

vith

nage is een and lains

ige icor ight ge



## A tool to analyze urban development strategies

Authors

Jianfei Li Dr. I. Ossokina Prof. Dr. T.A. Arentze This PhD-project is funded by the CSC

Department of Built Environment

## Land-use modeling

#### **Major approaches**

- 1. Land-use allocation models
- 2. Cellular automata models
- 3. Integrated land-use and transportation models
  - regional economic base and spatial interaction models (e.g., Muplan)
  - micro-simulation models (e.g. UrbanSim)

Compared to transportation modeling – the focus is on more long-term development where one cannot assume that the land-use stays constant



## Land-use allocation models



3 A tool to analyze urban development strategies

Tek

#### **Example - The What-if model**

Location units are irregularly shaped polygons

#### A two-step approach

- specify the demands for *K* land-uses
- specify land-suitability functions
- determine the best allocation

## **Cellular automata models**

Netherlands



4 A tool to analyze urban development strategies

#### **Example - The Environment Explorer**

Location units are cells in a regular grid Uses transition rules to determine the landuse change in each cell per time step



## **Regional economic + interaction models**



Given is employment in the basic industry

The model determines

- the residential locations
- the retail locations (generally service industry)
- the transportation flows

5 A tool to analyze urban development strategies



## **Regional economic + interaction models**



There are many feedback loops

- Transportation congestion influences attractiveness of locations
- New service industry generates employment and thus demand for residence and new services

The system iterates until equilibrium is reached

TU/e

6 A tool to analyze urban development strategies

irt -

A Tek

] Tek

Coi



7 A tool to analyze urban development strategies

#### Example UrbanSim

Transporation model is used to evaluate accessibility of locations

#### Market prices of locations

- respond to accessibility
- Inlfuence location decisions of firms and households
- Influence development decisions of developers

## A tool to analyze urban development strategies

#### Problem background and aim

How can we make sure that cities in the future are better adapted to the climate change – how can we create *climate adapted cities*?

More green vegetation in urban area has beneficial properties

- Cooling mitigating the urban heat island effect
- Water absorption reducing the risk of flooding

But: more green space means lower urban density – in conflict with compact city goal?

Aim: develop a tool to analyze urban green strategies from a land-use perspective

8 A tool to analyze urban development strategies

## **The HARA model**





#### **Focusing on housing**

Given the demands for different housing types (e.g., apartments, standalone houses)

What is the best allocation of the demands?

Is the current allocation optimal or could it be improved?

9 A tool to analyze urban development strategies



## **The HARA model**



#### Value of a housing development k

 $Z_{ijk} = Vcon_{ijk} + Vnbh_{ijk} + Vacc_{ijk} - Cdev_{ijk} - Clnd_{ij}$ 

 $Vcon_{ijk}$  = base value  $Vnbh_{ijk}$  = neigborhood value  $Vacc_{ijk}$  = accessibility value  $Cdev_{ijk}$  = costs of the development  $Clnd_{ij}$  = costs of (acquiring the) land

Value of a cell

 $ZW_{ijk} = \omega_k \cdot Z_{ijk}$  $\omega_k = \text{density} - \text{number of housing units}$ 

# rt-¶∶Tek

Coi





## Housing

#### Attraction

Green, water, open area Playgrounds

### **Repulsion** Industry, traffic



## **Accessibility value**

Tek



## Housing

#### Attraction

Number and type of facilities in particular distance bands

Available employment within certain distance bands

Distance to facilities of certain types

- CBD
- train station
- shops
- etc.

12 A tool to analyze urban development strategies

## **Hedonic price modeling**

irt -

Tek Tek The value function can be estimated empirically given transaction data in the housing market



| Variable                     | (6)        |
|------------------------------|------------|
| Lettable Floor Area (Log)    | 0.9610***  |
| Building Height (Log)        | 0.0362*    |
| Parking Spots (Log)          | 0.0002**   |
| Energy Label: Below C        | -0.0138    |
| Energy Label: C              | -0.0538*   |
| Energy Label: B              | 0.0303     |
| Energy Label: Above A        | 0.2259***  |
| Year Built: before 1906      | 0.3214     |
| Year Built: 1906-1945        | 0.0975     |
| Year Built: 1946-1970        | -0.0998    |
| Year Built: 1971-1990        | -0.1114*   |
| Year Built: 1991-2000        | -0.1192**  |
| Year Built: 2001-2010        | -0.1231**  |
| Walkscore                    | 0.0034***  |
| Leefbaarometer Score         | 0.2407***  |
| Train Station Distance (Log) |            |
| Highway Distance (Log)       |            |
| TRI per sam. (Log)           | 1.0458***  |
| Vacancy Percentage           | -0.3243*** |
| WALE incl. Vacancy (Log)     | 0.2266***  |
| Rental Difference: Under     | -0.1074*** |
| Rental Difference: Over      | -0.1246*** |
| District Type: Business      |            |
| District Type: Mixed         |            |
| District Type: Other         |            |
| City category: Large         | 0.2453***  |
| Centrality: Central          |            |
| Transfer Year 2010           | 0.0508     |
| Transfer Year 2011           | -0.0450    |
| Transfer Year 2012           | -0.1149    |
| Transfer Year 2013           | -0.3903*** |
| Transfer Year 2014           | -0.3794*** |
| Transfer Year 2015           | -0.2443*** |
| Transfer Year 2016           | -0.1525*** |
| Transfer Year 2018           | 0.1540***  |
| Intercept                    | 1.8161***  |
| R <sup>2</sup>               | 0.94       |
| MAPE OLS (Out-of-Sample)     | 21.9%      |
| MAPE GLS (Out-of-Sample)     | 21.8%      |
| LOOCV                        | 22.6%      |
| Simulation 2018              | 19.5%      |
|                              |            |

13 A tool to analyze urban development strategies

#### **Construction costs** (kEuro/dwelling)

| Type 1 | Type 2 | Type 3 | Type 4 |
|--------|--------|--------|--------|
| 153.0  | 118.2  | 105.8  | 110.3  |

**Density** (dwellings / ha)

| Type 1 | Type 2 | Туре З | Type 4 |
|--------|--------|--------|--------|
| 16     | 32     | 56     | 169    |

# Simple example of parameter settings

Accessibility – distance to facilities value decay in kEuro per km distance

| Housing | Daily | CBD |
|---------|-------|-----|
| Туре 1  | 2     | 1.5 |
| Туре 2  | 3     | 2   |
| Туре З  | 4     | 2.5 |
| Туре 4  | 5     | 3   |

**Neighborhood** – green, open area, water in kEuro all green cells

| Housing | kEuro all green cells in<br>neighborhood (8 cells - green) |  |  |  |  |  |
|---------|------------------------------------------------------------|--|--|--|--|--|
| Type 1  | 32                                                         |  |  |  |  |  |
| Туре 2  | 24                                                         |  |  |  |  |  |
| Туре З  | 16                                                         |  |  |  |  |  |
| Туре 4  | 8                                                          |  |  |  |  |  |

14 A tool to analyze urban development strategies

## The HARA model

Tek



#### Optimization

The model considers all possible swaps of the landuses between cells

$$gain_{ij} = \left( ZW_i^{after} - ZW_i^{before} \right) + \left( ZW_j^{after} - ZW_j^{before} \right)$$

If the gain is positive the swap is implemented and the next swap is considered

The process stops when no further improvements are possible – the system has reached an equilibrium

## Illustration

#### **City expansion area (hypothetical)**

#### irt -Tek ] Tek ] Coi



#### Housing demand scenario

| area total size (ha) | 2500        |                 |                |                  |
|----------------------|-------------|-----------------|----------------|------------------|
| population           | 22500       |                 |                |                  |
| number of dwellings  | 10700       |                 |                |                  |
|                      |             |                 |                |                  |
|                      | Stand-alone | Semi-<br>detach | Row-<br>houses | Appart-<br>ments |
| % dwellings of total | 20.0        | 22.0            | 45.0           | 13.0             |
| number of dwellings  | 2140        | 2354            | 4815           | 1391             |
| lot size (m2)        | 612.25      | 308.92          | 177.35         | 177.35           |
| layers               | 1.00        | 1.00            | 1.00           | 3.00             |
| dwellings/ha         | 16          | 32              | 56             | 169              |
| land (ha)            | 131         | 73              | 85             | 8                |

#### 16 A tool to analyze urban development strategies



ırt -

A Tek Tek

#### Trade-off

- distance to facilities and CBD
- being in green, open area

#### High density types of housing

- more sensitive to distances
  Low density types of housing
- higher value green area

An estimate of the total land value can be derived from the model

17 A tool to analyze urban development strategies

## **Scenarios**

High-density housing strategy

- Increase of people living in high-density type of housing
  - Stand-alone -> semi-detached
  - Semi-detached -> row houses
  - Row houses -> apartments

#### Low-density housing strategy

- Increase of people living in low-density type of housing
  - Stand-alone <- semi-detached
  - Semi-detached <- row houses
  - Row houses <- apartments



## **Climate effects**

| Urban green cooling effect parameter setting |                |    |  |  |  |  |  |
|----------------------------------------------|----------------|----|--|--|--|--|--|
| Description Symbol value                     |                |    |  |  |  |  |  |
| Direct cooling effect                        | β              | 6  |  |  |  |  |  |
| Indirect cooling effect from zero distance   | γ <sub>0</sub> | 2  |  |  |  |  |  |
| Decay effect of indirect cooling             | $\gamma_1$     | -1 |  |  |  |  |  |

High-density housing strategy

Urban cooling effect

rt -

A Tek

ł

#### Medium-density housing strategy

#### Low-density housing strategy



19 AA tool to analyze urban development strategies

## 4. New model illustration

| Scenario results shown in evaluation index |                         |                    |          |        |          |              |          |           |               |          |       |
|--------------------------------------------|-------------------------|--------------------|----------|--------|----------|--------------|----------|-----------|---------------|----------|-------|
| Evalu                                      | ation index             | scenarios Land use |          |        |          |              |          |           |               |          |       |
|                                            |                         |                    | Total    | Nature | Housing1 | Housing<br>2 | Housing3 | Main road | Small<br>road | Industry | CBD   |
| Description                                | Cells number of each    | Initial            | 2500     | 1440   | *        | *            | *        | 98        | 801           | 0        | 1     |
| - coordination                             | land use                | High-density       | 2500     | 1240   | 176      | 116          | 68       | 98        | 801           | 0        | 1     |
|                                            |                         | Medium-density     | 2500     | 870    | 110      | 505          | 115      | 98        | 801           | 0        | 1     |
|                                            |                         | Low-density        | 2500     | 520    | 100      | 520          | 460      | 98        | 801           | 0        | 1     |
|                                            | Housing ratio           | High-density       | 100%     | *      | 48.89%   | 32.22%       | 17.78%   | *         | *             | *        | *     |
|                                            | -                       | Medium-density     | 100%     | *      | 15.28%   | 70.14%       | 15.97%   | *         | *             | *        | *     |
|                                            |                         | Low-density        | 100%     | *      | 9.26%    | 48.15%       | 42.59%   | *         | *             | *        | *     |
|                                            | Population of each      | High-density       | 50000    | *      | 44000    | 4640         | 1360     | *         | *             | *        | *     |
|                                            | housing type            | Medium-density     | 50000    | *      | 27500    | 20200        | 2300     | *         | *             | *        | *     |
|                                            | nousing type            | Low-density        | 50000    | *      | 25000    | 20800        | 9200     | *         | *             | *        | *     |
|                                            | Land value              | High-density       | 38188.5  | *      | *        | *            | *        | *         | *             | *        | *     |
|                                            |                         | Medium-density     | 68998.0  | *      | *        | *            | *        | *         | *             | *        | *     |
|                                            |                         | Low-density        | 93792.5  | *      | *        | *            | *        | *         | *             | *        | *     |
| Indicators                                 | Cooling area            | High-density       | 2500     | 1240   | 176      | 116          | 68       | 98        | 801           | 0        | 1     |
|                                            | 5                       | Medium-density     | 2500     | 870    | 110      | 505          | 115      | 98        | 801           | 0        | 1     |
|                                            |                         | Low-density        | 2345     | 520    | 100      | 520          | 369      | 98        | 737           | 0        | 1     |
|                                            | Cooling effect          | High-density       | 11601.15 | 7440   | 402.91   | 484.74       | 345.42   | 256.49    | 2670.42       | 0        | 1.17  |
|                                            |                         | Medium-density     | 9066.76  | 5220   | 177.47   | 980.22       | 342.38   | 256.49    | 2089.03       | 0        | 1.17  |
|                                            |                         | Low-density        | 5807.56  | 3120   | 128.86   | 583.00       | 512.59   | 243.46    | 1218.48       | 0        | 1.17  |
|                                            | Cooling effect ratio of | High-density       | 100%     | 64.13% | 3.47%    | 4.18%        | 2.98%    | 2.21%     | 23.02%        | 0        | 0.01% |
|                                            | whole cooling effect    | Medium-density     | 100%     | 57.57% | 1.96%    | 10.81%       | 3.78%    | 2.83%     | 23.04%        | 0        | 0.01% |
|                                            | whole cooling encor     | Low-density        | 100%     | 53.72% | 2.22%    | 11.20%       | 8.83%    | 4.19%     | 20.98%        | 0        | 0.01% |
|                                            | Cooling effect          | High-density       | 50000    | *      | 44000    | 4640         | 1360     | *         | *             | *        | *     |
|                                            | benefits population     | Medium-density     | 50000    | *      | 27500    | 20200        | 2300     | *         | *             | *        | *     |
|                                            | senents population      | Low-density        | 48180    | *      | 25000    | 20800        | 7380     | *         | *             | *        | *     |
|                                            | Cooling effect for      | High-density       | 10368.08 | 7440   | *        | *            | *        | 256.49    | 2670.42       | 0        | 1.17  |
|                                            | nublic land use         | Medium-density     | 7566.69  | 5220   | *        | *            | *        | 256.49    | 2089.03       | 0        | 1.17  |
|                                            |                         | Low-density        | 4583.11  | 3120   | *        | *            | *        | 243.46    | 1218.48       | 0        | 1.17  |

20 A tool to analyze urban development strategies

## **5. Conclusions and discussion**

#### Conclusions

This Hara model system is a practical tool to investigate different scenarios of land use allocation impact on the land value and climate (cooling effect) based on given housing demand and limited space for housing.

#### Discussion

Future research will consider

- finer land-use classifications (green and urban)
- empirical estimation of the parameters (hedonic price analysis)
- real-world applications







## Thank you for your attention

22 A tool to analyze urban development strategies

