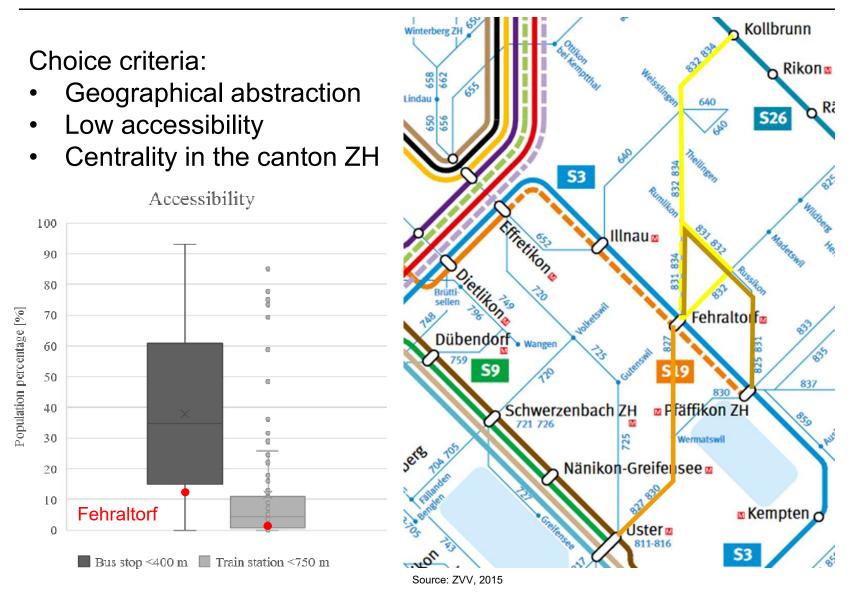
Argelaguet Janczynska, Oriol (2017) Self-driving vehicles as communal public transport, Präsentationen der Bachelor- und Seminararbeiten FS 2017, Zurich, June 2017.

Self-driving vehicles as communal public transport

Oriol Argelaguet Janczynska

IVT ETH Zürich

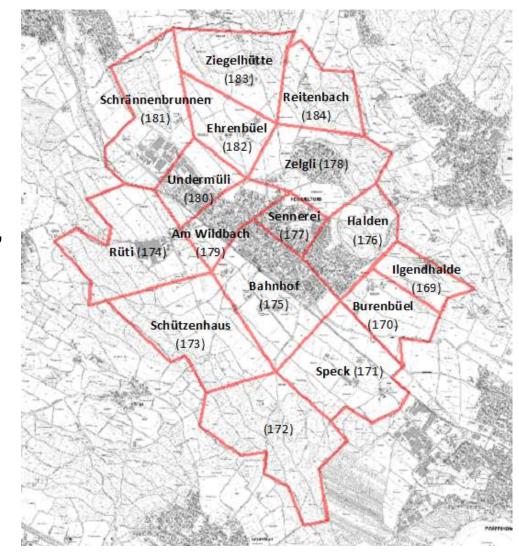
June 2017


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

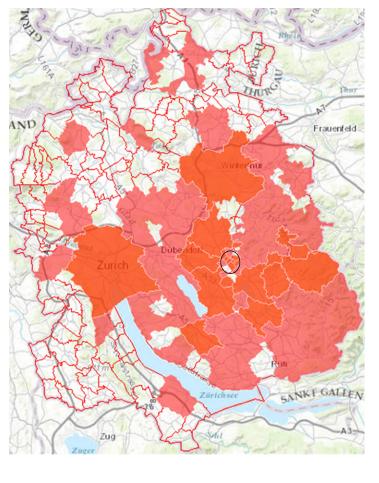
What do I want to know?	How do I get it?		
1. Mode shift	Transport model		
2.1. Socioeconomic return	NPV and BCR		
2.2. Who perceives how much benefit/costs	Sub-balances	CBA	

	SERVICE 0	SERVICE 1	SERVICE 2	SERVICE 3
Dimension	REFERENCE	AUTONOMOUS	DYNAMIC	LOW COST
Steering	Manual	Autonomous	Autonomous	Autonomous
Propulsion	Fossil fuel	Fossil fuel	Electric	Electric
Fleet structure	City bus	City bus	?	Midsize
Route and time	Fixed stops	Fixed stops	DRS	Predefined stops in a corridor
Booking	None	None	Direct booking + collecting request	Wide time window
Fleet ownership	Operator	Operator	Operator	Users
Integration	No FTS	No FTS	Independent	Independent

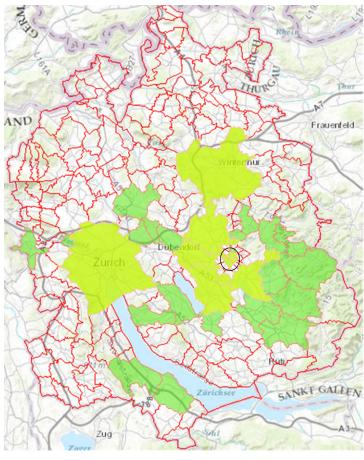
Location choice



Transport model – Layout


- Zoning
- Trip generation
- Trip distribution
- Mode choice
- Route choice (AoN)

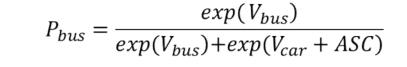
Transport model – Zoning (1)

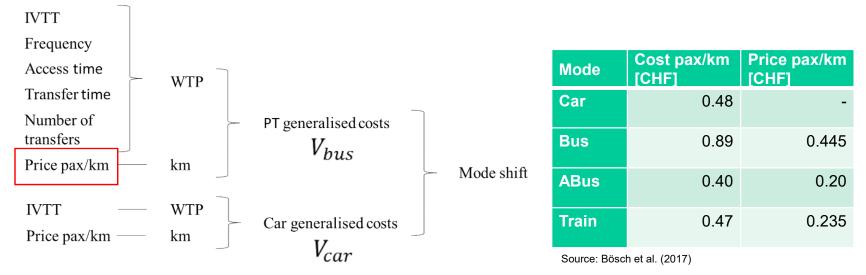

- Municipalities connected to Fehraltorf by bus are zonified according to bus stop areas of influence
- The rest in the canton, according to administrative boundaries
- Outside areas, integrated in a single zone

Car trips distribution

PT trips distribution

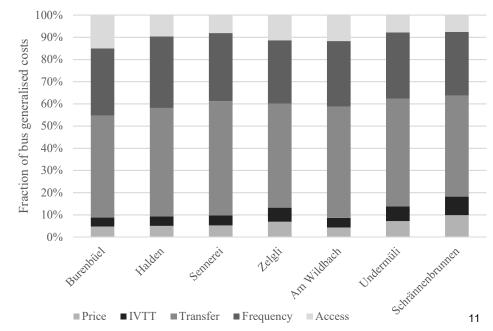
>0 trips

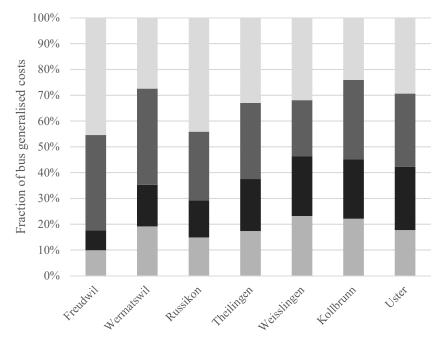



Transport model – Mode choice

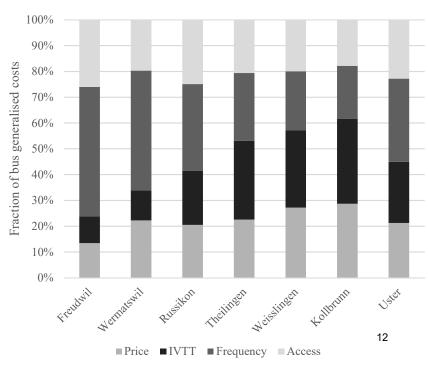
• Multinomial logit (MNL) model

$$P_{bus} = \frac{exp(V_{bus})}{exp(V_{bus}) + exp(V_{car})}$$

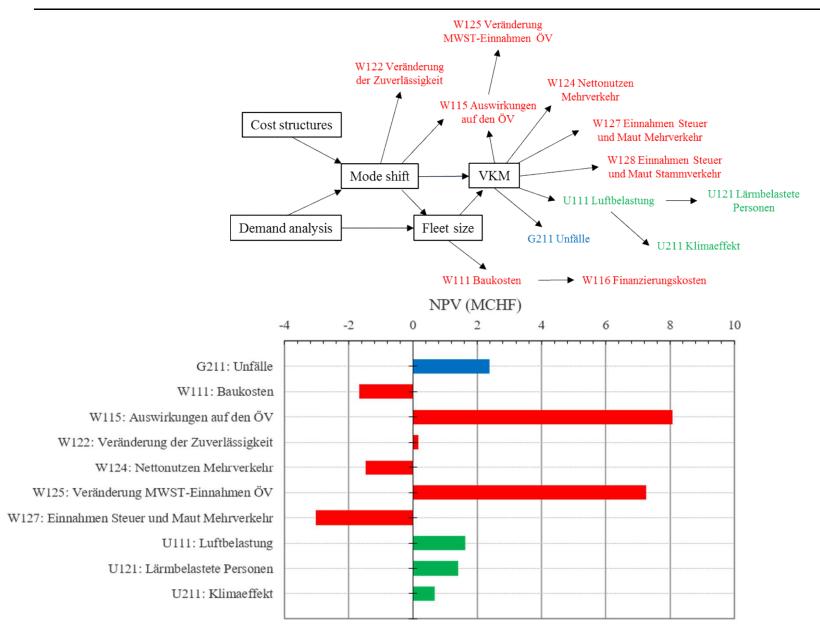

- Model calibration using alternative specific constants (ASC)
- Condition: overall real PT split = overall model PT split
- Homo oeconomicus


Transport model – Mode shift – Train market segment

- Temporal resolution
 - Morning peak
 - Off-peak
 - Evening peak
- Asymmetrical OD and generalised costs matrices
- Average access cost to train station (walk+bus)
- Price ≈ 7%
- Last-mile stage in
 Fehraltorf ≈ 28% of trip
- No mode shift


Transport model – Mode shift – Bus market segment

- Constant generalised costs along the day
- Symmetrical OD and generalised costs matrices
- Price ≈ 17%
- Mode shift: from 14% to 31%


Generalised costs structures from all zones in Fehraltorf

■ Price ■ IVTT ■ Frequency ■ Access

Generalised costs structures from train station zone

CBA – Indicators

CBA – Sub-balances

	NPV [MCHF]		
Sub-balances CBA	Costs	Balance	Benefits
Sub-balance state			
Sub-sub-balance operator			
W111 Investment costs	1.68		
W115 Impacts on PT			8.0
W116 Financial costs			0.0
Accounting balance operator		6.43	
Sub-sub-balance rest state			
W125 Change in PT VAT revenue			7.2
W127 Induced traffic tax and charge revenue	3.02		
Accounting balance rest state		4.22	
Accounting balance state		10.65	
Sub-balance users			
W122 Change in reliability			0.1
W124 Induced traffic net benefits	1.47		
G211 Accidents (users share)			1.9
Accounting balance users		0.69	
Sub-balance community			
G211 Accidents (community share = external costs)			0.3
U111 Air pollution			1.6
U121 Noise affected people			1.4
U211 Climate effect			0.6
Interim balance traffic external costs		4.11	
W116 Financial costs	0.03		
Accounting balance state (carried over)			10.6
Accounting balance community		14.73	

Sub-balance	Autonomous Service	Dynamic Service
Operator 1	1	-1
Operator 2	-	?
State	1	-1
Users	1	2
Community	1	1

Literature

ZVV (2015) S-Bahnen, Busse und Schiffe. Retrieved from https://www.zvv.ch/zvv-assets/fahrplan/pdf/sbahn_dez_2015.pdf

Bösch, P. M. F. Becker H. Becker and K. W. Axhausen (2017) Costbased Analysis of Autonomous Mobility Services. Zurich.