

Data-Fusion Approach for Trip-Purpose Estimation of Inter-Regional Passengers

Oct, 20th, 2017

ARATA SUZUKI (TOKYO INSTITUTE OF TECHNOLOGY)

HIROMICHI YAMAGUCHI (KANAZAWA UNIVERSITY)

DAISUKE FUKUDA (TOKYO INSTITUTE OF TECHNOLOGY)

1. Introduction - Background

"Inter-Regional Travel Survey in Japan (IRTS)"

Survey that collects the movement of inter-regional passengers in Japan

- Target: all inter-prefectural(Pref.) travel
- Many qualitative information about trip (residence, destination, trip purpose etc...)
- Conducted <u>only in Autumn every 5 years</u>

→No data for spring, summer and winter passengers!

e.g.) Hokkaido Shinkansen

1. Introduction - Background

Estimated from mobile phone location data

1. Introduction - datasets

	IRTS	MSS	JNTS*
Survey interval	Every 5 years (one weekday and holiday in Autumn)	Every 1 hour every day	Every 3 months
Gender and age	Yes	Yes	Yes
Residential Pref.	Yes	Yes	Yes
Staying night Pref.	Yes	Yes	Yes
Trip-purposes	Yes	No	Yes
Travel mode	Yes	No	No
Flow or Staying information	flow	staying	flow
Survey Method	Questionnaire (sampling survey data)	mobile phone data from NTT docomo users (scaled up to the population in Japan)	Questionnaire (sampling survey data)

1. Introduction - Objective

Previous Studies:

Muroi et.al.(2015)

Used only MSS to understand estimate inter-regional passenger flow, but this method does not consider trip purpose.

Janzen et.al.(2016)

Estimated the trip purpose by data-fusion approach of nonaggregated mobile phone location data \times questionnaire survey

2. Model Formulation (regression model)

2. Model Formulation (regression model): Example

<u> "#date × #residential Pref. "</u> parameters are estimated

3. Estimated "Total trip generations" \widehat{Vs} across different days

The coefficient of determination is 0.52(Summer vacation) \sim 0.94(around survey date of IRTS)

There are many passengers for sightseeing and private in long vacation such as summer vacation, New year's holiday

3. Estimated "Total trip generations" \widehat{Vs} in May, 2015

<u>The model seems to reproduce seasonal / daily variation of</u> <u>passenger flow well.</u> 3. Estimated inter regional passenger flow ~ Residence : Tokyo(metropolitan), date : New Year's day ~

- Many private purpose passengers \Rightarrow Pref. with metropolitan areas (ex.Osaka)
- Many sightseeing purpose passengers \Rightarrow Pref. with famous sightseeing spot

3. Estimated inter regional passenger flow ~ Residence : Tokyo(metropolitan), date : weekday in Oct ~

- Many business passengers \Rightarrow Pref. with metropolitan areas (e.g. Osaka)
- Many sightseeing purpose passengers \Rightarrow Pref. with famous sightseeing spot

3. Estimated inter regional passenger flow ~ Residence : Aomori(rural Pref.), date : New Year's day ~

3. Estimated inter regional passenger flow ~ Residence : Aomori(rural Pref.), date : weekday in Oct ~

- In spite of weekday, # Business passengers < # Sightseeing passengers
- Overestimation to Tokyo ⇔ Underestimation near Aomori

4. Consistency Check

Trip purposes share of estimated results

but are not close to the share of IRTS for weekday or holiday.

5. Clustering date by residuals $\widehat{\varepsilon}$

6. Conclusions and Future works

<u>Conclusions</u>

- > Propose the data fusion methodology for estimating the trip purpose
 - Trip generations by purposes :

Substantially appropriate result (According to the coefficient of determination and Consistency Check)

• Inter regional passenger flow by each trip purpose :

»<u>Unreasonable results in some local area departure(e.g. Aomori)</u>

≫ Problem of goodness-of-fit for special holidays

Future works

- Improving the model, constructing highly accurate model
 - Integrating other inter-regional data (e.g. Japan National Tourism Survey data)

Appendices

<u>Appendix 1:</u> Map of Japan

Appendix 2:

Re-estimation of excluding Tokyo residence and staying (46 Pref. × 46 Pref.)

Appendix 3:

Trip concentration estimation ~using share of selecting residential Pref. by each trip purpose obtained from IRTS~

<u>Appendix 4:</u> Integrating 3 data sources (MSS, IRTS, JNTS) ~Maximum likelihood estimation~

Thank you for your attention!

a.suzuki@plan.cv.titech.ac.jp

Appendix 2

RE-ESTIMATION OF EXCLUDING TOKYO RESIDENCE AND STAYING (46 PREF. × 46 PREF.)

Issues in the previous estimated results

Unreasonable result

- Only sightseeing passengers in "Aomori/New Year's day" case
- In weekday, # Business passengers < # Sightseeing passengers in "Aomori/weekday in Oct" case

Causes

- In relation to Explanatory Variable (share of selecting staying Pref. by each trip purpose obtained from IRTS R)
 - Possibility of "Multicollinearity" among R
 - Possibility of **R** deviation to one Pref.
 - Assumption" R is unchanged" is very strong

In relation to data

Problem of IRTS accuracy (few samples between one OD)

Re-estimating inter regional passenger flow excluding Tokyo arrival and departure

Re-estimation results

Some changes are occurred in "excluding Tokyo calculation"

Goodness of fit of the model excluding Tokyo arrival and departure

The coefficient of determination of Re-estimation excluding Tokyo residence and staying by 46 residence Pref. (average in 915 days)

Consistency Check

Trip purposes share of estimated results

Appendix 3

TRIP CONCENTRATION ESTIMATION (USING SHARE OF SELECTING RESIDENTIAL PREF. BY EACH TRIP PURPOSE OBTAINED FROM IRTS)

Model Formulation (regression model)

3. Estimated "Total trip concentrations" \widehat{Vs} across different days

The coefficient of determination is 0.57(Summer vacation) \sim 0.88(around survey date of IRTS)

In long vacation, there are many passengers for not only sightseeing and private, but also business.

3. Estimated inter regional passenger flow ~ Residence : Tokyo(metropolitan), date : New Year's day ~

Result of Jan. 1, 2015

3. Estimated inter regional passenger flow ~ Residence : Aomori(rural Pref.), date : New Year's day ~

Unreasonable results in both metropolitan and local area departure

Appendix 4

INTEGRATING 3 DATA SOURCES(MSS, IRTS, JNTS) ~MAXIMUM LIKELIHOOD ESTIMATION~

Model Formulation (Log-likelihood function)

Ex) Residential Pref. = Tokyo, Trip-purpose = sightseeing, in one day,

Model Formulation (The constraints)

Constraints 1: sum up estimated results by purposes = <u>MSS</u>

Constraints 2: Trip-purposes share of estimated results every 3 month

Model Formulation (Overall - Tentative)

- Thinking of all date (*d*), all residences (*h*), all staying Pref. (*s*)
- Estimation by 3 months (the data term of JNTS) and residential Pref. (47 Pref.)

max.
$$\sum_{s \in \mathbb{Z}} \sum_{d \in D} \sum_{p \in P} J_{h,s,p} \ln\left(\frac{x_{h,s,d,p}}{\sum_{s \in \mathbb{Z}} x_{h,s,d,p}}\right)$$

Sub.to

$$\begin{split} \sum_{p \in P} x_{h,s,d,p} &= M_{h,s,d} & \forall h, \forall s, \forall d \\ \frac{\sum_{s \in Z} \sum_{d \in D} x_{h,s,d,p}}{\sum_{p \in P} \sum_{s \in Z} \sum_{d \in D} x_{h,s,d,p}} &= \frac{T_{h,s,d,p}}{\sum_p T_{h,s,d,p}} & \forall h, \forall s, \forall p \\ x : \text{estimated parameter}, & P: \text{All purposes}, \\ M : \# \text{ staying people from MSS at 4 a.m,} & h: \text{ residential Pref.} \\ J : \# \text{ people from JNTS,} & s: \text{ staying night Pref.} \\ T : \# \text{ people from JNTS,} & d: \text{ date,} \\ D: \text{ dates in 3 month} & p: \text{ purposes} \\ Z: 47 \text{ Pref.} & (\text{Business, Sightseeing, Private}) \end{split}$$