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Topics

* Insights from neuro-science

* Development of ideas from
mathematical psychology

* Bringing the two together



Part 1: introduction and motivation




Which wine do you prefer?

Hess Cabernet  ,5A 2014 £14

Select Sauvignon

Campo Rioja Spain 2011 £10

Viejo J P

Santa Cabernet .0 2014 £10

Rita Sauvignon

Tesco Shiraz  Australia 2017 £6
Australian

choice n
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Systematic approach at the alternative level

Hess cabemet  , [ ;5n 3 2014 2
Select Sauvignon

Campo " pioja 1. Spain 1 2011 6 £10

Viejo

Santa abemet 3 ol 2 2014 2 £10 6 2
Rita Sauvignon

O Shiraz 2 £6 -3 -1

s
choice, ..
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Penalise worst alternative at attribute level

Hess 0 Cabernet ol UsSA 0l2014 0

Select Sauvignon A

campo Spain  0[2011 0|£10 0| -1
Viejo
Santa | Cabemet | e 012014 0]£10 0

g Rita Sauvignon

Shiraz O £6 0| -3

choice, ...
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Reward best alternative at attribute level

ii IIIIIIII‘IIIIIIIII\1‘IIIIII|1

Rioja O] Spain O

Santa .
Ritg Chile 0
Tesco . .
. Shiraz O | Australia O
E Australian

2014 O

2014 O

2017 O

choice, .
modelling
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£10 0 1
£10 0 1

1 1
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~ * Order in which alternatives and attributes
~ are evaluated does not influence

outcome
. - * contradicts ideas from quantum theory
Assumpt|0n5 * Constant “value” for alternatives
made here e our models are “single shot” approaches

b . th * Information considered in systematic way
d00Uu e * randomness in the evaluation process is not

choice process modelled explicitly

...+ Very different in mathematical psychology

» < Qur viewpoint: if you’re willing to let go
of RUM, you should consider “bigger”
departures than e.g. RRM



Campo Viejo

Timesteps to make a decision

A dynamic approach with a preference
threshold




- 7/ Campo Viejo

Timesteps to make a decision

... but if we are given more time




Motion

e Study by Britten et al. (1992)

* Monkeys required to indicate
direction of the movement of
dots on the screen by looking
either to the left or right

Motion coherence




How does the brain process information?

Neocortex -0
Rational or Thinking Brain
/ Storage R
X y y processes esponse
Limbic Brain

Emotional or Feeling Brain

Reptilian Brain processes // processes

Instinctual or Dinosaur Brain

- e

This is what we want to model

» Simplest circuit is a reflex
* sensory stimulus directly triggers immediate motor response (milliseconds-seconds)

 Complex responses
* brain integrates information from many circuits to generate response (can take months)

choice
mOdelllng UNIVERSITY OF LEEDS
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How does the brain
make decisions?

1) Representation of decision problem
* internal or external state (e.g. hunger)
* possible courses of action

REPRESENTATION

Set of feasible actions?
Internal states?
External states?

|

VALUATION

What is the value of each action?
(given the internal and external states)

!

ACTION SELECTION

2) Valuation of different actions based on
analysis of anticipated cost and benefits

3) Based on valuation, one action is chosen

Choose actions based on valuations

|

OUTCOME EVALUATION

4) After implementation, action is assessed
in terms of outcome desirability

* feeds into learning to ensure quality of
future decisions

How desirable are the outcomes and states
that followed the action?

choice, ..
modelling sy or

centre Institute for Transport Studies




Drift-diffusion model: gather evidence and make
decision when threshold is reached

Moving Motion detector  Integrator Motor output

., Left A' dot display neurons: neurons: neurons:
REMER Motion MT area LIP area FEF & SC regions
NVl Detector _

e M aiya 4y

Ry | Aminus B |
o . ‘ K::L\ Right ‘ Decision:

Lo . If A>B then | see Left Motion
=] Motion

— TS, If A<B then | see Right Motion
/@> (G Detector

activity B

Look left

Inhibitory
neurons

Look right

Excitaton —o

Inhibition -—e

*Decision making

choice : *Decision 2 i
modellng = F-m 7T oo oo —

centre Institute for Transport Studies



Issues with drift-diffusion model

Only used for estimating reaction times for multiple
‘correct/incorrect’ decisions (e.g. dot motion perception)

Multi-alternative context:
* many simulations required
 each simulating evolution of preference with given [

Psychologists often run 1,000s of simulations to calculate
probs for each alternative and each set of parameters

* Our motivation for looking at mathematical psychology!

choice, .
modelling

centre




Part 2: adventures in mathematical

psychology




Background

* Mathematical psychology is a very active field of research

* Many similarities (especially in terms of interest) with choice modelling
e But they speak a different language!

* Also very little emphasis on translating models into practice

* Two key aims in our work:
e Operationalising and improving models from mathematical psychology
e Contrasts with more “typical” approaches

* Focus today only on Decision Field Theory (DFT)

* Also worked with e.g. multi-attribute linear ballistic accumulator model (MLBA)

m Od el | i n g UNIVERSITY OF LEEISS

centre Institute for Transport Studies



Models from mathematical psychology

* Dynamic models of preference creation S
* Consider different attributes of the _
alternatives at different points in time % -
£ o
A
o _| | | | | |
B 0 10 20 30 40 50
Timesteps to make decision
c M train | M bus | W car
cost high low average
Dimensions Attributes Differences Preferences time low high average
environment | average | good poor

choice, ,..
modelling

centre
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Basic DFT equations

* Preference vector P; at a given timestep t, updates over time
* Preference vector # probability
* S =feedback matrix
. * P, =initial preference vector
Pt =5 Pt_l T Vt * I, =valence vector (how much preferences update at t)
M = attribute matrix
e (= contrast matrix (to centre the values around zero
V,=C -M-W, + g . ‘ )

W, = weights vector

* & =error (drawn from a normal distribution with mean zero
and a variance which is estimated)

C

Attribute 1- M11 Va
Alternative A T _..Q . | Pa
Attribute 2- M12 7 v,
W 5
Attribute 1- M21 -
Alternative B T Q ve - L  »Pe
Attribute 2- M22 |~ A
. Attribute 1- Mz31 '
. : Vi
C h oice . Alternative C : ? —..@1_, Pc ﬁ
m Od e | | 18 g e UNIVERSITY OF LEED
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DFT feedback matrix

S =1— ¢ x exp(—d1 x D?)

* @1 = sensitivity parameter — how much do similar alternatives compete?
* 0.05 in this example

* @2 = memory parameter —is initial or later information more important?
* 0.1in this example, so later information is slightly more important

* D =distance in attribute space between alternatives, sum of squared differences
across attributes

* Hess and Santa Rita wines are most similar therefore compete most

Im

0.900  -0.050  -0.074  -0.030
Campo  -0.050 0900  -0.061  -0.045
-0.074  -0.061 0900  -0.067
choice -0.030  -0.045  -0.067  0.900 it

modelling UNIVERSITY OF LEED

centre Institute for Transport Studies



Valence calculation and updating of P

Attribute matrix name type  countr ear cost PO P1
M P yo PtZS'Pt_1+Vt
Campo Viejo 2 1 1 3 2 N -t Vt =C ‘M- Wt + Et
1 3 2 1 -2 -1.0 -1.1
0 2 0 0 -1 -20 -0.4 E[Vt] = U= C -M-W

T

W 0.125 0125 0.125 In time period t=1, " W;=10,0,0,0,1]
cost is the attribute

attended to

g, = [0.3,0.5,—0.2,0.1]’

C 1
V; = [-1.3,0,0,1.3] + ¢,
-1/3
-1/3 Estimated V1 - [—1,0.5, —0.2,1.4]'
. parameters
choice, ¥ 13 -3 1 P,=S-Py+V n
modelling UNIVERSITY OF LEED

centre Institute for Transport Studies



DFT probabilities

* P, converges to a multivariate normal distribution, e.g. with 3 alternatives:

Pr{P.[A] — P[B] > 0N P,[A] — P[C] > 0]

_ ] exp[—(X — TY A= (X — T')/2]/ (2 | A]°%)dX
X=0

with X = [P[A] — P[B]. P[A] - B[C]]. T = L&, A = L%’ and

1 -1 0
Lz[l 0 —1]

* Need mean and covariance

-1

E[P]=§ =Y "S" ju+5 P
k=0

—(I—S) ' (I—S)- pu+S-p,

choice, ,..
modelling

centre

-1
Cov[P;] = €, = CD”|:ZSk Vik+5 Pr}j|
k=0

UNIVERSITY OF LEED
Institute for Transport Studies



Key limitation in existing DFT work

* Mathematical psychologists:

* ‘computationally dissatisfying” process of summing over timesteps
(and hence powers of S) to get the covariance matrix

[—1
Cov[P ] = 2, = ICE””|:X:SJ[: Vix+S HJ:|
k=0

* They avoid this by by assuming that t - oo
* This loses the timestep element of the model!
* Possible to solve this problem and calculate probability at given timestep

choice, ..
m Od el | I ng UNIVERSITY OF LEEHI;S
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Calculating probabilities

New method allows for
influence of initial
= preferences

This results in the simplification: -
) . _ | //

Cov[P] = Q =Y [$* @ 5]

k=0

Probability of alteative being chosen

[—1

-y [Z¢. D]

k=0

T Previously
cla 5|0 150 1;0 2[|:0 was only
MNumber of timesteps ever
—(-2Z2)'(1-Z) D ‘\‘\ calculated
o R at (t=00),
P(t=10) P(t=100) (t=a0)

when
DOEESSSEESHMN 0.5/ 0.8 .

Campo Viejo 0.499 0.469 stabilised
0.261 0.428
choice 0.056 0.016 &

mOde”i ng UNIVERSITY OF LEEDS

centre Institute for Transport Studies




Summary of DFT changes:

DFT-2014 DFT-2018
Model Fit Always at least as good as
DFT-2014
E[P] | E[Px]=(1—-5)" 1 E[P]=(1=5)"'(I=5%) p+
St. Py
Cov[P;] | Cov[Py]=(1—-2)"1d CovlP | =(1-2)"1(I-ZH)®
Timesteps | Assumed to be infinite Can be related to, f?r
example, response time
Initial Pref | Cannot be included Explicitly captured
Memory Must deteriorate over time | Can inflate or deteriorate
Parameters | x x+1

choice, ,..
modelling

centre

g
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Danish value of time dataset

e 2 alternatives described by cost and time:

* MNL . LL=-2,301.53
* Non-linear MNL :LL=-2,212.10
e DFT . LL =-2,015.35
choice N

mOde”i ng UNIVERSITY OF LEEISS

centre Institute for Transport Studies



UK commuter dataset

3 alternatives, described by cost, time, rate of delays, average length
of delays, crowding and provision of a delay information service:

* MNL: LL=-3,391.79
* RRM : LL=-3,3795.96
* DFT: LL =-3,346.23
choice n

m Od el | i n g UNIVERSITY OF LEEBS

centre Institute for Transport Studies



Swiss value of time survey

* MNL: LL =-1,667.97
* DFT: LL=-1,595.85

e Can also do a DFT with random parameters: LL=-1430.41

choice, ...
modelling A

centre Institute for Transport Studies



Results from UK value of
travel time study

* MNL: -370.05
* RRM: -373.31
* DFT: -363.31

choice, .
modelling

centre

RP data

average probability of chosen

alternatives for each forecasting subset
EMNL ERRM mDFT

0.695

0.69

0.685
0.68
0.675
0.6
0.665
0.66
0.655
0.65
1 2z 3 4 5 n

i
UNIVERSITY OF LEEDS
Institute for Transport Studies
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Including response time in DFT

* So far, we simply estimated the number of timestep parameters
* Can be linked to response time instead

T=1+ e(t0+t1*srt+t2*log(mrt))

where
* T = number of timesteps
* mrt is the mean response time for the individual

* srtis the number of standard deviations the response time for a given
choice is away from the individual’s mean

choice, ..
m Od el | I ng UNIVERSITY OF LEE

centre Institute for Transport Studies



Timestep vs scale parameter est
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Response time results

: DFT DFT
Choice : : : :
without response time | with response time
Log-likelihood -6,883.18 -6,874.37
t0 estimate 1.58 (12.04) 0.16 (0.36)
Route _
tl estimate -0.02 (-0.58)
t2 estimate 0.54 (3.22)
Log-likelihood -1,324.55 -1,313.08
_ t0 estimate 3.68 (14.43) 1.77 (3.57)
Accommodation _
tl estimate -0.40 (-2.60)
t2 estimate 0.76 (3.85)
Log-likelihood -1,960.24 -1,935.06
_ t0 estimate 2.62 (5.74) 0.12 (0.14)
Conservation _
tl estimate -0.15 (-2.06)
t2 estimate 1.01 (3.22)

choice, ,..
modelling

centre

 T1->always negative:

Not in line with DFT

A longer response time
from an individual
compared to their own
mean response time
results in a less
deterministic choice

T2 -> always positive:

In line with DFT

An individual who has a
longer mean response

time is on average more
deterministic n

UNIVERSITY OF LEED
Institute for Transport Studies



‘Timesteps to make a decision’

e appears to be equivalent to MNL scale

Meanlng Of parameter
psyChO|0g|ca| ‘Attention Weightsl
. e could use eye-tracking data as
parargﬁ-trers 4 indicators

‘Memory parameter’

e meaningless if we only observe the
final choice

UNIVERSITY OF LEEDS
Institute for Transport Studies




Part 3: looking into the brain

(and other parts of the body)




What is neuroeconomics and why do we need it?

* Biological foundations of decision making vs. classical economic theory
* Focus on process rather than outcome

Psychology

Economics Neuroscience

Neural
perspective on
human
decision-making
process

choice, ...
modelling J— i

centre Institute for Transport Studies



Strengths and limitations of neuroeconomics

* Extensive work on understanding * VVery limited modelling effort
brain processes * Very simplistic choice settings,

* And on capturing these using partly constrained by use of
scanners etc scanners etc

?ﬁ H m * Little cross-disciplinary influence
2NN . * Weak connection between
lﬁﬁ] W lml § neuroscience and the real world

modelling UNIVERSITY OF LEEDS

centre Institute for Transport Studies



What can we do about it?

* Look for middle ground solution to increase the applicability of
neuroscience in a real world context

 use virtual reality setting

e Use neuroscience data:
* Improve models through using additional information about process
e Especially useful for dynamic models like DFT

* Help with model selection when mathematical bases have been
exhausted

choice, ..
m Od el | I ng UNIVERSITY OF LEEHI;S

centre Institute for Transport Studies



Aim is to capture decision process
information without ability by the
respondent to bias this



Our current work relies on VR and EEG

Raw EEG

Channel spacing (uV)
-+

Amplitude min (uV)

Amplitude max (uV)

choice, ..
m Od el | I ng UNIVERSITY OF LEEHI;S

centre Institute for Transport Studies



Oldest neuroscientific technique

Measures voltage fluctuations
resulting from electrical
current within neurons

Records brain's spontaneous
electrical activity over time

Multiple electrodes placed on scalp

Less spatially accurate than fMRI
(which relies on blood flow) but
much finer temporal resolution

* Also easier to use in practice!




Number of electrodes in the EEG headsets can
range from 5 to 264 electrodes.

We use 14 electrode headset (Emotiv EPOC)

* Moving streams of data, with very fine
temporal resolution

Location of electrodes is important as brain
performs different functions in different parts

I T1OCH | UNIVERSITY OF LEED
- centre™ Institute for Transport Studies|



EEG waves

Awalke with
mental activity

Beta
14-30 Hz

AT ANAN A L AP A AN Ll i Ann

Awake and
resting

Alpha
8-13 Hz

ANV An AAAANMNNV A AAMAN AN

I\ N\ANA AN WA,

Theta

= [
eeping e

Delta

Deep sleep <3.5 Hz

1 sec

choice, ..
modelling

centre

Raw EEG

Channel spacing (uV)
200 -+

Amplitude min (uv)

Amplitude max (uv)

2 Exitplayback mode
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. visual stimuli

Parietal

Focus on frontal lobe and occipital lobe

Occipital 4

Frontal lobe:

* emotions, reasoning, movement

* also purposeful acts such as creativity,

judgment, problem solving, planning

Occipital lobe:

 brain's ability to recognise objects

* responsible for our vision
Extract theta waves from frontal

electrodes to investigate cognitive
functions

Alpha waves from electrodes placed on
the occipital lobe to explore impact of

UNIVERSITY OF LEED
Institute for Transport Studies




VR experimental
procedure

e 24 simulations of risky road
scenarios for cyclists

* 3 behavioural responses
(acceleration, braking,
freewheeling)

e Also stated assessment of
riskiness of scenarios and
willingness to cycle (1-7 scale)

modelling

centre



Example of pavement scenario

e o [ e N e e A AN LA NN N prd . e e e P S P A

Current time

choice
modellng J—

centre Institute for Transport Studies



Proposed model framework

choice, ... 8
mOd el | | ng UNIVERSITY OF LEEHDES

centre Institute for Transport Studies



Correlations between stated variables

* Inverse relationship between

risk and willingness to cycle (1)
* Positive correlation between | Willingness
. o Stated risk to cycle
scenario riskiness and stated
risk (2)
* Negative relation between

scenario riskiness and
willingness to cycle (3)

Willingness to
cycle
-0.55

Scenario
riskiness
0.17 -0.15

choice, ..
mOdelllng UNIVERSITY OF LEEDS
Institute for Transport Studies

centre



choice

DCM example: MNL model pavement

Estimate Rob.std.err. Rob.t.ratio(0)
ASC for accelerating 0.2593 0.095 2.73
currently accelerating ASC for braking -2.4971 0.2606 -9.58
ASC for freewheeling 0 - -
ASC for accelerating 2.826 0.151 18.72
currently braking ASC for braking 3.7918 0.132 28.73
ASC for freewheeling 0 - -
ASC for accelerating 0.1443 0.0767 1.88
currently freewheeling ASC for braking -3.1188 0.1757 -17.75
ASC for freewheeling 0 - -
ASC for accelerating 0.0124 0.0292 0.42
shifts for 3D ASC for braking 0.1577 0.0593 2.66
ASC for freewheeling 0 - -
. L . gain in utitlity for accelerating -0.0058 0.0009 -6.48
pedestrians ‘::::Itn 3 metres II“gain in utitlity for braking -0.0101 0.0022 -4.62
gain in utitlity for freewheeling 0 - -
. L gain in utitlity for accelerating -0.001 0.0012 -0.89
pEdeSt”a"; ":':.tho"" 3metres _in in utitlity for braking 0.0035 0.0025 1.39
enin gain in utility for freewheeling 0 - -

modellin

centre

2
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Dynamic EEG and behaviour

lALPHA WAVE I COGNITIVE W I THETA WAVE 4 COGNITIVE l

AMPLITUDE WORKLOAD AMPLITUDE WORKLOAD

Alpha and theta waves and cycling behaviour for a single participant in one scenario

4 8

35 7

3 6
v %)
I} c
T 25 5.8
= =]
?Ex 3
-
1]
: :
3 2

C

§ 1.5 3 :Es
a) \ =z

1 A. \ : - “ Ny 2

o
0.5 I 1
0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time(s)
mm Acceleration Brake W Pedestrains density es@@mAlpha es@meTheta
-
choice

modelling UNIVERSITY OF LEEDS
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Part 4: bringing it all together




First step: combining math psych model with
neuro-science

e P [ e o B P e i ed e et e e e MO,

choice, ...
modelling J—

centre Institute for Transport Studies



* EEG data uses very fine temporal resolution

* Need to work on making the link between EEG
and choices
 What brain activity matters?
* Just before the choice?

* Also some remaining impact of earlier
processes, with temporal discounting?

e Full accumulation over time, without
discounting?

* Last option seems to be ruled out by our
results, which is reasonable




Making DFT truly dynamic

* Evaluation of alternatives is a dynamic process already

* But existing version of DFT assumes that attributes are constant
within a given choice context

* This is not what happens in reality
* Short term choices: environment changes, e.g. traffic
* Long term choices: new information, new experiences, etc
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Example 1:

Santa Rita
becomes
available
halfway

Campo Viejo

Freference Yalue

Freference Yalue

10

Timesteps to make a decision

15

20

10

Timesteps to make a decision

15

20




Example 2:
Santa Rita sells
out (and
competes more
with Tesco)

Campo Viejo

Freference Yalue

Freference Yalue

T
10

Timesteps to make a decision

15

20

T
10

Timesteps to make a decision

15

20
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