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Abstract

Transportation simulators have been increasingly popular and widely applied to analyze transporta-
tion problems that are not amendable to study by other means. Model calibration is a crucial
prerequisite for transportation simulators to reliably reproduce and predict traffic conditions. This
paper considers the calibration of stochastic transportation simulators that provide detailed represen-
tations of actual traffic conditions and thus are computationally costly to evaluate. It formulates the
calibration problem as a simulation-based optimization (SO) problem addressed by the metamodel
approach, in which the metamodel combines information from the simulator with information from
an analytical differentiable and tractable network model that relates the calibration parameters to
the simulation-based objective function. We have evaluated the performance of the proposed frame-
work on a toy network and a large-scale metropolitan network with 24335 links and 11345 nodes
in Berlin, Germany. The results show the proposed approach significantly improves the computa-
tional efficiency of the calibration algorithm with an average reduction in simulation runtime until
convergence of more than 80%.

1 Introduction

This paper focuses on the calibration (i.e., the estimation of the input parameters) of simulation-
based road traffic models. The problem of model calibration has been extensively studied by the
transportation community. A survey of both analytical and simulation-based calibration problems
and algorithms is given in Balakrishna (2006). The most extensively studied calibration problem
is, arguably, that of the calibration of origin-destination (OD) matrices, with seminal work such
as Cascetta and Nguyen (1988), Cascetta et al. (1993) and more recent work such as Zhou and
Mahmassani (2007, 2006), Zhou (2004), Ashok and Ben-Akiva (2002), Ashok (1996), as well as the
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deployment of path flow estimators (PFEs), with the seminal work of Bell et al. (1997). Recent PFE
reviews include Flötteröd (2008) and Buisson et al. (2012).

This paper focuses on the calibration of simulators that are computationally costly to evaluate.
The high computational cost can be due to: (i) the simulation of high levels of demand along with
a high-resolution representation of demand (e.g., disaggregate representation of travelers), (ii) the
simulation of a large-scale network, (iii) the use of a stochastic simulator requiring the evaluation
of numerous simulation replications, (iv) the desire to evaluate performance under equilibrium con-
ditions, which requires running sequentially multiple simulation-based assignment iterations (Nagel
and Flötteröd, 2012).

Given the high computational costs involved in evaluating the simulation models, there is a need
for calibration algorithms that can identify solutions with good performance at a low computational
cost. That is, algorithms that can identify good solutions within few algorithmic iterations, i.e., with
few simulated (near-)equilibrium responses.

We first discuss the main challenges of addressing calibration problems. We then state how the
approach proposed in this paper addresses these challenges. The traffic model is often stochastic.
It can involve sampling for every traveler from a variety of disaggregate behavioral models (e.g.,
choice models such as departure time, mode, route, lane-changing, etc.). Thus, a single run of the
simulator involves drawing, for each of the thousands or hundreds of thousands of travelers, from
a set of behavioral distributions. Given a sample of behavioral choices, a traffic flow model is used
to propagate the travelers throughout the network. A review of state-of-the-art simulation models
is presented in Barceló (2010). Thus, the mapping between the calibration parameters and the
probability distribution of a given performance metric (e.g., the objective function of a calibration
problem) is an intricate function.

This mapping is often non-convex and may contain multiple local minima. The stochasticity
of the simulator requires the use of optimization algorithms that account for the lack of both: (i)
a closed-form expression of the objective function and, (ii) exact function evaluations (since the
functions can only be approximated). The use of traditional statistical and numerical algorithms is of
limited use for calibration problems, since the underlying simulators often lack the strong assumptions
required by these methods (e.g., normality, ergodicity) (Buisson et al., 2012). Hence, the traditional
approach to calibration has been the use of simulation-based optimization (SO) algorithms. Most SO
algorithms are general-purpose algorithms, they are not tailored to the complexities of transportation
simulators. They have been used extensively for calibration, several reviews include Ben-Akiva et al.
(2012), Balakrishna (2006), Antoniou (2004). Algorithms frequently used for calibration include
simultaneous perturbation stochastic approximation (SPSA) (Spall, 1992), genetic algorithms (GA)
(Holland, 1975), particle filters and Kalman filters.

The generality of these SO algorithms stems from the fact that they treat the simulator as a black-
box. The main implication of this is that they are designed to achieve asymptotic (i.e., large-sample
size) convergence properties. They are not designed to identify good solutions within few algorithmic
iterations, i.e., they are not computationally efficient. Yet they are used by the transportation com-
munity under tight computational budgets, i.e., under small-sample size conditions. One approach
to derive computationally efficient algorithms, is to exploit the structure of the underlying calibra-
tion problem. General-purpose SO algorithms exploit limited problem-structure (e.g., at most they
are based on numerical linearizations). One recent work that does exploit problem structure within
the calibration algorithm is that of Flötteröd et al. (2011). It formulates and embeds within the
algorithm an analytical approximation of the first-order derivative of the simulator’s measurement
equation. This leads to significant reductions in the computational requirements of the algorithm.

Traditional SO algorithms, although designed to guarantee asymptotic properties, are typically
used for calibration under tight computational budgets. This makes them sensitive to the initial

2



points. Given the difficulty of identifying good initial points to the calibration problem, there is a
need for algorithms that perform well under tight computational budgets while being robust to the
quality of the initial points. Additionally, the lack of computationally efficient calibration algorithms
has led recent calibration research to focus on the design of dimensionality reduction methods (e.g.,
sensitivity analysis methods) (Ge et al., 2016, Ge and Menendez, 2016, 2014, Ciuffo and Azevedo,
2014).

This paper addresses the following challenges.

Computational efficiency We propose an algorithm that can identify points with good perfor-
mance within few algorithmic iterations. Therefore, it is a computationally efficient algorithm
that reflects well the computational conditions under which calibration problems are addressed
by both the transportation research and practice communities. This is achieved by designing
an algorithm that exploits the transportation-specific structure of the calibration problem.

Analytical structural information The algorithm embeds an analytical approximation of the
simulator. This contributes to a largely unresolved methodological challenge which is the
formulation of tractable measurement equations that link available surveillance field data to
the simulator’s calibration parameters.

Robustness to initial conditions The algorithm can identify good solutions within few iterations
regardless of the initial points. It is robust to the quality of the initial points.

Stochasticity The algorithm is a simulation-based optimization algorithm that accounts for the
simulator’s stochasticity.

This paper formulates the calibration problem as a simulation-based optimization problem and
uses a metamodel SO algorithm. The paper formulates a novel metamodel suitable for demand
calibration problems. The algorithm is used to address a calibration problem for a large-scale Berlin
metropolitan network. Section 2 presents the proposed methodology, followed by case studies on both
a toy network and a Berlin metropolitan network (Section 3). We conclude with a brief discussion
(Section 4) and present additional details in the Appendix.

With the increase in the availability, diversity and quality of travel data, comes an increasing
interest and relevance of the joint calibration of demand and supply parameters (e.g., Balakrishna,
2006, Antoniou et al., 2007, Vaze et al., 2009). The formulation of the proposed framework for the
calibration of supply parameters has been recently derived (Zhang et al., 2016a). Thus, we expect
the general ideas presented in this paper to be suitable for the joint calibration of demand and supply
parameters.

This paper illustrates the use of the proposed algorithm with the calibration of a single demand
parameter. Hence, the results do not indicate the suitability of the approach for high-dimensional
problems. Nonetheless, the metamodel ideas proposed in this paper have shown to be scalable for
traffic management problems (e.g., Osorio and Chong, 2015, Chen et al., 2012). We expect these
ideas to also scale well for calibration problems.

The case studies show that the proposed algorithm identifies good solutions within a couple of
iterations. Hence, it can also be used as a technique to identify good initial solutions to launch or
initialize traditional general-purpose calibration algorithms. This is particularly important when us-
ing the general-purpose algorithms under tight computational budgets, which are by design sensitive
to the initial conditions.
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2 Methodology

Section 2.1 formulates the calibration problem of interest. We focus on the use of a family of opti-
mization algorithms known as metamodel simulation-based optimization (SO) algorithms. Section 2.2
briefly describes the main ideas of metamodel SO algorithms. Section 2.3 formulates the calibration
problem as a metamodel SO problem. It then formulates a suitable metamodel.

2.1 Formal problem statement

We consider the calibration of travel demand parameters from link flows. Origin-destination (OD)
pairs are trip production and attraction points connected by a set of routes in an urban network. Let s
and i index the simulation time bins of size T and the network links, respectively, and let n = 1 . . . N
index the individual trip-makers (i.e., simulated travelers or agents) in the system. Denoting by
∆nis ∈ {0, 1} the stochastic binary indicator of traveler n crossing link i in time step s, the stochastic
simulated link flow rate Fis on link i in time step s is

Fis =
1

T

N∑
n=1

∆nis (1)

with the expectation

E[Fis] =
1

T

N∑
n=1

δnis (2)

where δnis = E[∆nis] is the probability that traveler n crosses link i in time step s (Flötteröd and
Bierlaire, 2009). This probability is in turn dependent on the network conditions x, in particular
travel times of the various routes, which in turn depend on the travel behavior (e.g., departure time,
rout choice), requiring typically to solve (2) iteratively. This is subsequently expressed by writing
δnis = δnis(θ;x) with θ a parameter vector of the underlying behavioral model. In a transportation
simulator that simulates the movement of individual travelers (microscopic and often mesoscopic),
these iterations can be interpreted as a learning process over subsequent days, where in each day some
travelers update their travel decisions (typically route choice, in some models also time and mode
choice) based on the most recent network conditions x, followed by a simulation of the corresponding
vehicle flows through the network, which in turn yields updated network conditions.

Let yi,s be the number of vehicles counted in the field on link i in time step s. A traditional
non-linear least squares formulation of the calibration problem is then to minimize the following
objective function:

f(θ) = min
θ∈Θ

∑
i∈I

∑
s

(yi,s − E[Fi,s(θ;x)])
2 . (3)

The summation considers all time steps s and all links i that belong to the set of links with mea-
surements available, denoted I. The feasible region Θ is defined analytically, and often consists of
simple bound constraints.

Formulation (3) illustrates the main challenges of the calibration problem described in Section 1.
The function E[Fi,s(θ;x)] has no closed-form expression available, since x (e.g., the travel times)
and E[Fi,s(θ; x)] (i.e., the expected link flows) can only be estimated by evaluating the stochastic
simulation model. Thus, Problem (3) cannot be solved using traditional analytical and deterministic
optimization approaches. The function E[Fi,s(θ; x)] is a non-linear function that describes complex
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spatial-temporal traffic phenomena in the stochastic traffic simulator and lacks sound mathematical
properties such as convexity.

The purpose of this paper is to propose an efficient calibration algorithm for such difficult prob-
lems. The main idea is to embed within the algorithm analytical structural problem-specific in-
formation. In particular, we propose to formulate and provide the algorithm with an analytical
approximation of the relationship between θ and E[Fi,s(θ; x)]. We expect this analytical information
to enable computational efficiency.

Developing such an analytical approximation is a challenging problem because the approximated
mapping involves the highly nonlinear and stochastic network loading map of path flows on network
conditions, comprising in the simulation context all difficulties that come along with real traffic flow
dynamics in urban networks (including, e.g., multi-lane flows, spillbacks, flow interactions in complex
intersections).

2.2 Metamodel simulation-based optimization methods

The following summary of ideas developed by Osorio and Bierlaire (2013) is needed to make the pro-
posed calibration approach concrete. The broad family of SO problems considered can be formulated
as follows.

min
θ∈Θ

f(θ, z; q̂) (4)

Problem (4) consists of two components: a simulation-based objective function f , and a feasible
region Θ. The objective function f is not available in closed-form, it can only be estimated via
simulation. It depends on: the calibration parameters θ, endogenous simulation variables z (e.g.,
link flows, travel times) and exogenous simulation parameters q̂ (e.g., network topology). The fea-
sible region Θ is defined by a set of constraints assumed analytical (rather than simulation-based),
differentiable and of general-form (e.g., non-convex).

For a review of metamodel SO methods, we refer the reader to Osorio (Chap. 5 2010). The
main idea underlying metamodel SO algorithms is to address the simulation-based Problem (4) by
iteratively solving a set of analytical problems. At iteration k the SO algorithm solves an analytical
problem with the following form.

min
θ∈Θ

mk(θ; βk) (5)

The main idea is to replace the simulation-based objective function (f in (4)) with an analytical
approximation of it (mk in (5)). The function mk is known as the metamodel. It is often a paramet-
ric function, with the iteration-specific parameter vector, βk, often being fitted based on simulated
observations. Metamodel SO techniques iterate over two main steps. First, the metamodel is con-
structed based on the sample of simulated observations. Second, it is used to perform optimization
and derive a trial point (e.g., a calibration parameter value). The performance of the trial point
can be evaluated by the simulator, which leads to new simulation observations. As new observations
become available the accuracy of the metamodel can be improved (Step 1), leading ultimately to
better trial points (Step 2). In this paper, we use the derivative-free trust region algorithm of Conn
et al. (2009). A full description of the algorithm is provided in Section 4.2 of Osorio and Bierlaire
(2013). In order to use this framework for calibration, the main challenge is to formulate a metamodel
model that: (i) provides a good approximation of the mapping of the decision vector to the objective
function, and (ii) is also computationally efficient such that Problem (5), which needs to be solved
at every iteration of the algorithm, can be solved efficiently. This paper contributes by formulating
a metamodel that achieves these two goals.

Metamodels can be classified as either:
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(i) functional models, these are general-purpose functions suitable to approximate an arbitrary
function f (e.g., polynomials);

(ii) physical models, these are problem-specific functions. In other words, their functional form
depends on the specific problem.

We use a metamodel that combines ideas from functional models and from physical models. At
iteration k it is defined by:

mk(θ; βk) = βk,0fA(θ) + ϕ(θ; βk) (6)

Equation (6) defines mk as a linear combination of a general-purpose parametric function (e.g., a
polynomial) denoted ϕ and a problem-specific approximation of f (defined in (4)) denoted fA. The
first element of the vector βk is denoted βk,0. Based on (6), the metamodel can be interpreted as
a problem-specific approximation (fA) which is corrected by a scaling factor (βk,0) and an additive
general-purpose correction term (ϕ).

The problem-specific approximation (fA) is derived from an analytical macroscopic traffic model.
Hence, the analytical problem solved at every iteration is defined by:

min
θ∈Θ

mk(θ; βk) (7)

h(θ, ṽ; q̃) = 0, (8)

where h denotes the analytical macroscopic traffic model, with endogenous variables θ and ṽ (e.g.,
expected link queue-lengths) and exogenous parameters q̃ (e.g., network topology).

This problem differs from Problem (5) in the presence of an additional set of constraints (8). This
set of constraints represents the analytical macroscopic traffic model used.

The key to achieving computational efficiency is in formulating a problem-specific approximation
fA that is a good approximation of the true, unknown, simulation-based objective function f . Hence,
for a given transportation problem the main challenge is in the formulation of a suitable traffic model
(h (8)) that satisfies the following requirements.

(i) It leads to a good analytical approximation (fA) of the simulation-based objective function (f).

(ii) It is a scalable traffic model, such that large-scale networks can be considered.

(iii) It is computationally efficient to solve. Every iteration of the SO algorithm requires solving
Problem (7)-(8), which contains the analytical traffic model as a set of constraints. Hence, the
evaluation of the traffic model needs to be computationally inexpensive to evaluate.

The broad family of metamodels defined by (6) have been used to efficiently address large-scale
urban traffic management problems while using inefficient yet detailed stochastic microscopic simu-
lators (Osorio and Selvam, 2016, Osorio and Chong, 2015, Osorio and Nanduri, 2015a,b, Chen et al.,
2012).

2.3 Metamodel formulation

The novel methodology proposed in this paper is valid for a general class of calibration problems.
In order, to illustrate and implement a specific instance of it, we focus, hereafter, on: (i) a time-
independent calibration problem (i.e., we consider a single time interval), (ii) the calibration of a
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single behavioral parameter, a scalar θ, which governs route choice. The specific SO problem is then
formulated as:

f(θ) = min
θ

∑
i∈I

(yi − E[Fi(θ;x)])
2 (9)

θL ≤ θ ≤ θU , (10)

where θL (respectively, θU) denotes a lower (resp. upper) bound. The purpose of the metamodel
is to approximate the simulation-based performance metric E[Fi(θ; x)], which denotes the expected
flow of link i. Let mi,k denote the analytical approximation of E[Fi(θ; x)] at iteration k of the SO
algorithm. Given an expression for mi,k, the SO algorithm would then solve a series of problems of
the form:

min
θ

∑
i∈I

(yi −mi,k(θ; βi,k))
2 (11)

θL ≤ θ ≤ θU (12)

h(θ, ṽ; q̃) = 0. (13)

where h denotes the analytical traffic model used to analytically approximate the link flows.
The metamodel is formulated for link i and iteration k as:

mi,k(θ; βi,k) = βi,k,0λi(θ) + βi,k,1 + βi,k,2θ, (14)

where θ is the (scalar) behavioral parameter, λi(θ) is the expected flow for link i approximated by
the analytic traffic model, and βi,k is a three-dimensional vector of metamodel parameters: βi,k =
[βi,k,0, βi,k,1, βi,k,2]. The metamodel can be interpreted as the analytical approximation (λi(θ)) cor-
rected by a scaling factor (βi,k,0) and an additive linear in θ error term (represented by βi,k,1+βi,k,2θ).
Flötteröd et al. (2011) formulate a related calibration problem using a metamodel of the form (14)
with βi,k,0 set to zero.

We now present the analytical traffic model that will yield the analytical approximation of link
flows (λi(θ)). The model is a probabilistic and differentiable network model. We map the road
network as a probabilistic queueing network. Each link is modeled as a single queue. Hereafter, the
terms link and queue are used interchangeably. We first introduce notation, we then present the
model formulation and comment on its derivation.
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ds expected travel demand for OD pair s;
ℓi space capacity of queue i;
li length of link i (road length);
vi maximum speed of link i;
µi service rate of queue i;
γi external arrival rate of queue i;
λi arrival rate of queue i;
t̃i expected travel time of queue i;
ñi expected number of vehicles in queue i;
pij turning probability from queue i to queue j;
tr expected travel time of route r;
fr expected flow on route r;
p̃sr probability that a traveler of OD pair s takes route r;
θ travel time coefficient of the route choice model;
S set of OD pairs;
Q set of queues;
R set of routes;
Rs set of routes of OD pair s;
Gij set of routes that consecutively go through queues i and j;
Hi set of routes that go through queue i;
Ti set of routes that start with queue i;
Ψr set of links of route r.



fr =
∑
s∈S

dsp̃sr ∀r ∈ R (15a)

p̃sr =
e−θtr∑

j∈Rs

e−θtj
∀s ∈ S,∀r ∈ Rs (15b)

tr =
∑
i∈Ψr

t̃i ∀r ∈ R (15c)

t̃i =
li
vi

+
ñi

λi

∀i ∈ Q (15d)

ñi =
ρ̃i

1− ρ̃i
− (ℓi + 1)ρ̃ℓi+1

i

1− ρ̃ℓi+1
i

∀i ∈ Q (15e)

ρ̃i =
λi

µi

∀i ∈ Q (15f)

λi = γi +
∑
j∈Q

pjiλj ∀i ∈ Q (15g)

pij =

∑
r∈Gij

fr∑
w∈Hi

fw
∀i ∈ Q,∀j ∈ Q (15h)

γi =
∑
r∈Ti

fr ∀i ∈ Q (15i)
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Equation (15a) describes how expected OD demand is mapped to expected route demand through
the route choice model. In other words, it defines the expected route flow as a weighted sum of
expected OD flows. Equation (15b) is the route choice model. It is a multinomial logit model with a
single attribute: expected route travel time. This is a simplification of the route choice model used in
the simulation models of the case studies of Section 3. For a detailed description of the route choice
models of the simulator, see Zhang et al. (2016b). Equation (15c) defines the expected route travel
time as the sum of expected link travel times.

Equation (15d) approximates the expected link travel time as the sum of expected free-flow travel
time and expected delay. The analytical approximation model used here is based on stochastic point
queues, meaning that it does not capture spillback and that all link outflow constraints result from
the links downstream bottleneck capacity. Recall that the structural metamodel is, by design, a
simplified approximation of the simulator, which may itself use space-queues and capture spillbacks.
The expected time it takes a vehicle to traverse a spatial link with a point queue downstream
bottleneck is the sum of: (i) the time to join the point queue, which corresponds to term li

vi
and

represents a constant free-flow travel time, and (ii) the expected delay or time needed to pass the
bottleneck, which corresponds to term ñi

λi
and is obtained by modeling the downstream bottleneck

capacity as a distributed quantity in order to capture variability in link discharge flows.
The expected delay is based on the use of Little’s law (Little, 2011, 1961), assuming an infinite

space capacity queue. The expected free-flow travel time is defined as the travel time to travel the
link at maximum speed. Equation (15e) approximates the expected queue-length of a given queue. It
is obtained by considering the queue as an isolated M/M/1/ℓ queue, with finite space capacity ℓ. A
derivation of this expression can be found in Appendix A of Osorio and Chong (2015). Equation (15f)
defines ρ̃i, which is known as the traffic intensity of the queue, as the ratio of expected demand to
expected supply. Equation (15g) is a flow conservation equation that relates the expected flow on
queue i (denoted λi) to the sum of expected external flow to queue i (denoted γi) and expected
demand arising from upstream queues. The expected flow, λi, is also refered to as the arrival rate
of the queue. The expected external demand, γi, represents demand that arises from outside the
network, i.e., trips that start at queue i. The turning probability form queue i to queue j (denoted
pij) is defined by Equation (15h) as the ratio of the expected demand from i to j and the expected
demand of queue i. The expected external demand for queue i is defined in Equation (15i) as the
sum of the expected demand over all routes that start at queue i.

For the simulation model of the case studies, the set of route alternatives for a given OD pair is
endogeous (i.e., it varies with θ and across assignement iterations). Nonetheless, for the purpose of
tractability a fixed (i.e., exogenous) route choice is considered for the analytical model. For every
OD pair, a set of 10 routes is constructed. Details on the derivation of this choice set are given in
Zhang et al. (2016b). The use of an exogenous route choice set for the analytical model implies that
the polynomial component of the metamodel has to capture simulated congestion-dependent route
choice changes. The use of an endogenous, iteration-dependent, route choice set could yield more
accurate analytical results, at the cost of a higher computational burden.

In summary, the analytical traffic model used to approximate the expected link flows λi(θ) of
Equation (14) are obtained by evaluating the system of nonlinear differentiable equations (15). The
exogenous parameters of the above system of equations are: θ, ds, µi, ℓi, li, vi,S,Q,R,Rs,Gij,Hi, Ti,Ψr.
All other variables are endogenous variables that are obtained when solving the above system of equa-
tions.
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3 Case studies

3.1 Experimental design

We apply the proposed approach to two case studies: a hypothetical toy network and a Berlin
metropolitan network. The simulator used is MATSim (Horni et al., 2016). The main purpose of
both case studies is to evaluate the added value of embedding within the calibration algorithm the
problem-specific analytical structural information, which is provided by the analytical traffic model.
For each case study, we compare the performance of two calibration approaches that only differ in
the use or not of the analytical traffic model. All other algorithmic details are identical. The first
approach is the proposed approach (denoted algorithm Am). It uses the metamodel defined by (14).
The second approach (denoted algorithm Aϕ) considers a metamodel defined for iteration k and link
i as:

ϕi,k(θ; βi,k) = βi,k,1 + βi,k,2θ. (16)

This metamodel differs from that of (14) in the absence of the macroscopic traffic model. In other
words, compared to Am, Aϕ uses the same general-purpose metamodel component but has no
problem-specific metamodel component.

The network topology characteristics of both networks are summmarised in Table 1. The main
details of the experimental design for each network are displayed in Table 2. The first row of Table 2
considers the lower and upper bounds for θ, this defines the feasible region, Θ. For the toy network,
we consider a set of hypothetical θ values, based on which we simulate synthetic traffic counts. The
second row of the table displays these hypothetical values, which we refer to as the true values and
denote θ∗. For the Berlin network, θ∗ is unknown. Recall that θ is the travel time coefficient of
the route choice model. Hence its unit is the inverse of that of the travel time. In other words, the
concrete value of θ depends on the time unit used for travel time. For both networks, the travel times
are computed in hours, hence the unit of θ is hr−1.

For a given θ∗, we initialize the SO algorithms with three different initial points, denoted θ0. The
initial values used are displayed in row 3. Therefore, in total there are 9 different experiments for
the toy network and 3 different experiments for the Berlin network. For each experiment, we run

Toy Network Berlin Network
Number of links 6 24335
Number of nodes 6 11345
Number of OD pairs 1 3635
Expected demand (veh/hr) 1400 172900

Table 1: Network attributes

Toy network Berlin network
Bounds for θ [θL, θU ] (1/hr) [−60, 0] [−60, 0]
True θ values (1/hr), θ∗ {−5,−20,−55} N.A.
Initial θ values (1/hr), θ0 {0,−40,−60} {0,−40,−60}
Computational budget 30 20
Simulation replications 5 10
Simulation assignment iterations 50 100
Total simulation evaluations per algorithmic run 7500 20000

Table 2: Experimental design
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each SO algorithm (Am or Aϕ) 3 times. The need to run an algorithm multiple times for a given
experiment is due to the stochasticity of the traffic simulator. Each algorithmic run consists of a
maximum number of points (θ values) to be evaluated. This is known as the computational budget or
the sampling budget (displayed in row 4). Once this computational budget is reached, the algorithm
is terminated.

For a given θ value, an estimate of the simulation-based objective function (Equation (9)) is
obtained by averaging over a set of independent simulation replications. The number of independent
simulation replications is displayed in row 5. Each simulation replication consists of a sequential
set of simulation assignemnt iterations (displayed in row 6). For a given simulation replication, the
estimate of E[Fi(θ; x)] is obtained by averaging the observations from the last 5 assignment iterations.
Details on how the assignment iterations are initialized are given in Zhang et al. (2016b). The last
row of the table indicates the total number of simulation evaluations (or runs) per SO algorithmic
run. For example, for the toy network, the computation of a single experiment (i.e., one run of the
algorithm) requires a total of 7500 simulation evaluations: the performance of total of 30 θ values are
estimated, each estimation involves 5 independent replications, each of which requires 50 sequential
assignment iterations. This leads to a total of 30*5*50=7500 simulation runs. Similarly, for the
Berin network each SO run involves 20*10*100=20000 simulation runs.

Table 3 displays the runtime statistics considering the 9 (resp. 3) experiments for the toy (resp.
Berlin) network. For the toy network, a single assignment iteration takes an average of 0.06 minutes,
leading to an average of 3 minutes per SO iteration and 90 minutes per SO algorithmic run (i.e., one
experiment). For the Berlin network an assignment iteration averages 1.2 minutes, an SO iteration
120 minutes, and an algorithmic run 2400 minutes (i.e., 40 hours). The toy network experiments
are carried out on a standard laptop with a 4-core Intel i7-3740QM processor and 8GB RAM. The
Berlin network experiments are carried out on a server with a 40-core Intel Xeon E5-2660 processor
and 64GB RAM.

3.2 Toy network

3.2.1 Network attributes

For the hypothetical toy network, we pick a set of true θ values, θ∗ (row 2 of Table 2). We use these
values to generate the “real” traffic counts via simulation. The topology of the network is displayed
in Figure 1. Each link consists of a single lane road. Table 4 details the link properties.

The network has one OD pair (node 1 to node 6) and an expected demand of 1400 vehicles per
hour. There are two alternative routes connecting the OD pair, a route to the north which goes
through node 3 and a route to the south which goes through node 4. The northern route has a signal
controlled intersection at node 3, whereas the southern route is un-signalized. The traffic signal
control at node 3 is green for 75 seconds out of the 100 second cycle time. The free-flow travel time
on the route to the north (resp. south) is approximately 14.9 (resp. 15.5) minutes.

The free-flow travel time on the route to the north is shorter and hence it is preferred when there
is no congestion. As congestion increases, the route to the south becomes increasingly attractive.

Toy network Berlin network
Average runtime per assignment iteration 0.06 1.2
Average runtime per SO iteration 3 120
Average runtime per experiment 90 2400

Table 3: Simulation runtime statistics in minutes
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Figure 1: Toy network topology

Link index Nodes connected Length (km) Maximum speed (km/h) Signalized
1 1 → 2 2.5 72 un-signalized
2 2 → 3 7.5 54 signalized
3 3 → 5 2.5 54 un-signalized
4 2 → 4 7.071 72 un-signalized
5 4 → 5 7.071 72 un-signalized
6 5 → 6 2 72 un-signalized

Table 4: Toy network link properties

3.2.2 Results

We first consider the experiment with θ∗ = −5hr−1. Figure 2 displays the simulation-based objective
function and the objective function approximation provided by the analytical traffic model (Equa-
tions (15)). The simulation-based objective function is defined by Equation (9). The simulation-based
estimates are displayed as blue circles. For a given point, the estimate is based on 5 simulation repli-
cations. The red error bars displayed are 95% confidence intervals. The black curve is the analytically
approximated objective function, which is defined as:∑

i∈I

(yi − λi(θ))
2 . (17)

In other words, the analytical approximation is obtained by replacing the simulation-based metric
(expected link flow) with the analytical metric. The black curve appears as an excellent approxima-
tion of the simulation-based objective function.

Figure 2 also displays a green range for θ. This range is a set of θ values that have statistically
equivalent objective function values than that of θ∗. If an SO method yields θ values within this
range, we consider it to have converged. Statistical equivalence is tested with a paired t-test where the
null hypothesis assumes equal expectations, the alternative hypothesis assumes unequal expectations.
For this experiment, the equivalence region is [−6,−4] (in units hr−1).

Figures 3-5, each consider a given initial point, θ0. The x-axis displays the iteration of the SO
algorithm, the y-axis displays the current iterate (i.e., the best θ value found so far by the algorithm).
The black solid lines correspond to proposed method, Am, while the red dashed lines correspond
to the benchmark method, Aϕ. Recall that the only difference in the methods is their metamodel
formulation, all other algorithmic details are identical for both methods. These figures also display
the aforementioned equivalence region (in green).

Note that in Figure 5, 2 of the red curves overlap from iteration 1 until iteration 14, this occurs
for the right-most red curve. For all 3 figures (3-5), the following observations hold.

• All Am and all Aϕ runs converge.
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Figure 2: Simulation-based and analytical objec-
tive functions for θ∗ = −5hr−1
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Figure 3: Algorithmic solutions versus iterations,
for θ∗ = −5hr−1 and θ0 = 0hr−1

0 5 10 15 20 25 30

SO iteration

-40

-35

-30

-25

-20

-15

-10

-5

0

θ

Am
Aφ

Figure 4: Algorithmic solutions versus iterations,
for θ∗ = −5hr−1 and θ0 = −40hr−1
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Figure 5: Algorithmic solutions versus iterations,
for θ∗ = −5hr−1 and θ0 = −60hr−1

• All Am runs converge faster than the Aϕ runs.

We now consider a true value of θ∗ = −20hr−1. The different objective functions are displayed in
Figure 6. Again, the analytical approximation of the objective function provided by the analytical
network model (Equations (15)) is an excellent approximation of its simulation-based counterpart.
The statistically equivalent region for θ is [−21,−18] (in units hr−1). The corresponding experimental
results are shown in Figures 7-9. Note that in Figure 9, all 3 red curves overlap from iteration 1
until iteration 8. For Figures 7-9, all Am runs converge, while 7 out 9 Aϕ runs converge. Of the 2
Aϕ runs that do not converge, they both had current iterates within the green region, yet exited the
region. For the converged runs, convergence tends to be faster for Am than for Aϕ.

The different objective functions for the experiments with θ∗ = −55hr−1 are displayed in Fig-
ure 10. As before, the analytical objective function approximation is almost identical to the simulation-
based objective function. The statistically equivalent region for θ is [−57,−54] (in units hr−1). The
results for these experiments are displayed in Figures 11-13.

Note that in Figure 11, 2 of the red curves that overlap from iteration 1 until iteration 11, this
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Figure 6: Simulation-based and analytical objec-
tive functions for θ∗ = −20hr−1
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Figure 7: Algorithmic solutions versus iterations,
for θ∗ = −20hr−1 and θ0 = 0hr−1
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Figure 8: Algorithmic solutions versus iterations,
for θ∗ = −20hr−1 and θ0 = −40hr−1
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Figure 9: Algorithmic solutions versus iterations,
for θ∗ = −20hr−1 and θ0 = −60hr−1

occurs for the left-most red curve. As for the previous experiments, all Am runs converge. Eight out
of the nine Aϕ runs converge.

From the perspective of the values proposed by the algorithms for the calibration parameter, θ,
both SO methods yield values with good performance and can do so within few algorithmic iterations.
Overall the performance of both methods is similar and good. Overall, Am identifies good solutions
faster than Aϕ, and systematically converges.

Let us compare the performance of both methods in terms of their computational efficiency.
Table 5 considers all experiments mentioned above. It displays for each experiment and each method,
the number of algorithmic iterations until convergence (i.e., the first time the equivalence region is
entered and not exited thereafter). If a method upon termination of the algorithm (i.e., iteration 30)
has not converged, then we indicate a value equal to the computational budget (i.e., the maximum
number of iterations) of 30. This underestimates the convergence statistics for the non-converged
experiments.

This table indicates that for Am and for θ∗ = −5hr−1, 8 out of the 9 experiments converge
after 1 iteration. For θ∗ = −20hr−1, this happens 6 out of 9 times, and for θ∗ = −55hr−1, this
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Figure 10: Simulation-based and analytical ob-
jective functions for θ∗ = −55hr−1
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Figure 11: Algorithmic solutions versus itera-
tions, for θ∗ = −55hr−1 and θ0 = 0hr−1
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Figure 12: Algorithmic solutions versus itera-
tions, for θ∗ = −55hr−1 and θ0 = −40hr−1
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Figure 13: Algorithmic solutions versus itera-
tions, for θ∗ = −55hr−1 and θ0 = −60hr−1

happens 8 out of 9 times. At the first algorithmic iteration, only a single objective function estimate
is available (the estimate obtained at the initial value θ0). Hence, this instantaneous convergence is
due to the information provided by the analytical traffic model. When considering all true values
(i.e., all 27 experiments), Am converges on average at iteration 2.7, and in the worst case at iteration
18. The method Aϕ converges on average at iteration 14.4 (this average includes the non-converged
cases, where we input an iteration value of 30), at best at iteration 6, and does not converge for 3
experiments. The corresponding numerical values of the solutions derived by each method for each
experiment are presented in Table 10 of the Appendix.

Table 6 analyzes the convergence of the methods in terms of their simulation runtime until
convergence. The runtime is in minutes. As in the above analysis, if a method has not converged, we
indicate the total simulation runtime used until the algorithm was terminated. This underestimates
the runtime needed until convergence. The method Am converges on average within 8 minutes of
simulation, while Aϕ converges on average at 43.1 minutes. By providing the algorithm with the
analytical information, we can converge with an average 81.4% reduction in simulation runtime. This
table highlights the computational efficiencies that are achieved when using Am.
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Am Aϕ

θ∗ = −5
θ0 = 0 1 1 1 10 6 14
θ0 = −40 1 13 1 13 22 11
θ0 = −60 1 1 1 11 27 15

θ∗ = −20
θ0 = 0 1 1 1 22 8 10
θ0 = −40 8 6 1 7 30 10
θ0 = −60 1 18 1 17 11 30

θ∗ = −55
θ0 = 0 1 1 5 30 12 14
θ0 = −40 1 1 1 11 9 8
θ0 = −60 1 1 1 9 13 8

Table 5: Number of algorithmic iterations until convergence for the toy network

Am Aϕ

θ = −5
θ0 = 0 3 3 3 30 18 42
θ0 = −40 3 39 3 39 66 33
θ0 = −60 3 3 3 33 81 45

θ = −20
θ0 = 0 3 3 3 66 24 30
θ0 = −40 24 18 3 21 90 30
θ0 = −60 3 54 3 51 33 90

θ = −55
θ0 = 0 3 3 15 90 36 42
θ0 = −40 3 3 3 33 27 24
θ0 = −60 3 3 3 27 39 24

Table 6: Simulation runtimes until convergence for the toy network (minutes)

3.3 Berlin metropolitan network

3.3.1 Network attributes

Figure 14 displays the metropolitan Berlin network topology, as modeled in the simulator. As a
reference, we also display here the road map of the corresponding network (Figure 15). This network
represents the metropolitan area of Berlin, Germany. The area includes the city of Berlin and the
broader federal state of Brandenburg. It consists of 24335 links, 11345 nodes and 3635 OD pairs.
Real traffic counts from sensors on 346 links are available per hour for 24 hours. We focus on the
morning peak hour: 8-9am, during which expected demand is 172900 vehicles. For more data and
model details, see Ziemke et al. (page 120, Section “Counts” 2015) and Ziemke (pages 57-59 2013).

3.3.2 Results

Figure 16 displays the simulation-based objective function estimates with corresponding 95% confi-
dence intervals obtained from 20 simulation replications. As for the toy network, the green region
represents the range of statistically equivalent θ values, which is [−6,−1] (in units hr−1). Based on
the finite and small set of simulated points, the θ value for which the minimum objective function
is obtained is near −2hr−1. The analytical approximation of the objective function derived from the
analytical network model (Equations (15)) is diplayed in Figure 17. Both functions have similar form
and seem to be non-convex. Note that both figures differ in the y-axis limits. Hence, the analytical
function approximates well the form of the simulation-based function, yet is not scaled properly. The
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Figure 14: Metropolitan Berlin simulation net-
work

Figure 15: Metropolitan Berlin
road network. Map source:
http://www.mapsofworld.com/germany/states
/brandenburg, downloaded on 10/30/2014

scaling is corrected by the metamodel (term βi,k,0 of Equation (14)). The minimum of the analytical
objective function is obtained at −5hr−1, which is in the green equivalence region.

We proceed as for the toy network: we run experiments for 3 different initial values θ0. For each
initial value, we plot the current iterate (i.e., best θ value identified so far by the algorithm) versus
algorithmic iteration. We do this for both SO methods: Am and Aϕ. The results are presented in
Figures 18, 19 and 20.

In these figures, some curves overlap: in Figure 18, two dashed red lines overlap at θ = 0hr−1 for
all iterations; in Figure 19, two solid black lines overlap at θ = −4.7hr−1.

In Figure 18, all Am runs converge, 1 out of 3 Aϕ runs converges, the remaining 2 stay at the
initial θ value of 0hr−1. In Figure 19, all Am runs converge, 1 out of the 3 Aϕ runs converges, the
remaining 2 reach and stay at the lower bound value for θ equal to 0hr−1. In Figure 20, all Am runs
converge, none of the Aϕ runs converges, 2 reach the lower bound and the third stays at the value
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Figure 16: Simulation-based objective function
for the Berlin network

-60 -50 -40 -30 -20 -10 0

θ

1.463

1.4635

1.464

1.4645

1.465

1.4655

1.466

1.4665

A
na

ly
tic

al
 o

bj
ec

tiv
e 

fu
nc

tio
n

×108

Figure 17: Analytical objective function for the
Berlin network
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Figure 18: Algorithmic solutions versus itera-
tions, for θ0 = 0hr−1
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Figure 19: Algorithmic solutions versus itera-
tions, for θ0 = −40hr−1

0 2 4 6 8 10 12 14 16 18 20 22

SO iteration

-60

-50

-40

-30

-20

-10

0

θ

Am
Aφ

Figure 20: Algorithmic solutions versus iterations,
for θ0 = −60hr−1

of −0.4hr−1.
For all 3 figures, the following observations hold.

• All runs of Am converge. Seven out of the nine runs converge at the first iteration. This
is thanks to the analytical network model approximating well the simulation-based objective
function.

• Only 2 out of the 9 runs of Aϕ converge. Of the non-converged runs, two stay at the initial
value of θ = 0hr−1 (Figure 18), 4 leave the initial value and reach and stay at the lower bound
value of θ = 0hr−1 (Figures 19 and 20).

• When comparing the converged runs: all Am runs converge faster than the Aϕ runs.

We analyze the convergence statistics of the two methods. We proceed as for the toy network.
Table 7 considers all Berlin experiments mentioned above. It displays for each experiment and each
method, the number of algorithmic iterations until convergence (i.e., the first time the equivalence
region is entered and not exited thereafter). If a method upon termination of the algorithm (i.e.,
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iteration 20) has not converged, then we indicate a value equal to the computational budget, which
is 20. This underestimates the convergence statistics for the non-converged experiments. This table
indicates that method Am converges at iteration 1 for 7 out of the 9 experiments. On average it
converges at iteration 2.4 and at worst at iteration 8. Method Aϕ only converges 2 out of the 9 runs.
For those two converged experiments, convergence is achieved at iterations 8 and 11, respectively.
The corresponding numerical values of the solutions derived by each method for each experiment are
presented in Table 11 of the Appendix.

The corresponding statistics in terms of simulation runtimes are displayed in Table 8. If a given
method has not converged upon termination of the algorithm, then we indicate the total simulation
runtime upon termination (2400 minutes). As before, this underestimates convergence runtime for
method Aϕ which often does not converge. On average method Am converges within 293.3 minutes
(i.e., 4.9 hours), while Aϕ does so within 2120 minutes (i.e., 35.3 hours). Method Am achieves on
average an 86.2% reduction in runtime until convergence, which corresponds in this case study to
average savings of 30.4 hours of simulation per experiment.

We now compare the performance of the best solutions proposed by each method, with the
performance of the value currently used as part of the Berlin model, the latter was obtained from
prior calibration efforts (Ziemke et al., 2015). Let θ̃ denote this pre-calibrated value. It has a value
of −6hr−1.

Recall, that for a given initial value, θ0, we ran each method 3 times, this leads to 3 solutions. We
now compare the performance of these solutions with that of θ̃. In order to evaluate the performance
of a given θ value, we run 50 simulation replications and obtain 50 observations of the objective
function. More specifically, for a given θ vaule, we run 100 assignment iterations to obtain 1 objective
function estimate. We repeat this process 50 times to obtain 50 independent simulation observations
(or estimates).

Figure 21 displays the cumulative distribution function (cdf) of these 50 observations. Each curve
corresponds to a given θ value. The black solid (resp. red dashed) curves correspond to values derived
by Am (resp. Aϕ). The black dotted curve corresponds to the pre-calibrated value θ̃. The more a
curve is shifted to the left, the lower the objective function estimates, i.e., the better its performance.
More specifically, for a given x-value, the corresponding y-value on the cdf curve gives the proportion
of observations (out of the 50) that have objective function values smaller than x. Figure 21 considers
the solutions obtained with an initial value of θ0 = 0hr−1. 2 out of the 3 runs of Aϕ yield the same
solution (i.e., the algorithm considers for all iterations the initial value, θ0 = 0hr−1, as the best
value). Thus, only 2 red dashed curves are visible. The right-most red dashed curve represents the

Am Aϕ
θ0 = 0 1 7 1 20 20 8

θ0 = −40 1 1 8 20 20 11
θ0 = −60 1 1 1 20 20 20

Table 7: Number of algorithmic iterations until convergence for the Berlin network

Am Aϕ
θ0 = 0 120 840 120 2400 2400 960

θ0 = −40 120 120 960 2400 2400 1320
θ0 = −60 120 120 120 2400 2400 2400

Table 8: Simulation runtimes until convergence for the Berlin network (minutes)
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2 identical solutions (i.e., θ = 0hr−1). All 3 values derived by Am outperform the 3 values obtained
by Aϕ. They also outperform the pre-calibrated value.

Figure 22 displays the cdf of each solution obtained when initializing the algorithms with θ0 =
−40hr−1. Here as well, 2 out of the 3 runs of Aϕ yield the same solution of 0. Hence, only 2 red
dashed curves are visible, one of which represents 2 identical solutions. The proposed method Am
also yields 2 solutions that are similar (both are approximately −4.7hr−1). The same conclusions
as above hold: all solutions derived by Am outperform all solutions derived by Aϕ and outperform
the pre-calibrated value. Figure 23 displays the cdf of each solution obtained when initializing the
algorithms with θ0 = −60hr−1. The method Aϕ yields a solution of 0hr−1 for 2 out of the 3 runs.
Hence, only 2 distinct red dashed curves are visible. For this figure, the same conclusions as above
hold.

For each initial value θ0 and each method, we choose only one proposed solution which is defined
as that with the smallest objective function average (the average is over the 50 simulation replica-
tions). In Table 9, we give the numerical values of the best proposed solutions for the three sets
of experiments. Figure 24 presents the cdf of the best solutions for all three initial values. It also
displays the cdf of pre-calibrated value and of the value obtained by solving the problem with the
analytical traffic model only (i.e., no simulation). The black solid curves correspond to Am solutions.
Only two curves appear, because Am yields the same solution (θ = −4.7hr−1) for two initial values
(θ0 = −40hr−1 or θ0 = −60hr−1). Hence, the left-most black solid curve represents two solutions.
The red dashed curves correspond to the three solutions of Aϕ. The blue dash-dotted curve corre-
sponds to the solution of the analytical traffic model (i.e., no simulation) and the black dotted curve
corresponds to the pre-calibrated value.

Figure 24 indicates that the solutions proposed by Am, for each of the three intial values, out-

Am Aϕ
θ0 = 0 -2.1 -1.1

θ0 = −40 -4.7 -2.8
θ0 = −60 -4.7 -0.4

Table 9: Best solution of each method and each initial θ value
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Figure 21: Objective function distributions for
each solution of each method, when initialized
with θ0 = 0hr−1
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each solution of each method, when initialized
with θ0 = −40hr−1
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Figure 23: Objective function distributions for
each solution of each method, when initialized
with θ0 = −60hr−1
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Figure 24: Objective function distributions for
the best solutions of each method and each initial
θ value

perform all 3 solutions proposed by Aϕ. It also outperforms the pre-calibrated value. This figure
also shows that the analytical solution outperforms all Aϕ solutions. This indicates the added value
of the analytical network model information. All Am solutions outperform the analytical solution.
This indicates the added value of combining analytical and simulation-based information, rather than
merely solving the problem with an analytical-only approach.

Recall that the traffic field data consists of traffic counts from sensors on 346 links. Figure 25
compares the performance of the best Am solution (θ = −4.7hr−1, the left-most curve in Figure 24)
and the pre-calibrated solution. For each solution and each sensor location, we compute the relative
error of the count: (yi−Ê[Fi(θ;x)])/yi, where yi represents the field count at location i and Ê[Fi(θ; x)]
represents the simulated estimate of the count at that location. Figure 25 displays two curves, one
for each solution (Am or pre-calibrated). The curve is the cumulative distribution function of the
relative error. The distribution is over all 346 links. Let us illustrate how to interpret these curves.
The black solid curve corresponds to method Am. A vertical line through x = 0 intersects the
Am curve at y = 0.17. This means that under the Am solution, 17% of the sensor locations yield
a negative relative difference, i.e., they overestimate 17% of the counts. The pre-calibrated curve
intersects this vertical line at y = 0.07, meaning that 7% of the locations overestimate the counts.
Similarly, a horizontal line through y = 0.6 intersects the Am curve at x = 0.35. This indicates that
60% of the relative errors are below 0.35. This horizontal line intersects the pre-calibrated curve at
x = 0.44, which indicates that 60% of the relative errors are below the x = 0.44. From this figure we
can deduce that 31% of the counts have a relative error within [−0.2, 0.2] under the Am value, while
this is the case of only 21% of the counts under the pre-calibrated value.

We now carry out a more detailed analysis of the performance of the different points within the
green equivalence region. Figure 26 considers the equivalence region [−6,−1] (in units hr−1). It
displays a more detailed simulation-based estimate of the objective function. The function is now
sampled with a step size of 0.25 (i.e., a smaller step size than in Figure 16). Each estimate is obtained
as an average over 30 simulation replications. Its corresponding 95% confidence interval is displayed.
Within this interval [−6,−1] (in units hr−1), we compute a new green equivalence region. We identify
the point with the smallest objective function estimate. This is θ̂ = −4.75hr−1. We conduct for each
point, a paired t-test to test whether its performance (i.e., objective function value) is equivalent to
that of θ̂. If two adjacent points have statistically equivalent performance to that of θ̂, then both
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Figure 25: Empirical cdf of the relative difference
of traffic counts
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Figure 26: More detailed estimation of the
simulation-based objective function in the region
[-6,-1] (in units hr−1)

points belong to the new equivalence region. The resulting green region is now defined (in units hr−1)
as: [−5,−4.5], [−3.75,−2.75], and [−2.25,−2]. This new region is displayed in green in Figure 26.

Figure 26 indicates along the x-axis the location of: the 9 solutions proposed by Am (all 9
solutions fall in the initial green equivalence region of [−6,−1] (in units hr−1); they are represented
as black crosses), 2 solutions proposed by Aϕ (2 solutions fall in [−6,−1] (in units hr−1); they are
represented as red squares), the pre-calibrated value θ̃ (represented by a black triangle), and the
solution obtained using only the analytical traffic model (i.e., no simulation-based optimization; it is
represented by a blue asterisk). Note that 3 of the Am solutions overlap at the value 4.7hr−1, hence
they are displayed as stacked upon each other on the x-axis.

Considering this more accurate estimation of the equivalence region, we observe that 5 out of the
9 solutions of Am fall within this region, while only 1 solution of Aϕ is in the region. The solution
using only the analytical traffic model also falls in this region.

4 Conclusions and discussion

In this paper, we propose a computationally efficient calibration algorithm. Efficiency is achieved by
providing analytical problem-specific information to the algorithm. We formulate a metamodel that
embeds information from an analytical differentiable and tractable network model. The analytical
network model provides an analytical description of how the calibration parameter is related to
the objective function. The performance of the method is evaluated with case studies for both
a hypothetical toy network and for the Berlin metropolitan area network. The performance of the
proposed method is compared to that of an algorithm that differs only in that the information from the
analytical network model is not provided to it. For both networks, the proposed approach significantly
improves the computational efficiency of the calibration algorithm with an average reduction in the
simulation runtime until convergence of more than 80%.

Ongoing work has formulated a metamodel for a supply calibration problem (Zhang et al., 2016a).
A generalization to other data sources and parameters to be calibrated is part of the planned research
effort. Ongoing work is also investigating the use of these metamodel ideas to enhance the efficiency
and robustness of traditional data-driven calibration algorithms (e.g., Kalman and particle filters).
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Appendix

Numerical values of the solutions derived by each method

Table 10 (resp. 11) displays the numerical values of the solutions derived by each method and each
experiment of the toy (resp. Berlin) network.

Am Aϕ

θ∗ = −5
θ0 = 0 -4.7 -5.3 -4.0 -5.2 -5.3 -5.5
θ0 = −40 -5.7 -5.5 -5.0 -5.2 -5.5 -5.3
θ0 = −60 -4.8 -5.5 -5.8 -5.1 -5.0 -5.4

θ∗ = −20
θ0 = 0 -18.1 -18.4 -18.7 -18.3 -19.1 -18.5
θ0 = −40 -19.6 -18.1 -18.6 -18.6 -17.7 -18.3
θ0 = −60 -18.1 -18.5 -19.5 -18.3 -18.5 -18.0

θ∗ = −55
θ0 = 0 -56.1 -55.9 -55.9 -57.2 -56.4 -56.0
θ0 = −40 -55.8 -56.3 -55.2 -56.0 -56.2 -56.4
θ0 = −60 -55.8 -55.5 -56.6 -55.8 -56.3 -56.0

Table 10: Numerical values of the solutions (in units hr−1) derived by each method for each experi-
ment of the toy network

Am Aϕ
θ0 = 0 -2.5 -1.2 -2.1 0.0 0.0 -1.1

θ0 = −40 -4.7 -4.7 -1.6 0.0 0.0 -2.8
θ0 = −60 -1.4 -4.7 -3.5 0.0 0.0 -0.4

Table 11: Numerical values of the solutions (in units hr−1) derived by each method for each experi-
ment of the Berlin network

23



References

Antoniou, C. (2004). On-line Calibration for Dynamic Traffic Assignment . Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Antoniou, C., Ben-Akiva, M., and Koutsopoulos, H. (2007). Nonlinear Kalman filtering algorithms
for on-line calibration of dynamic traffic assignment models. IEEE Transactions on Intelligent
Transportation Systems , 8(4), 661–670.

Ashok, K. (1996). Estimation and Prediction of Time-Dependent Origin-Destination Flows . Ph.D.
thesis, Massachusetts Institute of Technology.

Ashok, K. and Ben-Akiva, M. E. (2002). Estimation and prediction of time-dependent origin-
destination flows with a stochastic mapping to path flows and link flows. Transportation Science,
36(2), 184–198.

Balakrishna, R. (2006). Off-line calibration of dynamic traffic assignment models . Ph.D. thesis,
Massachusetts Institute of Technology.
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