Elvarsson, A. B.(2017) Modelling Urban Driving and Parking Behavior for Automated Vehicles, Seminar, Zürich, June 2017.

Modelling Urban Driving and Parking Behavior for Automated Vehicles

Arnór Bragi Elvarsson

IVT ETH Zürich

June 2017

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Automated vehicles

TNCs and SAVs

Transportation Network Carriers

Shared Automated Vehicles

- TNCs are already replacing Public Transport
- New York, San Francisco and others are resisting TNCs (SFMTA, 2016; Schaller, 2017)
- Changing behavior calls for change in infrastructure

Aim of Research

- 1. model traffic flow of automated vehicles within urban network, and
- 2. model parking behavior of vehicles for different parking configurations.

Source: Arnd Bätzner, private collection

Agenda

- 1. Abstract model set up
- 2. Abstract model results
- 3. Case Study and Results
- 4. Discussion
- 5. Conclusion
- 6. Further Research

An abstract model

- Simple network in VISSIM
- Only passenger cars
- Modelling automated vehicles is a challenge
- Effects of AV penetration rate
- Effects of parking configurations

Driving behavior

- Homogeneity of traffic behavior on link
- Parameters for Wiedemann Car-following model (1974)
- Flatter speed distribution (PTV Group, 2017)
- Defaults as per Manual (PTV Group, 2015)
- Acceleration distributions as per Le Vine et al. (2015)

Parameter		0%	20%	40%	60%	80%	100%
Vehicle acceleration							
- Mean at v=0 m/s	[m/s ²]	3.0	2.8	2.5	2.2	1.7	1.3
Vehicle deceleration							
- Mean at v=0 m/s	[m/s ²]	2.7	2.4	1.8	1.7	1.5	1.2
Desired speed distribut	ion						
- Minimum	[km/h]	48	48	49	49	49	50
- Maximum	[km/h]	58	57	57	57	55	54
Standstill distance	[m]	2.0	1.8	1.6	1.4	1.2	1.0
Safety distance							
- Additive part	[-]	3.0	2.6	2.2	1.8	1.65	1.5
- Multiplicative part	[_]	4.0	3.6	3 2	2.8	2.65	2.5
- Multiplicative part	[-]	4.0	5.0	5.2	2.0	2.05	2.0

Passenger comfort, Le Vine et al (2015)

Urban flow capacity and model demand

• Capacity set at 850 pc/ln/hr

% Capacity	2 Lane	3 Lane	
60%	1020	1530	
80%	1360	2040	
100%	1700	2550	

% Capacity	2 Lane	3 Lane	
60%	1020	1530	
80%	1360	2040	
100%	1700	2550	

Parking

- Drop-off behavior of vehicles, 30 seconds per vehicle
- 12 parking spaces
- Set parking demand as 20% of total demand from I, III and IV
- 4 parking configurations

Parking configurations

- No parking
- Sporadic
- Curbside
- Bus drop-off

Other parameters

- Dynamics of urban environment
 - Pedestrians
 - Cyclists
 - Traffic composition
 - Public Transport
- Simulating parking around only one location.
- 1 hour simulations
- 10 time steps per second
- Random seed 42 with increment of 1
- Results are based on averages of 10 simulations

• Model parameters are summarised as follows:

Lane number	Parking configuration	AV penetration rate	Demand
2 lanes	Sporadic curbside parking	0%	60% of capacity
3 lanes	Curbside drop-off zone	20%	80% of capacity
	Bus-stop lay-over	40%	100% of capacity
	No parking	60%	
		80%	
		100%	

- Results collected were in the form of
 - Average delay
 - Average stops
 - Total Travel Time
 - Average speed
 - (Queue Counts)

What have we found out so far?

- 1. model traffic flow of automated vehicles within urban network, and
- 2. model parking behavior of vehicles for different parking configurations.

- Modelling AVs in VISSIM is challenging
- Slow improvement in network performance until 40% AV penetration rate.
- Reduction in network performance after 60% AV penetration rate
- Possibilities of model improvement

Now what?

- Based on modelled driving behavior, how do cars behave when they also drop passengers off?
- Consider cars to currently stop sporadically
- Can improvements be made?

Parking configurations

- No parking
- Sporadic
- Curbside
- Bus drop-off

- Cost of delay
 - Value of travel time savings (USDOT, 2014)
- Cost of increased fuel consumption
 - Fuel costs from (Energy Information Administration, 2017)
 - Fuel consumption (Kwak et al., 2012)
- Social cost of emissions
 - Hill et al. (2008)
- Cost of land use
 - Buildable land prices in Manhattan (Hughes, 2015)
- Benefit of parking fees
 - Fee assumed 0.5 USD

$$C_{i} = C_{i,D} + C_{i,FC} + C_{i,SE} + C_{i,LU}$$

$$B_{i} = B_{i,P}$$

$$NV_{i} = (B_{i} - B_{sporadic}) - (C_{i} - C_{sporadic})$$

$$MS = \Delta NV / \Delta C$$
²⁷

CBA Results for 2-lane model

		Parking cor	nfiguration			
	Concentrated			Bus drop-off		
AV %	Demand	B-C Ratio	B-C Ratio without fee	B-C Ratio	B-C Ratio without fee	Marginal Savings of Bus drop-off
0%	60%	0.30	0.13	0.65	0.44	9.6
070	80%	0.05	-0.03	0.05	0.09	13.5
	100%	0.05	-0.02	0.16	0.09	20.8
20%	60%	0.33	0.15	0.63	0.41	7.9
20/0	80%	-0.01	-0.09	0.15	0.06	17.0
	100%	0.06	0.00	0.18	0.11	21.0
40%	60%	0.33	0.15	0.55	0.33	5.7
	80%	0.04	-0.04	0.12	0.03	8.2
	100%	0.03	-0.04	0.17	0.10	25.6
60%	60%	0.50	0.31	0.77	0.56	6.5
	80%	0.05	-0.04	0.10	0.01	5.2
	100%	0.04	-0.02	0.23	0.16	32.0
80%	60%	0.30	0.15	0.70	0.51	12.2
	80%	0.01	-0.06	0.19	0.10	19.2
	100%	0.05	-0.01	0.22	0.15	30.1
100%	60%	0.25	0.14	0.47	0.34	10.0
	80%	0.05	-0.01	0.19	0.12	17.3
	100%	0.04	-0.01	0.20	0.13	28.2

CBA Results for 3-lane model

Parking configuration						
	Concentrated			Bus drop-off		
AV %	Demand	B-C Ratio	B-C Ratio without fee	B-C Ratio	B-C Ratio without fee	Marginal Savings of Bus drop-off
0%	60%	0.18	-0.05	0.36	0.09	6.4
	80%	0.11	0.03	0.23	0.14	17.9
	100%	0.08	0.01	0.27	0.19	41.8
20%	60%	0.18	-0.06	0.35	0.07	5.8
	80%	0.10	0.01	0.26	0.16	22.6
	100%	0.05	-0.02	0.25	0.17	45.0
40%	60%	0.19	-0.06	0.37	0.09	6.2
	80%	0.10	0.01	0.24	0.14	18.9
	100%	0.08	0.02	0.33	0.25	53.5
60%	60%	0.20	-0.05	0.37	0.09	5.7
	80%	0.15	0.05	0.25	0.14	13.0
	100%	0.08	0.01	0.32	0.25	55.0
80%	60%	0.19	-0.04	0.36	0.10	6.3
	80%	0.20	0.11	0.29	0.20	12.2
	100%	0.08	0.02	0.30	0.23	51.1
100%	60%	0.15	-0.02	0.25	0.06	5.0
	80%	0.12	0.04	0.15	0.07	5.2
	100%	0.10	0.04	0.28	0.21	47.0

What have we found out so far?

- 1. model traffic flow of automated vehicles within urban network, and
- 2. model parking behavior of vehicles for different parking configurations.
- Concentrated Curbside and Sporadic cluster. Bus-drop off clusters with no parking.
- Travel time in the system is 5-15% higher if vehicles are left to park sporadically over the network
- This difference reduces to 0-5% if a bus drop-off is used for parking purposes.
- CBA shows high Marginal savings for bus drop-off compared to concentrating parking

Case Study

2nd Avenue, between 42nd and 43rd Street in Manhattan, NY

Actual Demand for Case Study

Road section	Peak hour	Section	Year
2nd Avenue	2597	From 59th Street to 42nd Street	2014
42nd Street westb.	752	From 5th Avenue to Franklin D Roosevelt Drive	2011
42nd Street eastb.	842	From 5th Avenue to Franklin D Roosevelt Drive	2011
43rd Street	220	From 5th Avenue to 1st Avenue	2009

Parking configurations

Results of Case Study

Cost Benefit Analysis of Case Study

- Performed in same way as before, but VTTS set at 24.10 USD
- Bus drop-off increased in total area

	Parking con	figuration			
	Concentra	ted	Bus drop-		
AV %	B-C Ratio B-C Ratio		B-C Ratio	B-C Ratio	Marginal Cost
		without fee		without fee	of Bus drop-off
0%	0.05	-0.01	0.13	0.07	21.4
20%	0.04	-0.03	0.13	0.06	19.6
40%	0.33	0.25	0.46	0.38	19.0
60%	0.12	0.02	0.38	0.26	33.2
80%	0.10	0.01	0.32	0.21	28.1
100%	0.00	-0.07	0.23	0.14	40.2

Summary

- Modelling AVs in VISSIM is challenging
- Reduction in network performance after 60% AV penetration rate
- Concentrated Curbside and Sporadic cluster. Bus-drop off clusters with no parking.
- Travel time in the system is 5-15% higher if vehicles are left to park sporadically over the network
- This difference reduces to 0-5% if a bus drop-off is used for parking purposes.
- CBA shows high Marginal savings for bus drop-off compared to concentrating parking
- Application to Case Study in New York based on assumptions

- Low acceleration rates increase importance of effective intersections
- Wiedemann car-following behavior will not be applicable with platooning / simultaneous accelerating
- Acceleration seems to have a strong impact, the assumption should be verified
- Bus drop-off consistently shows to improve network
 performance
- Net Value for 2nd Avenue in peak hour:
 - concentrating parking ranges between 3 1'105 USD/hr, and
 - bus drop-off pocket 454-1'407 USD/hr

This research aimed to:

- 1. model traffic flow of automated vehicles within urban network, and
- 2. model parking behavior of vehicles for different parking configurations.

Further research

- Verification of acceleration distribution by Le Vine et al. (2015)
- Search for a more fitting car-following model
- Integration of C2C or C2X will allow modelling of PT and more
- Further parking configurations with respect to urban dynamics
- Cost Benefit Analysis
- Sensitivity of input parameters

References (1)

Energy Information Administration (2017) Petroleum & Other liquids, Website, (last accessed 30.5.2017),

https://www.eia.gov/petroleum/gasdiesel/

- Hill, J., S. Polasky, E. Nelson, D. Tilman, H. Huo, L. Ludwig, J. Neumann,
 H. Zheng and D. Bonta (2009) Climate change and the health costs of air emissions from biofuels and gasoline, *Proceedings of the National Academy of Sciences of the USA*, **106** (6), 2077-2082
- Hughes, C.J. (2015) The dirt on NYC's soaring land values, Webpage, TheRealDeal, Cushman and Wakefield, 1.4.2015 (last accessed on 30.5.2017)

https://therealdeal.com/issues_articles/486631/.

- Kwak, J., B. Park and J. Lee (2012) Evaluating the impacts of urban corridor traffic signal optimization on vehicle emissions and fuel consumption, *Transportation Planning and Technology*, **35** (2), 145-160,
- Le Vine, S., A. Zolfaghari and J. W. Polak (2015) Autonomous cars: The tension between occupant experience and intersection capacity, *Transportation Research Part C*, **52**, 1-14.

- PTV Group (2016) PTV VISSIM 9 User Manual, PTV AG, Karlsruhe, Germany.
- PTV Group (2017) Why simulate connected & autonomous vehicles on our transport systems? Webinar (last accessed 19.05.2017) http://your.vissim.ptvgroup.com/ConnectedVehicles-Play
- SFMTA (2016) Comments of San Francisco Municipal Transportation Agency on proposed decision for Phase III.A: Definition of Personal Vehicle, *Comments*, San Francisco, California, USA.
- Schaller, B. (2017) The Growth of App-Based Ride Services and Traffic, Travel and the Future of New York City, *Report*, Schaller Consulting, New York, USA.
- USDOT (2014) Revised Departmental Guidance on Valuation of Travel Time in Economic Analysis, *Memorandum*, Washington D.C.
- Wiedemann, R. (1974) Simulation des Straßenverkehrsflusses, Schriftenreihe des Instituts für Verkehrswesen der Universität Karlsruhe, Heft 8, Karlsruhe.

Picture sources:

Jenn, U (2015) The Road To Driverless Cars: 1925-2025, Engineering.com (last accessed 31.5.2017)

http://www.engineering.com/DesignerEdge/DesignerEdgeArticle s/ArticleID/12665/The-Road-to-Driverless-Cars-1925--2025.aspx

Arnd Bätzner, private collection