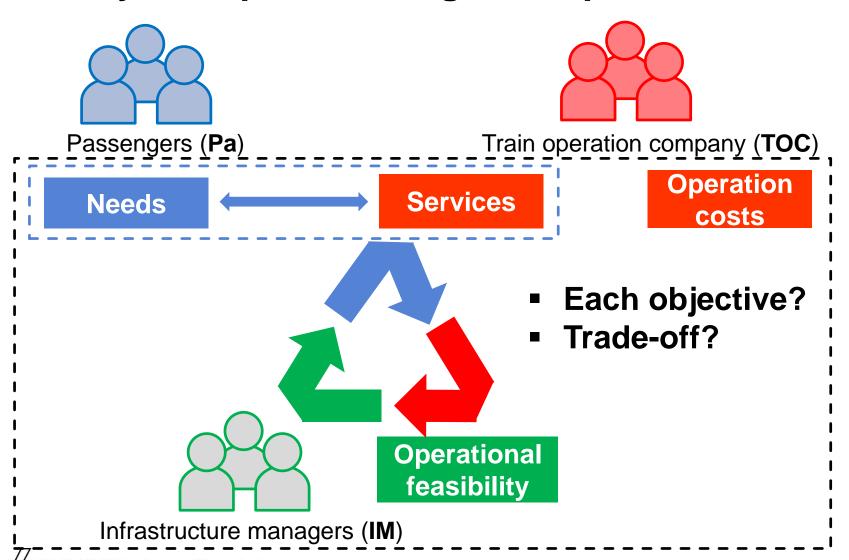
ETH zürich


Trade-offs among passengers, train operators and infrastructure managers in railway disruptions

Nuannuan Leng

Railway disruption management problem

Passengers' objectives

Influencing factors	Indicators from network viewpoint	Indicators from passenger viewpoint
1.Replacing services	 Number of denied passengers in railway 	Number of choices in railwayNumber of choices by other modeExtra costs of replacing services
2.Travel time	Train delay	In-vehicle timeWaiting timeTransfer time
3. Convenience	Missing connectionChanging platform	Numbers of transfersTransfer distance at stations
4. Comfort	Train congestionStation congestion	Seats on boardBaggage, air conditioner

Train operators' objectives

Costs	Indicators
1. Trainsets	 Minimising total number of trainsets (and staff) involved in disruption management
2. Unplanned service	 Minimising operation costs connected with unplanned allocation of rolling stock (and staff) Minimising unplanned stops
3. Empty movements	 Operating approximately same train numbers in each direction (balancing the number of trains in both directions)

Infrastructure managers' objectives

- Limiting propagation of (network-wide) train delay spread
- Recovering from disruptive events as quickly as possible
- Avoiding deadlock in the network
- Avoiding overload of lines

Algorithm 1: Mixed Integer Programming

$$\min d(p) + f(t) + s(r)$$

Subject to $t \in \tau$

$$p \in \rho_{\tau}$$

$$r \in \gamma_{\tau}$$

	MIP
Non-linearity	×
Processing time	××
Optimality	0
Algorithm Design	Δ

$$\sum_{k} u_r^k = 1$$

A train uses only one track at a station

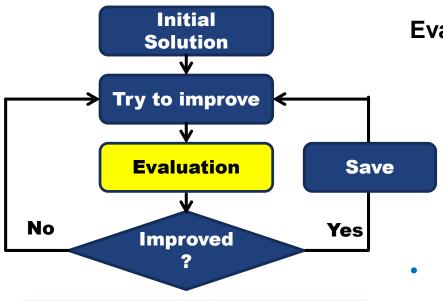
$$a_r^{Next(b,s)} - d_r^s \ge I_{b,e}^s - M(1 - l_{r,e})$$

Minimum running time

$$\sum_{r \in R_b} z_{t,r}^{o,d} = 1 \qquad \forall b \in B \forall (o,d) \in S_{b \leftrightarrow}^2 \forall t \in T$$

A passenger chooses only one train

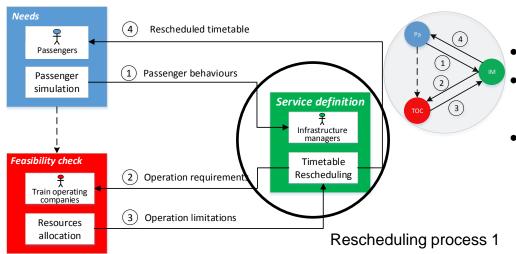
$$z_{t,r}^{o,d} \le \frac{d_r^o}{t} \qquad \forall b \in B \forall (o,d) \in S_{b < r}^2 \forall t \in T \forall r \in R_b$$


A passenger cannot catch a train which departs before

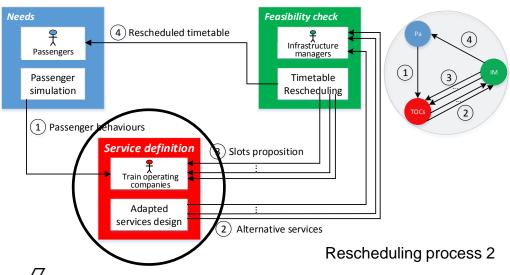
$$z_{t,r}^{o,d} \leq 1 - l_{r,e} \ \forall b \in B \forall (o,d) \in S_{b < s}^{2} \forall t \in T \forall r \in R_{b} \forall e \in E \setminus E^{o,d}$$

A passenger chooses a route to his/her destination

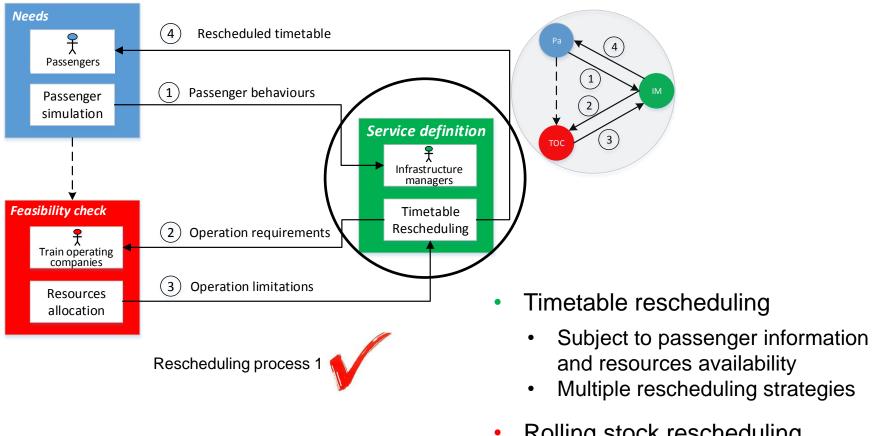
Algorithm 2: Metaheuristics


	Metaheuristics
Non-linearity	0
Processing time	Δ
Optimality	×
Algorithm Design	×

Evaluation from passengers' viewpoint


- use Simulation simulate passengers' flow
- sum up each passenger's travelling time, congestion, ...

- Passenger behaviours in case of railway disruptions
 - Multi-Agent Transport Simulation
 - Plan selection based on scoring objectives



- Timetable rescheduling (on-line)
- Weak link between passengers and train operators
- Short computation time

- Line planning and timetabling (off-line)
- Strong link between passengers and train operators
- Long computation time

- Rolling stock rescheduling
 - Subject to rescheduled timetable

Conclusions

Main work

- The respective objectives of three stakeholders passengers, train operators and infrastructure managers.
- Link three stakeholders in the dispatching process of railway disruptions

Future research

- Passenger behaviours in case of railway disruptions
- Timetable and rolling stock rescheduling in railway disruptions
- Holistic model considering the interactions of stakeholders

Thanks for your attention!

NUANNUAN LENG nuannuan.leng@ivt.baug.ethz.ch

