
Traffic Map Forecasting using Graph

Convolutional Neural Networks
Konstantin Arbogast

Master Thesis, FS 2020

Supervisor(s): Prof. Dr. Martin Raubal, Henry Martin, Dominik Bucher

4 Results and discussion

5 Conclusion

• Prediction Error: The CNN outperforms the GCN when applied to the city the
model was trained on.

• Generalization ability: The GCN is more able to generalize, as it outperforms
the CNN significantly in most cases when applied to another city, sometimes
even beating the baseline in other cities.

• Efficiency: There’s a trade-off between the two models in terms of efficiency.
While the CNN training needs less time per epoch, the GCN training uses
significantly less GPU memory.

Generally, a GCN seems to be a promising method for traffic predictions.
Especially when the goal is to train a single model for multiple cities.

6 References

1. Martin, H., Hong, Y., Bucher, D., Rupprecht, C., and Buffat, R. (2019). Traffic4cast – traffic
map movie forecasting team mie-lab. arXiv: 1910.13824v2 [cs.CV].

2. Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on 
graphs with fast localized spectral filtering. Advances in Neural Information Processing 
Systems, 29:3844–3852.

3 Experimental Setup

• Chebyshev convolution [2] used as graph convolution
technique.

• Convolution block consisting of graph convolution, batch
normalization and ReLU activation.

• Max Pooling done with street based clustering approach:
Clustering according to position in the image by overlaying
grid. Additionally getting the street types from open street
maps and splitting the clusters accordingly.

1 Introduction

In 2019, the IARAI launched the Traffic4cast competition, where
traffic data for 15 minutes was predicted, based on images of
the previous hour. This was done using Convolutional Neural
Networks (CNN). During this thesis, a Graph Convolutional
Neural Network (GCN) was developed to shift the problem from
image to graph representation, in order to work with the
additional spatial information given by the street network. The
goal of this thesis was to compare this GCN with a CNN
developed for the competition [1] in terms of prediction error,
generalization ability and efficiency.

2 Preprocessing

GCN Berlin Moscow Istanbul

Berlin 193.3 205.8 203.0

Moscow 219.4 187.6 193.0

Istanbul 278.5 255.3 236.7

CNN Berlin
Mosco

w
Istanbul

Berlin 182.2 312.0 287.4

Moscow 283.6 181.1 310.9

Istanbul 276.3 301.4 232.1

t/epoch Memory usage

GCN 05:58:06 4335 MiB

t/epoch Memory usage

CNN 03:28:38 9273 MiB

Baseline

Berlin 204.5

Moscow 195.9

Istanbul 240.2

• Lower validation losses for CNN when the model is
applied to the city it was trained on.

• Both models beat the baseline when applied to the
same city.

• Lower validation losses for GCN when the model is
applied to other cities.

• GCN model trained on Istanbul even beats the
baseline when applied to other cities.

• GCN training is slower, but uses significantly less GPU
memory.Fig. 1. Mask for Berlin. White

pixels represent pixels on the road

network.

Image 
Data

Mask
Creation

Pixels on 
Mask as
Nodes

Node
connections

Graph 
Data

Fig. 2. Getting from image to graph data: Representing pixels as nodes,

storing neighboring pixels as connections in a tensor.

Tab. 1. Mean squared errors of the GCN (left) and the CNN (right) calculated on the whole images. Model trained on the city at the top

applied to the city on the left. Lower losses compared to the other model are highlighted.

Tab. 2. Efficiency evaluation for GCN (left) and CNN (right). Training time per epoch and GPU memory usage.

Tab. 3. Baseline for MSE values

for all three cities. Predictions

done by calculating the average

traffic within the last hour and

applying it to the next 15 minutes.

Fig. 3. Example for the street based

clustering used for pooling. Numbers

represent street types. Nodes are

clustered by location and street type.

Fig. 4. Simplified representation of

the model architecture – Full model

has additional width and depth.

• KNN interpolation for unpooling.

• Dropout layer to prevent over-
fitting.


