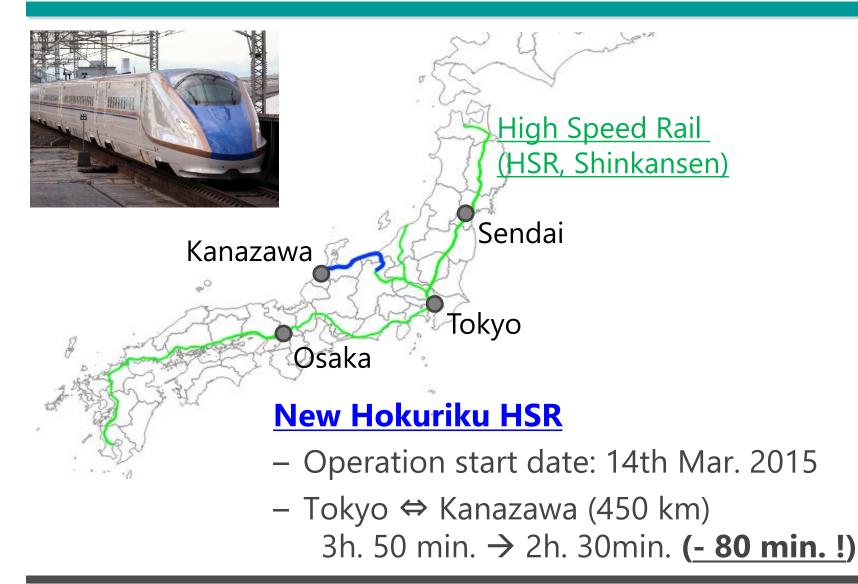
Direct and Indirect Effects of New High Speed Rail Service:

An Empirical analysis Using Japanese Mobile Phone Location Data

20th October., 2017


IVT – Seminar | Big data: Results from Japan

Hiromichi Yamaguchi (Kanazawa University),

Wataru Nakanishi, Daisuke Fukuda (Tokyo Tech.), Kay W. Axhausen (ETH zurich)

Hokuriku High Speed Rail (HSR)

Observing the effects of new Hokuriku HSR

– New HSR reduce the travel time greatly.

 → expected to significantly change the travel patterns.
 Ex. realizing of latent demand, changing travel destination, ...

- Mobile phone location data

✓ Whole nation-wide population distribution

✓ Data at arbitrary points in time

 \rightarrow enable us to analyze

the accurate change of nation-wide travel patterns.

Question: How did Hokuriku HSR change the Japanese long-distance travel pattern?

Data: Mobile Space Statistics by NTT-Docomo

Residence – Stay zone estimated population (stock) matrices

- 50 × 50 zone (prefectural size)
- estimated the data of 70 million mobile phones
- Average value for one year

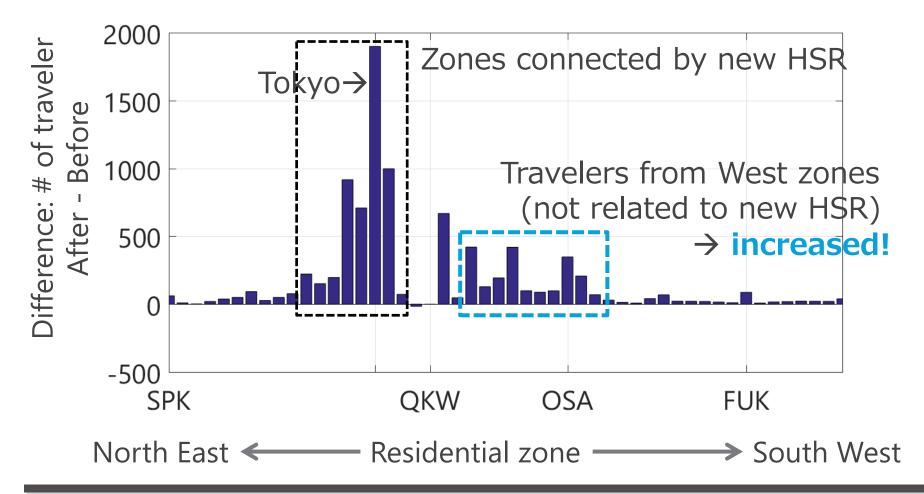
(before and after the HSR operation start)

		¥										\rightarrow		
														┝
		##	##	ŧ	##			##	ŧ	##	ŧ	##	ŧ	
		##	##	ŧ	##			##	Ŀ	##	ŧ	##	ŧ	ŧ#
		##	##	ŧ	##			##	<u>t</u>	##	ŧ	##	ŧ	ŧ#
														ŧ#
G		##	##	ŧ	##			 ##	Ŀ	##	ŧ	##	ŧ	
		##	##	ŧ	##			##	ŧ	##	ŧ	##	ŧ	ŧ#
es		 ##	##	ŧ	##			##	ŧ	##	ŧ	##	ŧ	ŧ#
Y '			##	7	Ŧ#	7	Ŧ#		7	Ŧ#	7	ŦĦ	7	##

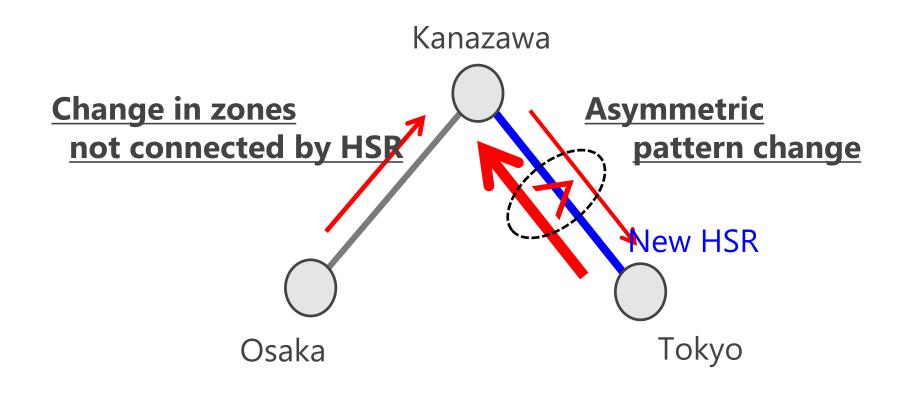
Stay zone at 13:00

» "Before"
 (2014.3.1-2015.2.28)

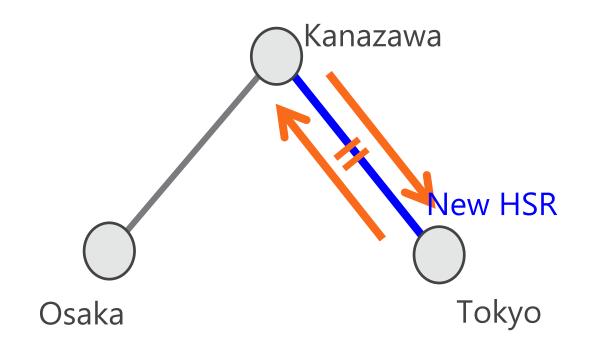
» "After" (2015.4.1-2016.3.31)


Basic aggregation of MSS data (1)

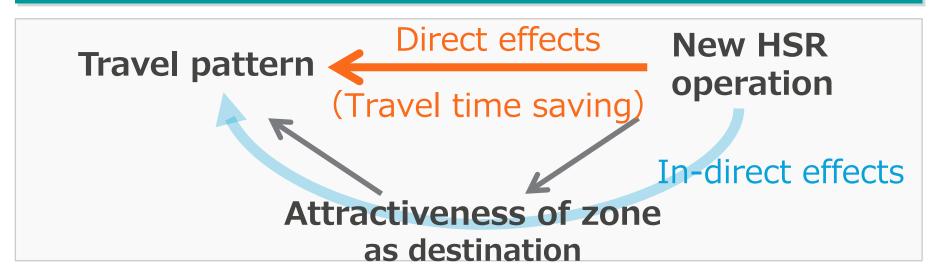
	(1) Before 14.3.1 ~ 15.2.28	(2) After 15.4.1 ~ 16.3.31	(2) - (1) ((2) / (1))
Tokyo →Kanazawa	3,311	5,200	+1,890 (×1.57)
Kanazawa →Tokyo	3,452	3,903	+450 (×1.13)


Asymmetric Increase

Basic aggregation of MSS data (2)


Change in # of traveler to Kanazawa (QKW) :

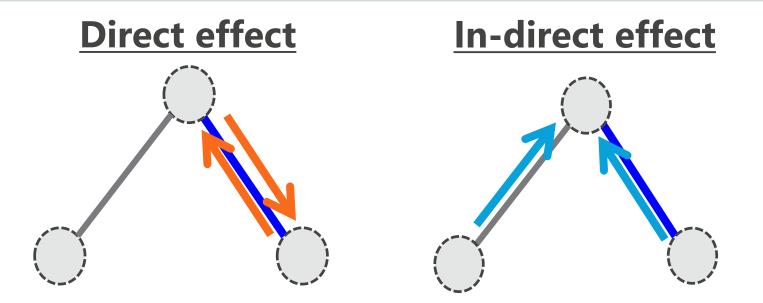
Summary of basic aggregation:



Expected effects of travel time savings

- Symmetric (travel time are similar among directions)
- Limited in the HSR users
 - \rightarrow Impossible to explain the observed patterns.

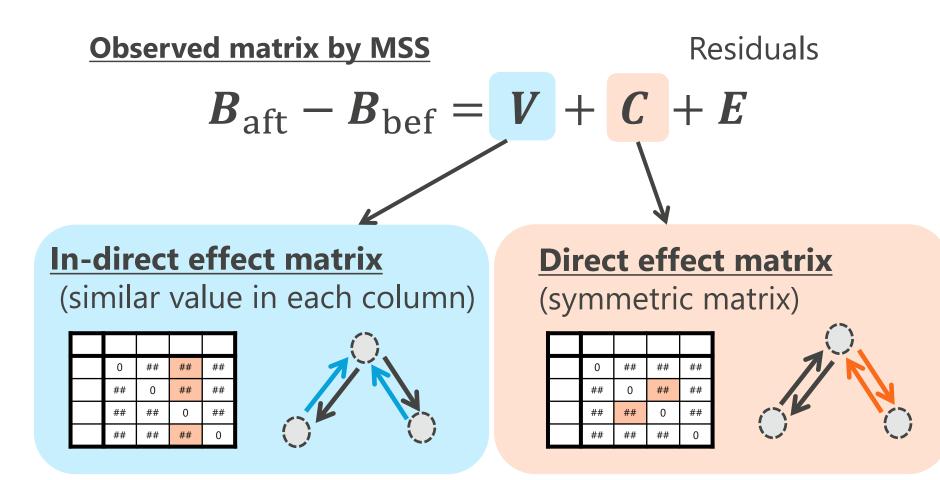
Direct and In-direct effects of new HSR



- New HSR operation may have affected on the attractiveness of zones.
 - ex. changing the socio-economical condition, advertisement effect, and so on...

– In this pattern (indirect pattern),

the spatial pattern of HSR effects are different.

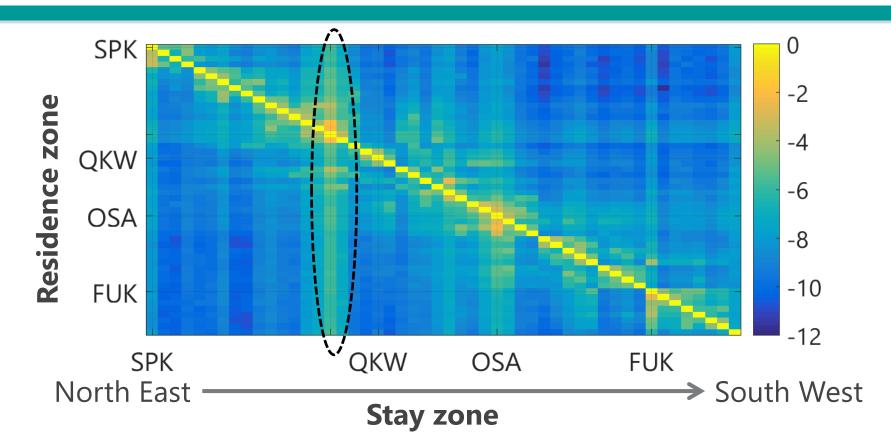

Spatial patterns of direct and in-direct effect

- In-direct effect are similar among all residence zones
- It looks possible to reproduce observed patterns by combining these two effects.

Question: How much was the quantity of these effects? **Key Idea:** "spatial-pattern decomposition of MSS data"

Spatial-pattern decomposition of observation matrix

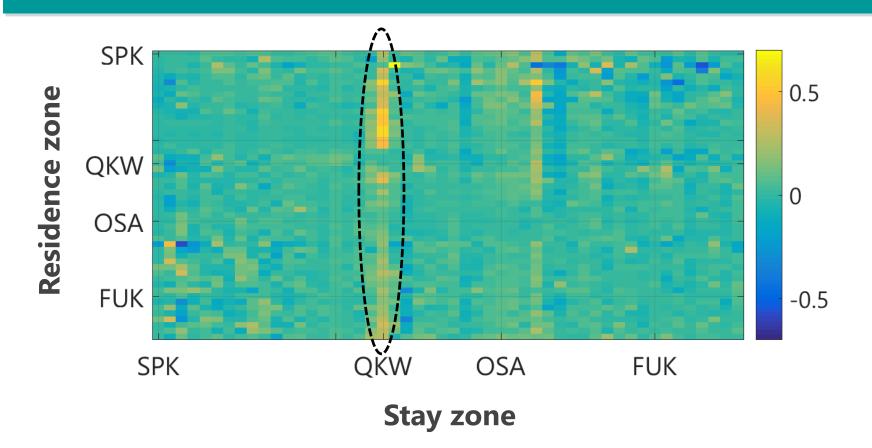
Target value: "Log-ratio with diagonal component"


$$b_{ij,t} = \ln\left(\frac{N_{ij,t}}{N_{ii,t}}\right)$$

→ Eliminate population size difference

This means the <u>fixed term of Utility</u> of destination choice logit model

$$b_{ij,t} = \ln\left(\frac{N_{ij,t}}{N_{ii,t}}\right) = \ln\left(\frac{p(j|i,t)}{p(i|i,t)}\right) = \ln\left(\frac{\exp V_{ij,t}}{\exp V_{ii,t}}\right) = V_{ij,t} - V_{ii,t}$$


Log-ratio matrix (B_{bef})

- Diagonal components equal to zero
- Values of Tokyo (as stay zone)

are large for all residence zone

Difference of Log-ratio matrix ($B_{aft} - B_{bef}$)

 Values of Kanazawa (as stay zone) are increased for most residence zone

Estimation methodology (1)

$$\min_{(V,C)} \|E\|_{2} = \sum_{(i,j)} \{ (b_{ij,aft} - b_{ij,bef}) - (v_{i,j} - c_{i,j}) \}^{2}$$

s.t. $v_{i,j} = v_{i,k} \qquad \forall \{(i,j,k) | i \neq j, i \neq k, (i,j,k) \in (Z \times Z \times Z)\}$ $c_{i,j} = c_{j,k} \qquad \forall \{(i,j) | i \neq j, (i,j) \in (Z \times Z)\}$ $v_{i,i} = c_{i,i} = 0 \qquad \forall i \in Z$

- Here, (V', C') satisfies $(V + C) = (V' + C') \forall k \in R$ • V' = V + kA• C' = C - kA \rightarrow We cannot estimate unique (V, C) !

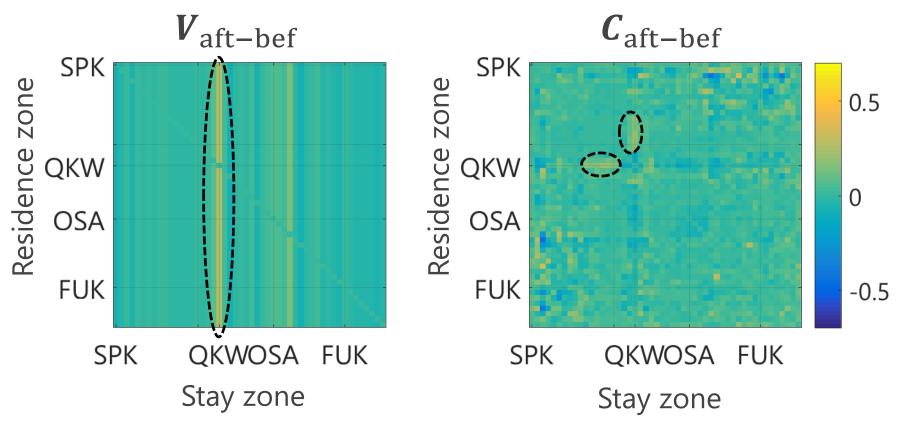
Estimation methodology (2) (\Rightarrow **LASSO**)

[Step-1] $\min_{(V',C')} || (B_{aft} - B_{bef}) - (V' + C') ||_2$

s.t. $v'_{i,j} = v'_{i,k}$ $\forall \{(i,j,k) | i \neq j, i \neq k, (i,j,k) \in (Z \times Z \times Z)\}$ $c'_{i,j} = c'_{j,k}$ $\forall \{(i,j) | i \neq j, (i,j) \in (Z \times Z)\}$ $v'_{i,i} = c'_{i,i} = 0$ $\forall i \in Z$

 $v'_{1,2} = 0 \leftarrow fix one parameter$

[Step-2]
$$\min_{k} \|\boldsymbol{C}\|_{1} = \sum_{(i,j)\in(Z\times Z)} |c_{i,j}|$$


s.t. C = C' - kA, V = V' + kA

decide *k* as minimizing <u>"L1 norm"</u> of matrix *C*

Assumption: matrix *C* is sparse.

(most components of *C* are close to zero.)

Estimated results of two matrices



– Direct effects

between Tokyo metropolitan zones ⇔ Kanazawa.

- In-direct effects on Kanazawa.

Reproducibility of difference matrix

Observed matrix $(B_{aft} - B_{bef})$ \Rightarrow Estimated matrix $(V_{aft-bef} + C_{aft-bef})$ \rightarrow Most changes in matrix *B* are explained by two patterns!

Direct effects vs. In-direct effects (calculation)

 ◆Calculate the effects on <u># of traveler</u> by logit model formulation
 → compare between direct and in-direct effects

of traveler increase by both effects

$$X_{ij,\text{both}} = \text{POP}_i \left\{ \frac{\exp(b_{ij,\text{bef}} + v_{ij} + c_{ij})}{\sum_{j \in Z} \exp(b_{ij,\text{bef}} + v_{ij} + c_{ij})} \right\} - N_{ij,\text{bef}}$$

of traveler increase by only direct effects

$$X_{ij,\text{direct}} = \text{POP}_i \left\{ \frac{\exp(b_{ij,\text{bef}} + c_{ij})}{\sum_{j \in Z} \exp(b_{ij,\text{bef}} + c_{ij})} \right\} - N_{ij,\text{bef}}$$

Direct effects vs. In-direct effects (results)

	(1) X _{ij,direct}	(2) X _{ij,both}	(1) / (2)
Tokyo →Kanazawa	+551	+1,617	0.34
Kanazawa → Tokyo	+583	+647	0.90

 66% of increase in Tokyo → Kanazawa was in-direct effects.
 ~ In HSR effects, in-direct patterns are strong.
 In-direct effects in Kanazawa → Tokyo was small.
 ~ This is the cause of asymmetric change.

Summary

- Estimating the HSR effects on OD matrix into <u>direct and in-direct effects</u>
 - By mobile phone location data.
 - Decomposition by LASSO approach.

Direct and in-direct effects on Hokuriku HSR

- − There were large in-direct effects on Kanazawa zone
 → This caused the asymmetric pattern.
- In-direct effects on inflow to Kazanawa zone were larger than direct effects.
 → In-direct effects are major effects of new HSR?

Discussion

What does the in-direct effect mean?

- \gg change of socio-economical condition?
- ≫ announcement / advertisement?
- → we can identity by the time-series decomposition of more longer period.

Can existing travel demand forecasting models deal with this strong in-direct effects?

Thank you for your kind attention

Hiromichi Yamaguchi <u>hyamaguchi@se.kanazawa-u.ac.jp</u>