

An Innovative Approach

Presented by Dr. Jin Cao

Traffic issues in urban environments

Pedestrian Safety

Environment

Traffic interacts with other systems

An innovative approach?

Use Traffic Flow Theory in the

Macroscopic Modelling of

the Dynamics and Interactions of Urban Systems

Urban traffic and parking systems

Dynamics and interactions between two urban systems – traffic and parking

Global issue: cruising-for-parking

Status quo - studies

Global issue: cruising-for-parking

Status quo - solutions

Smart parking (data)

Parking policy

GPS data to estimate cruising?

- Under development
- Only answers HOW (behavior) but not WHY

What is the mathematical relation between parking and traffic?

Rea

- Calmotromoro potaonore
- cannot estimate cruising traffic
- cannot solve competition

- slow reaction
- cannot reflect system dynamics

Urban traffic – difficult to model

Traditional *traffic flow theory* not always applicable

Traffic + Parking – more complex

Parking causes cruising

Parking could lead to congestion

Congestion affects parking

Congestion hinders drivers to park

Challenges

- Model the dynamics of both systems
- Incorporate the dynamics to calculate the probability of finding parking

Vehicular flow on urban networks

Traditional method

Collect travel time of each individual traveler

Trips made → Plot trajectories → Aggregate info
Individual steps Time – step diagram Cumulative plot

Macroscopic method

Macroscopic method Estimates car exchange between different states

Macroscopic method

Provides macroscopic outputs regarding cruising

Macroscopic method Evaluates system dynamics of cruising conditions

Macroscopic method - formulation

Parking condition

$$egin{align*} oxed{\mathbb{E}}^{ ext{This image cannot currently be}} \ d^i &= v^i \cdot t \ s^i &= rac{L}{N_s^i} \ m^i &= \left\lceil rac{d^i}{s^i}
ight
ceil \ d^i_r &= d^i - \left\lfloor rac{d^i}{s^i}
ight
ceil \cdot s^i ext{ for } d^i > s^i \ \end{array}$$

Traffic condition

$$k^i = rac{N_s^i + N_{ns}^i}{L}$$
 $v^i = egin{cases} v, & ext{if } 0 \leqslant k^i \leqslant k_c \ rac{Q_{max}}{k_c - k_j} \cdot \left(1 - rac{k_j}{k^i}
ight), & ext{if } k_c < k^i \leqslant k_j \end{cases}$

based on Macroscopic Fundamental Diagram

Macroscopic method - formulation

$$p_1 = \int_0^{d^i - (m^i - 1)s^i} \left\{ \sum_{i_{m^i} = m^i}^{A^i - 1} p_2 = \int_{d^i - (m^i - 1)s^i}^{s^i} \left\{ \sum_{i_{m^i - 1} = m^i}^{A^i - 1} p_2 \right\} \right\}$$

Contour plot of the average probability of finding parking

0.9

0.8

Number of free spaces in relation to the number of searchers

Macroscopic method - formulation

Vehicles go through each transition

$$\begin{split} n_{ns/s}^{i} &= \sum_{l=1}^{i-1} \underbrace{(1-\beta^{i'}) \cdot n_{/ns}^{i'} \cdot \underbrace{y_{ns/s}^{i'}}_{\text{term } 2}}_{term 1} \cdot \underbrace{y_{ns/s}^{i'}}_{term 2} \\ \gamma_{ns/s}^{i'} &= \begin{cases} 1, & \text{if } l_{ns/s} \leqslant \sum_{j=i'}^{j=i-1} d^{j} \text{ and } \sum_{j=i'}^{j=i-1} d^{j} \leqslant l_{ns/s} + d^{i-1}. \\ 0, & \text{if otherwise.} \end{cases} \\ n_{p/ns}^{i} &= \sum_{i'=1}^{i-1} n_{s/p}^{i'} \cdot \int_{(i-i') \cdot t}^{(i+1-i') \cdot t} f(t_d) \ dt_d \\ n_{ns/}^{i} &= \sum_{i'=1}^{i-1} \left(\beta^{i'} \cdot n_{|ns|}^{i'} \cdot \gamma_{/}^{i'} + n_{p/ns}^{i'} \cdot \gamma_{p/}^{i'} \right) \\ \gamma_{/}^{i'} &= \begin{cases} 1, & \text{if } l_{/} \leqslant \sum_{j=i'}^{j=i-1} d^{j} \text{ and } \sum_{j=i'}^{j=i-1} d^{j} \leqslant l_{/} + d^{i-1} \\ 0, & \text{if otherwise.} \end{cases} \\ \gamma_{p/}^{i'} &= \begin{cases} 1, & \text{if } l_{p/} \leqslant \sum_{j=i'}^{j=i-1} d^{j} \text{ and } \sum_{j=i'}^{j=i-1} d^{j} \leqslant l_{p/} + d^{i-1} \\ 0, & \text{if otherwise.} \end{cases} \end{split}$$

Vehicles in each relevant state

$$egin{aligned} N_{ns}^{i+1} &= N_{ns}^i + n_{/ns}^i + n_{p/ns}^i - n_{ns/s}^i - n_{ns/s}^i \ N_s^{i+1} &= N_s^i + n_{ns/s}^i - n_{s/p}^i \ N_p^{i+1} &= N_p^i + n_{s/p}^i - n_{p/ns}^i \end{aligned}$$

Validation of the model (Zürich)

Case study

Parking supply Road network

Model Inputs

Traffic arrival to the network (MATSim)

Macroscopic fundamental diagram of Zürich (SVT)

Parking durations (MATSim)

Validation of the model (Zürich)

Cruising at 12.00:

- 30 cars searching
- 2 spaces available
- 13 min cruising time
- 60% of share
- No speed drops

Parking occupancy Average cruising time

Contributions and applications

Academic

Mathematical relation between parking availability & traffic condition

Multiple systems

Generic

Dynamic

Macroscopic

Low data requirements and computational effort

Practical

on full travel time

Application – parking policy

Application – IPS evaluation

(Intelligent Parking System)

Further development of the model

Investigate the distribution of parking and traffic in urban networks

Incorporate big data and machine learning into the model to improve the accuracy

Evaluate the impact of connected / autonomous vehicles on traffic and parking

Future research

Urban Traffic Management

Thank you for your attention!

Presented by Dr. Jin Cao

Reference

- Cao, J. and Menendez, M., 2015. System dynamics of urban traffic based on its parking-related-states. *Transportation Research Part B: Methodological*, 81, pp.718-736.
- Cao, J., Menendez, M. and Waraich, R., 2017. Impacts of the urban parking system on cruising traffic and policy development: the case of Zurich downtown area, Switzerland. *Transportation*, pp.1-26.