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Background – bottleneck detection

 Bottleneck determines the maximum flow in an area

 Therefore, bottleneck detection is important in evaluating the 

LOS of pedestrian facilities

 Existing method: Fruin (1971) needs a priori knowledge

regarding the position of bottlenecks

 Area to be evaluated should be decided in advance

 Studies on simulation and modelling (e.g., Kirchner+ 2003; 

Schadschneider+ 2009; Hoogendoorn+ 2005; Zhang+ 2014) have also 

dealt with situations with obvious bottleneck 

 However, in the real situation,

 there is no a priori knowledge

 there is no obvious bottleneck

 our intuitive understandings often fail
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Background – pedestrian fundamental diagram

 Speed-density-flow relationship,

namely fundamental diagram,

is useful in vehicular flow

 Pedestrian fundamental diagram  

is analysed for many years
(e.g., Seyfried+ 2010; Flötterrod+ 2015)

 Generally this fundamental relationship depends on

time t, position x and individual n; e.g., v=V(k,t,x,n)

 In particular, in case of pedestrian flow, the effect of position 

may be significant even in small area

 From this viewpoint, if there is no obvious bottleneck in the 

area, the bottleneck detection seems to be almost equivalent 

to finding the fundamental relationship with minimum value of 

maximum flow in the area 
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Objective

 To detect unobvious bottlenecks in pedestrian flow

 Two main ideas:

 If the facility does not have an obvious bottleneck, then the 

speed-density relationship (=fundamental diagram) at arbitrary 

positions of the facility are not the same, but only slightly 

different from each other

 This difference can be modelled as spatial dependence; 

if the positions are close to each other, then the FDs are more 

similar to each other

 To model this dependency, mesh s={1,2,…,S} is generated 

over an experimental area, and the speed and the density on 

each mesh is calculated
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Methodology – fundamental diagram

 The Voronoi diagram method (Steffen+ 2010; Zhang 2011) is 

employed to define flow indicators (speed and density)

 At each time instance, Voronoi diagram for pedestrians is 

drawn, and indicators for each mesh s are calculated as







 where Vi is volume of Ai

and d is mesh size

 Parametric form is assumed

as Greenberg

or Greenshields
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Methodology – spatial dependence

 We assume that

 almost the same FDs are drawn in the area

 but they are slightly different

 and the difference is caused by spatial dependence
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Methodology – eigenvector spatial filtering

 Eigenvector Spatial Filtering (Griffith, 2003)

 a method to model spatial dependence

 easier parameter estimation thanks to linear regression form

 estimates can be understood as “spatial map pattern”

 ESF regression

 Es is derived from the Moran’s I coefficient, which is the 

statistic of spatial dependence
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explained variable ys

at mesh s
Non-spatial linear regression

- explanatory vector at mesh s: xs

- random error term at mesh s: εs

- parameter vector: β

Spatial dependence term

- linearly independent vector

- spatial dependence variable(s)

at mesh s: Es

- parameter vector: γ



Methodology – eigenvector spatial filtering

 Moran’s I coefficient shows spatial dependence

 Spatial autocorrelation
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Positive dependence
- Land price

Random Negative dependence
- Store location

Moran’s I ~ 1 Moran’s I ~ -1Moran’s I ~ 0



Methodology – eigenvector spatial filtering

 Moran’s I coefficient shows spatial dependence

 Spatial autocorrelation

 Mathematically,
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Gradient is equivalent 
to Moran’s I

Value yi itself

Averaged value around yi

Imoran = [y'(I-11'/n)C(I-11'/n)y] / [y'(I-11'/n)y]



Methodology – eigenvector spatial filtering

 ESF regression

 Es is derived from the Moran’s I coefficient

 Contiguity matrix C: n×n “distance” matrix

 Rook matrix

 Queen matrix

10

Imoran = [y'(I-11'/n)C(I-11'/n)y] / [y'(I-11'/n)y]
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Methodology – eigenvector spatial filtering

 ESF regression

 Es is derived from the Moran’s I coefficient

 Contiguity matrix C: n×n “distance” matrix

 Additional explanatory variables E is generated by the 

eigenvectors of 

 Spatial term Σj(Ejγj) shows “spatial map pattern”

 Multiscale dependence pattern is generated by Ejγj

 Eigenvector with larger eigenvalue shows more global map 

pattern, and smaller shows more local pattern
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Imoran = [y'(I-11'/n)C(I-11'/n)y] / [y'(I-11'/n)y]

(I-11'/n)C(I-11'/n)



Methodology – eigenvector spatial filtering

 ESF regression

 Es is derived from the Moran’s I coefficient

 Contiguity matrix C: n×n “distance” matrix

 Additional explanatory variables E is generated by the 

eigenvectors of 

 Spatial term Σj(Ejγj) shows “multiscale spatial map pattern”

 Ej are selected by some criteria as LASSO and t-value of γ

 At last, if the density is the same, 

then the estimated velocity is Σj(Ejγj) 

different from the area average

 The mesh with the smallest Σj(Ejγj) 

implies the bottleneck
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Imoran = [y'(I-11'/n)C(I-11'/n)y] / [y'(I-11'/n)y]
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Application – data and coordinates

 Pedestrian crossing in front of Kawasaki (川崎) station

 18424 samples for 1[m] mesh, 11466 samples for 2[m] mesh 

with time step 1[s]
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Application – setup comparison

 Apply 8 patterns

 Mesh size: 1m / 2m, Contiguity matrix: Rook / Queen, 

Regression: Greenberg / Greenshields

 AICs of ESF regression are always smaller than that of 

conventional non-spatial regression

 Obtained spatial patterns are similar irrespective of the setup
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Mesh 2m Greenshields Greenberg

Non-spatial 12029.24 12077.30

Rook 11958.48 12019.14

Queen 11960.93 12020.60

Mesh 1m Greenshields Greenberg

Non-spatial 15799.15 15855.30

Rook 15164.03 15260.99

Queen 15164.06 15261.04



Application – estimated parameters

 1[m] mesh, Rook, Greenshields

 13 eigenvectors were selected to explain spatial dependence
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Application – estimated bottleneck

 Whole spatial pattern: Σj(Ejγj) 

 Red mesh shows positive Σj(Ejγj) and blue shows negative

 Two bottlenecks were detected
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Global bottleneck
- Capacity in left-hand side is lower
- Destination is limited to the 

station in the left-hand side, 
where there is many stores in the 
right-hand side

Local bottleneck
- The corner of this 

intersection, and pedestrian 
flow may intersect there



Application – estimated spatial pattern

 Whole spatial pattern: Σj(Ejγj) 

 Multiscale map pattern decomposition also shows the 

characteristics of this crossing: left-hand side has lower 

capacity
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Discussion – practical meaning

 Whole spatial pattern: Σj(Ejγj) 

 If we measure the capacity of this crossing at only right-hand 

side edge, it might be overestimated around 0.2 [m/s], which 

is over 10% of the pedestrian speed
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Another application to railway station

 Coordinates and results
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Conclusions and future directions

 Summary

 Eigenvector spatial filtering is introduced to model the spatial 

dependence on fundamental diagrams in a small area

 In this modelling, smaller speed with the same dencity implies 

bottlenecks

 Two bottlenecks are detected on pedestrian crossing data

 Future directions

 Extension of the model to spatio-temporal type, using three-

dimensional indicators

 Exploration of consistency of the spatial dependence pattern 

with shockwave (kinematic wave theory)

 Application to congested flow

 Application of nonlinear fundamental relationship by MLE 

estimation

 This work has been published as J. Stat. Mech. 2017 033402
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Expansion to 3-dimensional model

 It seems to be easy

 3D-Voronoi indicator: Nikolić & Bierlaire, 2015

 3D-ESF: Griffith 2010, 2012

 However there are some difficulties

 Calculation cost

 Setting time interval is rather difficult

 If an interval is not large enough, 3D-Voronoi indicator itself has an 

effect like filtering and we cannot distinguish it from the spatio-

temporal dependence

 Structure of spatio-temporal dependence is difficult to determine

 Griffith (2012) proposed 2 types:

 So far, we cannot obtain any 

good results…
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