests

In order to evaluate the performance and scalability of the application

and the different pipelines automated tests are run over a duration of 5

minutes. As application inputs two configurable streams deliver data
retrieved from a real, historic taxi trip dataset from New York City.

The application is being deployed in a cluster of PCs. The input streams,

application input point and cluster manager are running on one machine

while the other computers represent the worker machines. Each worker
has an instance of OSRM running locally.

Fig. 2. Base-partition pipeline

Fig. 3. Multi-kNN pipeline

Fig. 4. Comparison of the pipelines with different client throughputs and 20'000 taxi updates per batch

Fig. 5. Duration of OSRM route query

