

«Academic research and railways: lessons learnt»

Dr. Gabrio Caimi, SBB Ambra Toletti, ETH Zurich

Zurich, 28 March 2018

Agenda

- Overview on formal collaboration ETH Zurich SBB on timetabling and operations topics
- → Focus on current PhD thesis of Ambra Toletti
- Lesson learnt from the collaboration and future challenges

18 years of formal collaboration between ETH Zurich and SBB: PhD theses

2000-2005: Dan Burkolter and Thomas Herrmann

18 years of formal collaboration between ETH Zurich and SBB: PhD theses

2004-2009: Marco Lüthi and Gabrio Caimi

- Improving the efficiency of heavily used railway networks through integrated real-time rescheduling, 2009
- Algorithmic decision support for train scheduling in a large and highly utilised railway network, 2009

18 years of formal collaboration between ETH Zurich and SBB: PhD theses

2009-2013: Martin Fuchsberger and Steffen Schranil

18 years of formal collaboration between ETH Zurich and SBB: PhD theses

2012-2015: Sabrina Herrigel

→ Algorithmic decision support for the construction of periodic railway timetables, 2015

18 years of formal collaboration between ETH Zurich and SBB: PhD theses

2014-2018: Ambra Toletti

Current research at IVT in collaboration with SBB

Automated railway traffic rescheduling and customer information

Research question

How can algorithmic real-time rescheduling procedures support the resolution of small disturbances in railway operations in condensation zones and inbound lines, in order to make traffic management automatable and, as a consequence, improve consistency and timeliness of passengers information?

Research question

How can algorithmic real-time rescheduling procedures support the resolution of small disturbances in railway operations in condensation zones and inbound lines, in order to make traffic management automatable and, as a consequence, improve consistency and timeliness of passengers information?

Research question

Small disturbances are more frequent than larger ones

[Steffen Schranil, PhD at ETH Zurich, IVT, Transport Systems group]

Research question

How can algorithmic real-time rescheduling procedures support the resolution of small disturbances in railway operations in condensation zones and inbound lines, in order to make traffic management automatable and, as a consequence, improve consistency and timeliness of passengers information?

Research question

How can algorithmic real-time rescheduling procedures support the resolution of small disturbances in railway operations in condensation zones and inbound lines, in order to make traffic management automatable and, as a consequence, improve consistency and timeliness of passengers information?

Research question

Network decomposition in condensation and compensation zones and rescheduling algorithms for condensation zones

Research question

How can algorithmic real-time rescheduling procedures support the resolution of small disturbances in railway operations in condensation zones and inbound lines, in order to make traffic management automatable and, as a consequence, improve consistency and timeliness of passengers information?

Methodology

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Methodology

Methodology

Experimental setup

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Experimental results

Experimental results

Discussion

Insights into the final results of this thesis:

- algorithms can be used to support railway traffic rescheduling;
- the integration of these algorithms into the current traffic support systems is possible;
- as a consequence, passenger information can be improved.

Lessons learnt from collaboration with SBB

- the form of the collaboration evolved during the project;
- at the beginning, support by SBB enabled dive into the topic;
- (direct) access to relevant information has highly contributed to the quality of the thesis.

Lesson learnt from the past collaboration

From the industrial point of view:

3 key factors for a successful collaboration with academy

- Good and useful results of the PhD
 → Close collaboration during the PhD thesis, possibility for students to discuss with specialists and have access to data.
- Have a plan for a stepwise practical implementation
 → Keep going in the topic, integrate the results and have internal resources and organization for the «translation in practice».
- Make use of the know-how accumulated by the student during the PhD
 - \rightarrow Hire the person, if possible!

Future collaboration

Challenge for the future

SmartRail 4.0: Key Components.

HIST SBB CFF FFS

SmartRail 4.0: Research Topics.

«Questions?»