

Departure time choice equilibrium problem with partial implementation of congestion pricing

Tokyo Institute of Technology Postdoctoral researcher Katsuya Sakai

1. Introduction

2. Method/Tool (Previous studies)

- 1. Equilibrium
- 2. Route choice equilibrium
- 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Problems of congestion

- wasting a lot of resources
 - Time
 - Energy
 - Mental health

How congestion occurs?

• caused by a concentration of demand

How to eliminate congestion?

distributing the concentrated demand

Congestion management

- Information provision
 - Congestion length
 - Travel time
- Physical control (quantitative control)
 - Ramp metering
 - Advance booking
- Economic approach (pricing control)
 - Congestion charging
 - Tradable bottleneck permits

Congestion management

Approach	Advantages	Limitations	
Information provision	Travel time can be reduced	Total travel time cannot be minimized	
Quantitative control	Total travel time can be minimized	Social cost cannot be minimized	
Pricing control	Social cost can be minimized	Equity problem; poor people may suffer a loss	

- Focusing on pricing control (economic approach)
 - Tradable bottleneck permits (TBP) scheme

Tradable bottleneck permits scheme (Akamatsu et al. 2006)

- 1. Road administrators issue a right that allows a permit holder to pass through the bottleneck at a pre-specified time period ("bottleneck permits").
- 2. A new auction market is established for bottleneck permits differentiated by a prespecified time.
- As a result of auction, toll is determined by each commuter's willingness to pay (value-pricing)
- Under the toll, social cost is minimized

Equity problem of congestion charging

- The Welfare Effects of Congestion Tolls with Heterogeneous Commuters (Arnott et al., 1994)
 - The poor suffer a loss
 - The rich get a benefit

Suggestion

- Applying congestion pricing only a portion of road (lanes).
 - Drivers can choose

paying or not paying

- How much portion should be charging lanes?
- Don't the poor suffer a loss?

How to evaluate pricing scheme?

 Comparing <u>equilibrium</u> states before/after pricing applied, we can know the effect of congestion pricing.

Objective

- To formulate the departure time choice equilibrium problem and to solve it when the TBP scheme is partially applied.
- To examine the welfare effect of partial congestion pricing with heterogeneous commuters.

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

What is equilibrium?

- The most realizable state.
- At equilibrium, nobody can improve their travel cost by unilaterally changing their behavior.

What is equilibrium?

- Route choice equilibrium (Wardrop, 1952)
 - The journey times on all the routes actually used are equal, and less than those which would be experienced by a single vehicle on any unused route.
- Departure time choice equilibrium (Vickrey, 1969)
 - Times => costs
 - Routes => departure time

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Route choice equilibrium (Wardrop, 1952)

• Both routes are used

- Travel time of two routes must be same

- Either of routes is used
 - Travel time of used road must be smaller or at most equal to that of the unused road.

1. Introduction

2. Method/Tool (Previous studies)

- 1. Equilibrium
- 2. Route choice equilibrium
- 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Departure time choice problem (Vickrey, 1969)

- Focusing on morning peak hour (commute) problem
- Employing bottleneck model, we simply describe traffic congestion one-to-one network with a single bottleneck

Departure time choice equilibrium (Vickrey, 1969)

Demand rate

Departure time choice equilibrium (Vickrey, 1969)

Demand rate

Departure time choice equilibrium (Vickrey, 1969)

• Defining travel cost with tradeoff between waiting and schedule delays.

 $TC = \begin{cases} \alpha w - \beta \cdot (t - t_0) + p + const & \text{if early arrival} \\ \alpha w + \gamma \cdot (t - t_0) + p + const & \text{if late arrival} \end{cases}$

Waiting cost Schedule cost Toll cost c(t)

Value of time

TC: travel cost *w*: waiting delay α : marginal cost of waiting delay β : marginal cost of early arrival *y*: marginal cost of late arrival *t*₀: desired arrival time *t*: actual arrival time **7**

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Equilibrium conditions without toll

• Departure (arrival) time choice equilibrium condition;

$$\begin{cases} TC(t) = \alpha \cdot w(t) + c(t) = \overline{TC} & \text{if } q(t) > 0 \\ TC(t) = \alpha \cdot w(t) + c(t) \ge \overline{TC} & \text{if } q(t) = 0 \end{cases} \quad \forall t$$

• Demand-supply equilibrium condition;

$$\begin{cases} q(t) = \mu & \text{if } w(t) > 0 \\ q(t) \le \mu & \text{if } w(t) = 0 \end{cases} \quad \forall t$$

• Flow conservation

$$\sum_{t} q(t) = N$$

• Non-negativity constraint

$$q(t) \ge 0 \quad \forall t$$

TC: travel cost \overline{TC} : equilibrium travel costq: demand rate μ : bottleneck capacityw: waiting delayN: total demand

25

How to solve equilibrium problem?

- Solving the equivalent optimization problem (Iryo and Yoshii, 2007)
- Minimizing total schedule cost (waiting-time base)

$$\min_{\{q(t)\}} \sum_{t} \frac{c(t)}{\alpha} \cdot q(t)$$

s.t. $q(t) \le \mu$
$$\sum_{t} q(t) = N$$

 $q(t) \ge 0$

– KKT conditions are equal to the original problem

Equilibrium solution without toll Cumulative # of Vehicles ND(t)A(t) t_0 Time of day Cost TC \overline{TC} $\alpha \cdot w(t)$ c(t)Time of day t_0 26

1. Introduction

2. Method/Tool (Previous studies)

- 1. Equilibrium
- 2. Route choice equilibrium
- 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Equilibrium conditions with toll (TBP)

• Departure (arrival) time choice equilibrium condition;

$$\begin{cases} TC(t) = c(t) + p(t) = \overline{TC} & \text{if } q(t) > 0 \\ TC(t) = c(t) + p(t) \ge \overline{TC} & \text{if } q(t) = 0 \end{cases} \quad \forall t$$

• Demand-supply equilibrium condition;

$$\begin{cases} q(t) = \mu & \text{if } p(t) > 0 \\ q(t) \le \mu & \text{if } p(t) = 0 \end{cases} \quad \forall t$$

• Flow conservation

$$\sum_{t} q(t) = N$$

Non-negativity constraint

$$q(t) \ge 0 \quad \forall t$$

TC: travel cost \overline{TC} : equilibrium travel costp: price of bottleneck permitsq: demand rate μ : bottleneck capacityp: price of TBPN: total demand

Equivalent optimization problem

- Minimizing total schedule cost (monetary base) $min_{\{q(t)\}} \sum_{t} c(t) \cdot q(t)$ s.t. $q(t) \le \mu$ $\sum_{t} q(t) = N$ $q(t) \ge 0$

Equilibrium solution with TBP

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits

- Problem including departure time choice and lane (route) choice problem
- Commuter' heterogeneity
 - Value of time (waiting delay cost)

- Flexibility of job (schedule delay cost)

Equilibrium conditions

• Departure (arrival) time and route choice equilibrium condition;

$$\begin{cases} TC^{(r)}(t) = \overline{TC} & \text{if } q^{(r)}(t) > 0 \\ TC^{(r)}(t) \ge \overline{TC} & \text{if } q^{(r)}(t) = 0 \end{cases} \quad \forall r, t$$

• Demand-supply equilibrium condition in route 1;

$$\begin{cases} q^{(1)}(t) = \mu^{(1)} & \text{if } w(t) > 0 \\ q^{(1)}(t) \le \mu^{(1)} & \text{if } w(t) = 0 \end{cases} \quad \forall t$$

• Demand-supply equilibrium condition in route 2;

$$\begin{cases} q^{(2)}(t) = \mu^{(2)} & \text{if } p(t) > 0 \\ q^{(2)}(t) \le \mu^{(2)} & \text{if } p(t) = 0 \end{cases} \quad \forall t$$

• Flow conservation

$$\sum_{t} \sum_{r} q^{(r)}(t) = N$$

• Non-negativity constraint

$$q^{(r)}(t) \ge 0 \quad \forall r, t$$

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

How to solve?

- No equivalent optimization problem
- Dividing the problem into 3 parts

Solution algorithm

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Input

- Bottleneck capacity: μ =100 veh/min
- Capacity without toll: $\mu^{(1)}$ =40 veh/min
- Capacity with toll: $\mu^{(2)}$ =60 veh/min

Model inputs

	N_k (veh)	t_0	α_k (USD/min)	β_k (USD/min)	γ_k (USD/min)
<i>k</i> =1	1000	8:50	0.25	0.20	0.30
<i>k</i> =2	2000	9:10	1.00	0.10	0.20
<i>k</i> =3	3000	9:00	0.50	0.15	0.40

Convergence to equilibrium

Convergence to equilibrium

Route 1 (without toll)

Route 2 (with toll)

Equilibrium state

Waiting delay

Price of TBP

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Welfare effect analysis

 Examining changes in commuter's route choice and travel cost.

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Welfare effect analysis Input

• Commuter's heterogeneity in value of time and flexibility of job

	(Job flexibility)	Flexible	Inflexible
(value of time)		$\delta \!\!=\!\! 0.20$	$\delta \!\!=\!\! 0.80$
Poor	<i>α</i> =0.20	[Group 1]	[Group 2]
Rich	<i>α</i> =1.00	[Group 3]	[Group 4]

 δ : flexibility of job ($\delta = \beta / \alpha$) β / γ assumed constant

	q_k (veh)	t_0	α_k (USD/min)	δ	β_k (USD/min)	γ_k (USD/min)
<i>k</i> =1	1000	9:00	0.20	0.20	0.04	0.08
<i>k</i> =2	1000	9:00	0.20	0.80	0.16	0.32
<i>k</i> =3	1000	9:00	1.00	0.20	0.20	0.40
<i>k</i> =4	1000	9:00	1.00	0.80	0.80	1.60

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Change in route choice

Change in travel cost

- 1. Introduction
- 2. Method/Tool (Previous studies)
 - 1. Equilibrium
 - 2. Route choice equilibrium
 - 3. Departure time choice equilibrium
 - 1. Without toll
 - 2. With toll
- 3. Departure time choice equilibrium problem with partial implementation of tradable bottleneck permits (My study)
 - 1. Solution procedure
 - 2. Numerical example
- 4. Welfare effect analysis (My study)
 - 1. Input
 - 2. Result
- 5. Conclusion

Conclusions

- Equilibrium problem under partial TBP implementation
- Welfare effect of partial congestion pricing scheme
- Possibility of congestion pricing scheme harming nobody even if the toll revenues are not refunded
- Future works
 - To prove uniqueness of equilibrium point

References

- Arnott, R. J.; de Palma, A. & Lindsey, R. The Welfare Effects of Congestion Tolls with Heterogeneous Commuters Journal of Transport Economics and Policy, University of Bath and The London School of Economics and Political Science, 1994, 28, 139-161.
- Iryo, T. and Yoshii, T., Equivalent optimization problem for finding equilibrium in the bottleneck model with time choices, in Mathematics in Transport, B.G. Heydecker (Ed.), 2007, Elsevier: Oxford. 231-244.
- Vickrey, W. S. Congestion Theory and Transport Investment The American Economic Review, 1969, 59, 251-260
- Wardrop, J. G. Some Theoretical Aspects of Road Traffic Research Proceedings of the Institution of Civil Engineers, 1952, 1, 325-362.