Regional Labor Markets, Commuting and the Economic Impact of Road Pricing

Thomas F. Rutherford

Department of Agricultural and Applied Economics University of Wisconsin Madison)

Department Seminar Civil, Environmental and Geomatic Engineering Swiss Federal Institute of Technology (ETH Zürich)

June 26, 2019

Joint work with Toon Vandyck (IPTS/European Commission)

Urban areas are beset by economic externalities:

- Unpriced traffic congestion squanders time during morning and evening rush hours.
- Agglomeration drives up productivity in dense urban areas.
- Unemployment rates for unskilled workers in densely populated metropolitan areas often exceed national averages.

Road pricing deals with the externalities of traffic congestion, but it also impacts unemployment and urban agglomeration.

Jobs and Unemployment in Belgium

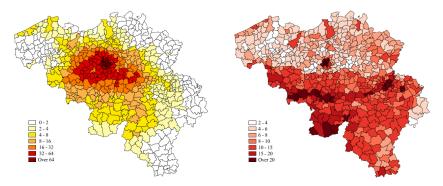


Fig. 1. Urban concentration of jobs and unemployment. Left: Percentage of workers with job location in Brussels, by region of residence. Right: Unemployment rates per municipality in 2010. Sources: Census 2001 and Steunpunt WSE.

Commuting and Traffic Congestion in Brussels

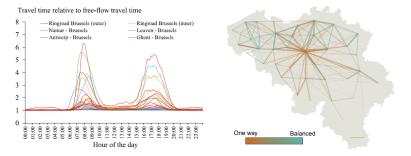
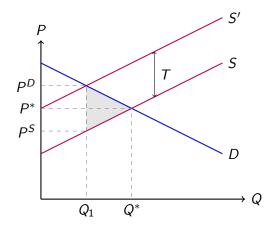


Fig. 2. Time profile and spatial pattern of travel. Left: Congestion over the course of the day on road segments to and from Brussels, average over 2010–2014, excluding school holidays. Right: The visualization of commuting patterns following Arribas-Bel and Gerritse (2012) shows strong commuting flows toward Brussels, while commuting between other cities appears to be more bidirectional. Sources: Own calculations based on data from Flanders Traffic Control Center Division and Census 2001.

We formulate a model which introduces the three features characteristic of urban and regional economies:

- regional labor markets for skilled and unskilled workers,
- traffic congestion and commuting delays,
- compensating wage differentials,
- unemployment among unskilled workers, and
- external economies of scale and agglomeration effects.

These factors have implications for effectiveness of congestion taxes and the return to investments in transportation infrastructure.

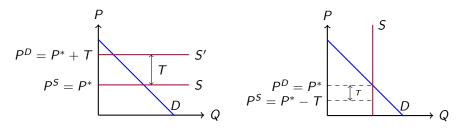

We calibrate a numerical version of our model to the city of Brussels and use the model to assess the extent to which second-best optimal pricing departs from first-best rules of thumb.

A congestion tax for commuting towards the urban area widens urban-rural wage gaps and unemployment differentials. Wages of skilled workers in the urban center rise as a toll restricts the supply of skilled labor in the city. Urban GDP falls, increasing unemployment.

White collar commuters, however, do not necessarily bear the burden of the tax, as it is shifted to less mobile factors of production in the urban area, including unskilled labor, land and capital. We demonstrate the usefulness of our model for assessing the returns to road network investments.

Excise Taxes in a Marshallian Framework

Definition: An *excise tax* (or a specific tax) is an amount paid by either the consumer or the producer per unit of the good at the point of sale.



Definition: tax incidence on consumers is the amount by which the buyer price, P_D , rises over the non-tax equilibrium price, P^* , ; the tax incidence on producers is the amount by which the seller price, P_S , falls below P^* .

The total tax wedge equals the sum of the tax incidence on the buyer and on the seller. The shares depend on the elasticities of demand and supply. The tax incidence is larger in the less elastic side of the market.

Ŵ

When supply is perfectly elastic, the tax incidence falls solely on the consumer; and when supply is perfectly inelastic, the tax incidence falls solely on the producer.

- Hourly and salaried workers are distinct. Further, salaried workers are distinguished by *region of residence* (an "Armington" model)
- Skilled workers commute, work for 8 hours per day, and give up morning and evening leisure in exchange for compensating wage differentials.
- Unskilled work where they live. They experience involuntary unemployment described by a *wage curve* with elasticity -0.1. (ala Blanchflower and Oswald)
- Total factor productivity in Brussels exhibits external economies of scale through urban agglomeration.
- Fixed factors of production in the short run include capital and land.

- Salaried workers from Wallonia, Flanders and Brussels are imperfect substitutes in production.
- Benchmark wage differentials are are calibrated to a reference employment, commute delays and arbitrage constraints.

Welfare for salaried worker living in *i* and working in *j*:

$$U(c_{ij},\ell_{ij}) = \left(heta_\ell\ell_{ij}^
ho + (1- heta_\ell)c_{ij}^
ho
ight)^{1/
ho}$$

Extended income and budget constraint:

$$M_{ij} = 8W_{ij} + T_{ij} + \omega_{ij}(3 - D_{ij}) = c_{ij} + \omega_{ij}\ell_{ij}$$

which includes a term representing the difference between toll receipts less payments, T_{ij} .

Leisure is determined by the morning and evening time allocation (3 hours) less travel delay, D_{ij} :

$$\ell_{ij} = (3 - D_{ij})$$

The *net* distribution of toll revenue is returned lump sum to salaried workers:

$$T_{ij} = rac{ar{T}}{ar{N}} - au_{ij}$$

in which τ_{ij} is the toll, \overline{T} is aggregate toll revenue $(=\sum_{ij} \tau_{ij} N_{ij})$, and \overline{N} is the population of salaried workers $(=\sum_{ij} N_{ij})$.

NB: Revenue is fully rebated, hence $\sum_{ij} N_{ij} T_{ij} = 0$.

Two arbitrage conditions:

Commuter welfare is no higher than other salaried residents in region
 i:

$$\hat{U}_i \geq U_{ij} = rac{M_{ij}}{p_{ij}} \quad \perp N_{ij} \geq 0$$

2 All salaried residents in *i* work somewhere:

$$\sum_{j} N_{ij} = \bar{N}_i \quad \perp \hat{U}_i$$

• Delay on the *ij* arc consistent with the bureau of public roads congestion function:

$$D_{ij} = \alpha_{ij} + \beta_{ij} \left(\frac{N_{ij}}{S_{ij}}\right)^{\gamma}$$

in which α_{ij} represents uncongested travel time, β_{ij} is the congestion parameter, S_{ij} is a capacity scale (=1 in benchmar), and $\gamma = 4$.

 The open road travel time based on the travel distance (D) and the maximum speed (s^{max}):

$$\alpha_{ij} = \frac{\mathcal{D}_{ij}}{s^{max}}$$

• β_{ij} is calibrated to reference period flows, \bar{N}_{ij} , and commute times, \bar{D}_{ij}

The travel delay created by one additional driver on the *ij* link is given by:

$$\frac{\partial (N_{ij}D_{ij})}{\partial N_{ij}} = D_{ij} + \gamma \beta_{ij} \left(\frac{N_{ij}}{S_{ij}}\right)^{\gamma} = D_{ij} + \gamma (D_{ij} - \alpha_{ij})$$

Congestion externality examines the marginal impact of driver for other commuters: $\gamma(D_{ij} - \alpha_{ij})$. In the absence of other distortions, the optimal (Pigouvian) toll is equal to the value of the induced delay, i.e.

$$\tau_{ij} = \gamma \omega_{ij} (D_{ij} - \alpha_{ij})$$

Unemployment

Unemployment in region j, u_j , depends on the hourly wage:

$$u_j = \bar{u}_j \left(rac{v_j}{\bar{v}_j}
ight)^{-\epsilon}$$

where \bar{u}_j is benchmark unemployment and \bar{v}_j is the benchmark wage for unskilled workers.

A 10% drop in the real wage implies a doubling in the unemployment rate, hence:

$$arepsilon = -rac{\log(rac{d_j}{\overline{u}_j})}{\log(rac{V_j}{\overline{v}_j})} = -rac{\log(2)}{\log(0.9)}$$

The market for hourly workers is then:

$$\bar{H}_j(1-u_j)=N_j^H$$

$$Y_j = F(N_j^H, L_j, K_j, N_{ij}) = \phi_j \left[\left(N_j^H \right)^{\theta_j^H} f(L_j, K_j, N_{ij})^{1 - \theta_j^H} \right]^{\eta_j}$$

Parameter $\eta_j \ge 1$ portrays external economies of scale through urban agglomeration. Firms take these agglomeration benefits as given.

$$f(L_j, K_j, N_{ij}) = \left(\theta_j^L L_j^{\rho_L} + (1 - \theta_j^L) g(K_j, N_{ij})^{\rho_L}\right)^{1/\rho_L}$$
$$g(K_j, N_{ij}) = \left(\theta_j^K K_j^{\rho_K} + (1 - \theta_j^K) h(N_{ij})^{\rho_K}\right)^{1/\rho_K}$$

Skilled workers from different regions are traded off with an elasticity of substitution $\sigma_N (= \frac{1}{1-\rho_N})$.

$$h(N_{ij}) = \left(\sum_{i} \theta_{ij}^{N} N_{ij}^{\rho_{N}}\right)^{1/\rho_{N}}$$

Regional Production

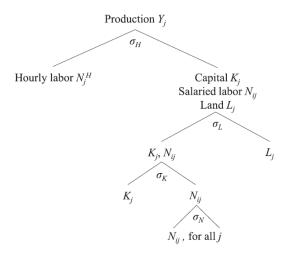


Fig. 3. Nested production structure.

W

Representative firms set production levels that maximize profits, taking agglomeration externalities as given. The zero profit condition

$$C(v_j, p_j^L, p_j^K, W_{ij})Y_j^{1-\eta_j} = 1$$

where C() is the unit cost function dual to F, p_j^L is the price of land in region j and p_i^K is the price of capital.

- In the short-run, land and capital are fixed and associated resource constraints determine p^L_i and p^K_i.
- In the long-run, the land constraint remains, and the price of capital is fixed. (Rents flow to absentee land and capital owners.)

Traffic congestion in the morning or evening peak hours is often caused or amplified by specific capacity constraints of the road network, such as a tunnel, an intersection, highway exits and ring roads around city centers. The bottleneck model, initiated by Vickrey (1969) and further developed by Arnott et al. (1993).

In equilibrium, all commuters face the same travel cost:

$$\alpha(t^* - \widetilde{t}) = \beta(t^* - t_F) = \gamma(t_L - t^*)$$

Average total travel cost from region i to region j in the no-toll equilibrium as

$$p_{ij} = c_{ij} + \delta_{ij} rac{N_{ij}}{s_{ij}},$$

where $\delta_{ij} = \frac{\beta_{ij}\gamma_{ij}}{\beta_{ij}+\gamma_{ij}}$ and c_{ij} is a fixed cost per trip.

The second term in the travel cost expression is variable, half due to queuing costs (in the aggregate). The other half corresponds to schedule delay costs.

We then represented extended income M_{ij} as:

$$M_{ij} = 8W_{ij} + T_{ij} + 2\omega_{ij}(3 - D_{ij})$$

The parameter Γ_{ii}^k changes according to the tolling regime:

$$\begin{array}{rcl} \Gamma^{e}_{ij} &=& \Gamma^{u}_{ij} = 1 \\ \Gamma^{c}_{ij} &=& \frac{1}{4} \left[3 - \frac{(\gamma_{ij} - \alpha_{ij})\beta_{ij}}{(\beta_{ij} + \gamma_{ij})(\alpha_{ij} + \gamma_{ij})} \right] \\ \Gamma^{o}_{ij} &=& \frac{1}{2} \end{array}$$

where the superscript k = e, u, c, o indicates different tolling scenarios:

- the no-toll equilibrium (e),
- a uniform or flat toll (u),
- a coarse toll that only distinguishes between a peak and an off-peak road price (c) and the optimal,
- completely time-depending fine toll (*o*).

A fine toll eliminates all queuing costs by shifting departure times, without affecting the schedule delay costs (arrival times are determined by a constant outflow from the bottleneck at a rate $\frac{N_{ij}}{s_{ij}}$). The fine toll simply replaces the queuing costs. The optimal toll τ_{ij}^k (for k = u, c, o) can then be expressed as

$$\tau_{ij}^{k} = 2\Gamma_{ij}^{k}\delta_{ij}\frac{N_{ij}}{s_{ij}}$$

The Optimal Pigouvian Toll

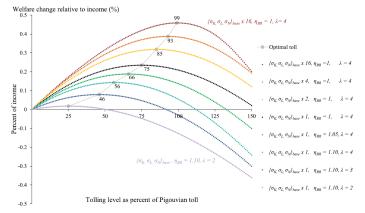


Fig. 4. The value of the optimal toll depends on rigidities in production technology, agglomeration externalities, and the intensity of congestion. Welfare is expressed as the utilitarian sum of equivalent variation over all regions.

Commuting, Wages and Income Impacts

Table 1

The effects (% change) of a Pigouvian congestion toll in second best. Results are shown for three cases: without agglomeration externalities ($\eta_{BR} = 1$ and $\lambda = 4$; upper numbers in small font), with 10% agglomeration externalities in the urban area ($\eta_{BR} = 1.10$ and $\lambda = 4$; middle), and under lower congestion intensity ($\eta_{BR} = 1.10$ and $\lambda = 2$; lower numbers in small font). All scenarios assume a short-run framework with fixed land and capital supply and wage curve unemployment.

Region of residence	Region of w	ork				
	Brussels	Flanders	Wallonia	Brussels	Flanders	Wallonia
	Nr. of skill	ed workers N _{ij}		Travel dela	y D _{ij}	
Brussels	1.7	-4.9	-5.9		-9.6	-6.7
	1.3	-3.7	-4.5		-7.3	-5.2
	1.7	-4.9	-5.7		-5.1	-3.5
Flanders	-22.1	5.5	1.5	-32.3		1.6
	-22.5	5.7	1.6	-32.7		1.7
	-23.7	5.9	2.5	-21.4		1.3
Wallonia	-22.1	1.4	6.6	-24.4	1.3	
	-22.5	1.6	6.7	-24.7	1.5	
	-23.7	2.6	6.9	-16.1	1.2	
	Wage of sk	illed workers W	u .	Extended in	ncome M _{ii}	
Brussels	2.2	0.9	1.1	5.5	3.5	3.6
	1.3	0.4	0.6	4.4	2.9	3.0
	1.3	0.7	0.9	4.0	3.0	3.1
Flanders	9.2	-1.7	-0.8	-8.4	1.9	2.3
	8.3	-1.9	-0.9	-8.8	1.6	2.0
	8.8	-1.9	-1.2	-6.0	1.0	1.4
Wallonia	9.2	-0.7	-2.0	-8.4	2.4	1.9
	8.3	-0.9	-2.1	-8.9	2.1	1.6
	8.8	-1.2	-2.2	-6.1	1.4	1.0

Macroeconomic Impacts of Road Tolls

	Region of v	vork		Region of r	esidence	
	Brussels	Flanders	Wallonia	Brussels	Flanders	Wallonia
Production Y _i	-8.2	0.6	0.5			
,	-9.4	0.8	0.7	Utility		
	-9.8	0.8	0.7	of skilled w	vorker U _{ij}	
Land price p_i^L	-15.6	1.0	1.0	2.9	1.0	1.0
,	-16.9	1.4	1.3	2.4	0.9	0.9
	-17.7	1.4	1.3	2.1	0.6	0.5
Capital price p_i^K	-1.5	0.0	-0.1			
,	-2.6	-0.1	-0.1	Utility		
	-2.8	-0.1	-0.1	of unskille	d worker U_{ij}^H	
Unemployment u_i^a	4.6	-0.1	-0.2	-9.1	0.6	0.6
,	4.8	-0.2	-0.3	-9.4	0.8	0.8
	5.0	-0.2	-0.3	-9.8	0.8	0.8
Wage unskilled v_i	-3.8	0.4	0.3			
,	-3.9	0.6	0.4			
	-4.1	0.6	0.4			

^a Changes in unemployment rate are expressed as percentage point difference w.r.t. the benchmark.

killed			Time-	-invari	ant fla	t toll				Coars	e toll					Fine	toll		
1	Brussels																		
vol	0	-8.5	-7.1	-6.0	-4.9	-4.0	-3.1	-4.4	-3.2	-2.2	-1.2	-0.4	0.3	0.1	1.1	1.9	2.6	3.2	3.8
ed to	10	-8.0	-6.7	-5.5	-4.5	-3.5	-2.7	-3.9	-2.8	-1.8	-0.9	-0.1	0.6	0.5	1.4	2.2	2.9	3.5	4.1
nue (%) redistributed to low	20	-7.5	-6.2	-5.1	-4.0	-3.1	-2.3	-3.5	-2.4	-1.4	-0.5	0.3	1.0	0.8	1.7	2.5	3.2	3.8	4.3
istri	30	-7.0	-5.7	-4.6	-3.6	-2.7	-1.9	-3.1	-2.0	-1.0	-0.1	0.6	1.3	1.2	2.1	2.8	3.5	4.1	4.6
red	40	-6.6	-5.3	-4.2	-3.2	-2.3	-1.5	-2.7	-1.6	-0.6	0.2	1.0	1.7	1.5	2.4	3.1	3.8	4.4	4.9
8	50	-6.1	-4.8	-3.7	-2.7	-1.9	-1.1	-2.2	-1.1	-0.2	0.6	1.4	2.0	1.9	2.7	3.5	4.1	4.7	5.2
nue	60	-5.6	-4.3	-3.3	-2.3	-1.4	-0.7	-1.8	-0.7	0.2	1.0	1.7	2.4	2.2	3.0	3.8	4.4	4.9	5.4
reve	70	-5.1	-3.9	-2.8	-1.9	-1.0	-0.3	-1.4	-0.3	0.6	1.4	2.1	2.7	2.6	3.4	4.1	4.7	5.2	5.7
of toll	80	-4.6	-3.4	-2.3	-1.4	-0.6	0.1	-0.9	0.1	1.0	1.8	2.4	3.0	2.9	3.7	4.4	5.0	5.5	6.0
e of	90	-4.1	-2.9	-1.9	-1.0	-0.2	0.6	-0.5	0.5	1.4	2.1	2.8	3.4	3.3	4.0	4.7	5.3	5.8	6.2
Share	100	-3.6	-2.5	-1.4	-0.5	0.3	1.0	-0.1	0.9	1.8	2.5	3.2	3.7	3.6	4.4	5.0	5.6	6.1	6.5
		0	10	20	30	40	50	0	10	20	30	40	50	0	10	20	30	40	50

		Time	-inva	riant f	lat toll				Coa	rse tol	1					Fir	ne toll		
Flanders																			
0	0.7	0.5	0.4	0.3	0.3	0.2	0.3	0.2	0.1	0.0	-0.1	-0.2		-0.2	-0.3	-0.4	-0.4	-0.5	-0
10	1.1	0.9	0.8	0.7	0.6	0.5	0.6	0.5	0.4	0.3	0.2	0.1		0.1	0.0	-0.1	-0.2	-0.3	-0
20	1.5	1.3	1.2	1.1	0.9	0.8	1.0	0.8	0.7	0.6	0.5	0.4		0.4	0.3	0.2	0.0	-0.1	-0
30	1.9	1.7	1.6	1.4	1.3	1.2	1.3	1.2	1.0	0.9	0.8	0.7		0.7	0.5	0.4	0.3	0.2	0
40	2.3	2.1	1.9	1.8	1.6	1.5	1.7	1.5	1.4	1.2	1.1	1.0		1.0	0.8	0.7	0.5	0.4	0
50	2.7	2.5	2.3	2.1	2.0	1.8	2.1	1.9	1.7	1.5	1.4	1.2		1.3	1.1	0.9	0.8	0.6	0
60	3.1	2.9	2.7	2.5	2.3	2.2	2.4	2.2	2.0	1.8	1.7	1.5		1.6	1.4	1.2	1.0	0.9	0
70	3.5	3.2	3.0	2.9	2.7	2.5	2.8	2.5	2.3	2.1	2.0	1.8		1.9	1.6	1.4	1.3	1.1	1
80	3.9	3.6	3.4	3.2	3.0	2.9	3.1	2.9	2.7	2.5	2.3	2.1		2.1	1.9	1.7	1.5	1.3	1
90	4.3	4.0	3.8	3.6	3.4	3.2	3.5	3.2	3.0	2.8	2.6	2.4	ļ	2.4	2.2	2.0	1.8	1.6	1
100	4.7	4.4	4.2	3.9	3.7	3.5	3.8	3.6	3.3	3.1	2.9	2.7		2.7	2.5	2.2	2.0	1.8	1
	0	10	20	30	40	50	0	10	20	30	40	50		0	10	20	30	40	

ed			Tim	e-inva	riant f	lat tol	I			Coa	rse tol	u				Fi	1e toll		
-skilled	Wallonia																		
low	0	0.6	0.5	0.4	0.3	0.2	0.2	0.3	0.2	0.1	0.0	-0.1	-0.2	-0.2	-0.3	-0.3	-0.4	-0.5	-0.6
d to	10	1.1	0.9	0.8	0.7	0.6	0.5	0.7	0.5	0.4	0.3	0.2	0.1	0.1	0.0	-0.1	-0.2	-0.3	-0.3
ante	20	1.5	1.3	1.2	1.1	1.0	0.9	1.0	0.9	0.8	0.6	0.5	0.4	0.5	0.3	0.2	0.1	0.0	-0.1
stri	30	1.9	1.8	1.6	1.5	1.4	1.2	1.4	1.2	1.1	1.0	0.8	0.7	0.8	0.6	0.5	0.4	0.2	0.1
redi	40	2.3	2.2	2.0	1.9	1.7	1.6	1.8	1.6	1.4	1.3	1.2	1.0	1.1	0.9	0.7	0.6	0.5	0.4
(%)	50	2.8	2.6	2.4	2.2	2.1	2.0	2.2	2.0	1.8	1.6	1.5	1.3	1.4	1.2	1.0	0.9	0.7	0.6
ne	60	3.2	3.0	2.8	2.6	2.5	2.3	2.5	2.3	2.1	2.0	1.8	1.6	1.7	1.5	1.3	1.1	1.0	0.9
ever	70	3.6	3.4	3.2	3.0	2.8	2.7	2.9	2.7	2.5	2.3	2.1	1.9	2.0	1.8	1.6	1.4	1.2	1.1
-la	80	4.0	3.8	3.6	3.4	3.2	3.0	3.3	3.0	2.8	2.6	2.4	2.3	2.3	2.1	1.8	1.7	1.5	1.3
oft	90	4.5	4.2	4.0	3.8	3.6	3.4	3.7	3.4	3.2	2.9	2.7	2.6	2.6	2.3	2.1	1.9	1.7	1.6
Jare	100	4.9	4.6	4.4	4.2	3.9	3.7	4.0	3.8	3.5	3.3	3.1	2.9	2.9	2.6	2.4	2.2	2.0	1.8
Sh																			
		0	10	20	30	40	50	0	10	20	30	40	50	0	10	20	30	40	50

Welfare Impacts: High Skilled Workers in Brussels

			Time-	invari	ant fla	t toll				Coars	e toll					Fine	toll		
led	Brussels																		
	0	1.7	1.5	1.4	1.3	1.2	1.1	1.3	1.1	1.0	0.9	0.8	0.7	0.8	0.7	0.6	0.5	0.4	0
of toll revenue (%) redistributed to low-	10	1.6	1.4	1.3	1.2	1.1	1.0	1.2	1.0	0.9	0.8	0.7	0.7	0.7	0.6	0.5	0.4	0.3	0
2	20	1.5	1.3	1.2	1.1	1.0	0.9	1.1	0.9	0.8	0.8	0.7	0.6	0.6	0.5	0.4	0.3	0.3	(
	30	1.4	1.2	1.1	1.0	0.9	0.8	1.0	0.9	0.8	0.7	0.6	0.5	0.5	0.4	0.3	0.3	0.2	(
	40	1.2	1.1	1.0	0.9	0.8	0.8	0.9	0.8	0.7	0.6	0.5	0.4	0.4	0.4	0.3	0.2	0.1	(
	50	1.1	1.0	0.9	0.8	0.7	0.7	0.8	0.7	0.6	0.5	0.4	0.4	0.4	0.3	0.2	0.1	0.1	(
	60	1.0	0.9	0.8	0.7	0.6	0.6	0.7	0.6	0.5	0.4	0.3	0.3	0.3	0.2	0.1	0.1	0.0	-(
í	70	0.9	0.8	0.7	0.6	0.5	0.5	0.6	0.5	0.4	0.3	0.3	0.2	0.2	0.1	0.1	0.0	-0.1	-(
	80	0.8	0.7	0.6	0.5	0.5	0.4	0.5	0.4	0.3	0.2	0.2	0.1	0.1	0.0	0.0	-0.1	-0.1	-(
	90	0.7	0.6	0.5	0.4	0.4	0.3	0.4	0.3	0.2	0.1	0.1	0.0	0.0	0.0	-0.1	-0.1	-0.2	-(
5	100	0.6	0.5	0.4	0.3	0.3	0.2	0.3	0.2	0.1	0.1	0.0	0.0	0.0	-0.1	-0.2	-0.2	-0.3	-(
		0	10	20	30	40	50	0	10	20	30	40	50	0	10	20	30	40	5

Time-invariant flat toll

Fine toll

pa																			
skilled	Flanders																		
-M0	0	0.3	0.4	0.5	0.6	0.7	0.7	0.6	0.7	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.2	1.3	1.3
to low	10	0.2	0.3	0.4	0.5	0.5	0.6	0.5	0.6	0.7	0.8	0.9	0.9	0.9	1.0	1.1	1.1	1.2	1.2
Ited	20	0.0	0.2	0.3	0.4	0.4	0.5	0.4	0.5	0.6	0.7	0.8	0.8	0.8	0.9	1.0	1.1	1.1	1.2
Į	30	-0.1	0.0	0.1	0.2	0.3	0.4	0.3	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1.0	1.0	1.1
pdist	40	-0.2	-0.1	0.0	0.1	0.2	0.3	0.2	0.3	0.4	0.5	0.6	0.6	0.6	0.7	0.8	0.9	1.0	1.0
enue (%) redistributed	50	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.1	0.2	0.3	0.4	0.5	0.5	0.5	0.6	0.7	0.8	0.9	1.0
e (}	60	-0.5	-0.3	-0.2	-0.1	0.0	0.1	-0.1	0.1	0.2	0.3	0.4	0.5	0.4	0.6	0.6	0.7	0.8	0.9
	70	-0.6	-0.5	-0.3	-0.2	-0.1	0.0	-0.2	0.0	0.1	0.2	0.3	0.4	0.3	0.5	0.6	0.7	0.7	0.8
of toll rev	80	-0.7	-0.6	-0.5	-0.3	-0.2	-0.1	-0.3	-0.2	0.0	0.1	0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.7
f tol	90	-0.9	-0.7	-0.6	-0.5	-0.4	-0.3	-0.4	-0.3	-0.1	0.0	0.1	0.2	0.2	0.3	0.4	0.5	0.6	0.7
re o	100	-1.0	-0.8	-0.7	-0.6	-0.5	-0.4	-0.5	-0.4	-0.2	-0.1	0.0	0.1	0.1	0.2	0.3	0.4	0.5	0.6
Share																			
		0	10	20	30	40	50	0	10	20	30	40	50	0	10	20	30	40	50

Expansion of road capacity to Brussels (%)

Coarse toll

33 / 68

		Time	e-invai	riant f	lat toll				Coa	rse tol	I I					Fir	e toll		
Wallonia																			
0	0.3	0.4	0.5	0.6	0.7	0.7	0.6	0.7	0.8	0.9	1.0	1.1		1.0	1.1	1.2	1.3	1.3	
10	0.1	0.3	0.4	0.5	0.6	0.6	0.5	0.6	0.7	0.8	0.9	1.0		0.9	1.0	1.1	1.2	1.3	
20	0.0	0.1	0.2	0.3	0.4	0.5	0.4	0.5	0.6	0.7	0.8	0.9		0.8	0.9	1.0	1.1	1.2	
30	-0.1	0.0	0.1	0.2	0.3	0.4	0.3	0.4	0.5	0.6	0.7	0.8		0.7	0.9	0.9	1.0	1.1	
40	-0.3	-0.1	0.0	0.1	0.2	0.3	0.2	0.3	0.4	0.5	0.6	0.7		0.7	0.8	0.9	0.9	1.0	
50	-0.4	-0.3	-0.1	0.0	0.1	0.2	0.0	0.2	0.3	0.4	0.5	0.6		0.6	0.7	0.8	0.9	0.9	
60	-0.5	-0.4	-0.3	-0.1	0.0	0.1	-0.1	0.1	0.2	0.3	0.4	0.5		0.5	0.6	0.7	0.8	0.9	
70	-0.7	-0.5	-0.4	-0.3	-0.2	0.0	-0.2	-0.1	0.1	0.2	0.3	0.4		0.4	0.5	0.6	0.7	0.8	
80	-0.8	-0.7	-0.5	-0.4	-0.3	-0.2	-0.3	-0.2	0.0	0.1	0.2	0.3		0.3	0.4	0.5	0.6	0.7	
90	-0.9	-0.8	-0.6	-0.5	-0.4	-0.3	-0.4	-0.3	-0.1	0.0	0.1	0.2	J	0.2	0.3	0.4	0.5	0.6	
100	-1.1	-0.9	-0.8	-0.6	-0.5	-0.4	-0.6	-0.4	-0.3	-0.1	0.0	0.1		0.1	0.2	0.3	0.5	0.6	
	0	10	20	30	40	50	0	10	20	30	40	50		0	10	20	30	40	

Conclusions

- We demonstrate the feasibility of analyzing the general equilibrium (non-marginal) effects of congestion pricing and infrastructure investment in an economic model combining endogenous congestion, agglomeration externalities and unemployment.
- Numerical experiments calibrated to a three region model of Belgium highlight the distributional impacts of transport policy.
- Surprisingly, commuters can gain from the introduction of a congestion toll, as it improves the efficiency of the allocation of workers across regions.
- With per-capita allocation of toll revenue, salaried workers living in Brussels gain because they do not pay the congestion tax and their wage rises.
- Under a range of road pricing simulations, production in Brussels falls resulting in losses for land and capital owners. A congestion tax widens the urban-rural wage gap.
- In most cases, with road pricing neighboring regions Flanders and Wallonia see a relatively small increase in output and a decrease in unemployment rate.

- With agglomeration externalities, the introduction of congestion taxes appears to be less beneficial for all salaried workers and more detrimental for all capital owners.
- When we consider two instruments for transport policy, congestion taxes and infrastructure investments, we find that a substantial increase in transport network capacity is needed to reduce travel times by as much as would be achieved by the congestion toll.
- Unlike congestion taxes, investments in transport infrastructure reduce unemployment in Brussels. The optimal mix of instruments will depends on the objectives of policymakers.

- Foxconn in Wisconsin
- Eucalyptus in Ethiopia

Background¹

In July 2017, Wisconsin Governor Scott Walker and President Donald Trump announced the third-largest economic development incentive package in U.S. history: \$3 billion of incentives for Foxconn to build a \$10 billion, 1,000-acre factory complex that promised to employ 13,000 workers (3,000 direct jobs). At the time of the announcement many economists criticized the proposal questioning the the structure and financial wisdom of the plan which offered a package which essentially paid more than 100% of workers' wages for several years. While initial details on the Foxconn deal were opaque, subsequent disclosures have been even less encouraging – fewer jobs and a payback period for taxpayers that now stretches into centuries rather than decades.

Officials of the Taiwanese Company have acknowledged that many of these jobs would be outside of Racine, the factory location, and indeed outside Wisconsin. Moreover, the state's own fiscal analysis admits these are "multiplier jobs," not direct employees of Foxconn. These are some supplier jobs, but also the doctors, construction and retail jobs potentially created by 3,000 Foxconn workers.

Over the past 18 months the incentive package has ballooned well past \$3 billion. Good Jobs First, an organization that keeps close accounting of tax incentives and other subsidies, reports that the total for Foxconn has grown more than 50% to \$4.8 billion from Wisconsin while Foxconn's promised investment dropped from \$10 billion to \$9 billion. The Wisconsin Budget Project, a budget think tank, estimates the cost per job range from \$220,000 to \$587,000. These are for jobs that will pay an average of a little more than \$53,000 per year. Subsidies of this magnitude indicate that Wisconsin taxpayers are paying between a third and all the wage bill for Foxconn for more than the next decade.

In the present assignment we will use a calibrated general equilibrium model to evaluate the regional distribution of benefits from additional jobs in Racine, Wisconsin. The model as implemented (see *model.gms*) is based on several data sources and assumptions:

- 1. Population figures for towns and cities in southeastern Wisconsin and northeastern Illinois²
- 2. Travel times between municipalities based on Google maps.³
- 3. Agglomeration spillovers relating worker productivity to municipal density⁴.
- 4. Labor demand as iso-elastic function of the productivity-adjusted market wage with unitary compensated demand elasticity.
- 5. The central worker valuation of leisure is 50% of average wage earnings.
- 6. Heterogeneous marginal value of leisure, varying between 20% to 180% of the central valuation of leisure. In the absence of commuting, the value share of leisure then ranges from 10% to 90% of wage earnings.
- 7. An elasticity of substutition between leisure and consumption (σ) equal to 0.5.

The Model

The labor market at location *i* requires that aggregate labor supply equals aggregate labor demand:

$$\sum_{hj} X_{hji} = D_i(w_i) + \Gamma_i$$

Labor demand includes *endogenous* (price-responsive) demand (D_l) and *exogenous* demand Γ_l . The later enters only in the counterfactual simulation and corresponds to the employment of workers at the Foxconn plant in Racine.

Workers are utility maximizing, with preferences for consumption of goods and leisure. All workers are employed for eight hours per day. A higher paying job may require commuting a longer distance. The decision of how far to drive for work reflects a trade-off between consumption (higher income) and leisure (more free time in mornings and evenings).

Their utility function representing preferences of type h household is:

$$U_{h}(c,\ell) = \left((1-\theta_{h}) \left(\frac{c}{\bar{c}} \right)^{\rho} + \theta_{h} \left(\frac{\ell}{\bar{\ell}} \right)^{\rho} \right)^{1/\rho}$$

in which

- ℓ stands for consumption of leisure
- θ_h is the value share of leisure at the reference point, i.e.

$$\theta_h = \frac{\bar{\mu}_h \bar{\ell}}{\bar{\mu}_h \bar{\ell} + \bar{c}}$$

where $\bar{\mu}_h$ is the marginal value of leisure for household type *h* at the reference point.

c stands for consumption of goods

The utility maximization problem for a type *h* household located at node *i* then has two budget constraints, one for money and the other for time:⁵ max $U_{t,i}(c,\ell)$

subject to:

$$c = \sum_{j} w_{j} x_{hij}$$

$$\ell = \tilde{\ell} - \sum_{j} \tau_{ij} x_{hij}$$

$$\sum_{j} x_{hij} = 1$$
(Leisure)

 $x_{hij} \ge 0$

Letting μ_{hi} represent the shadow price on the (Leisure) constraint and ω_{hi} be the shadow price on the (Labor) constraint, the arbitrage condition for a worker of type *h* living at *i* and working at *j* is:

$$\omega_{hi} + \mu_{hi} \tau_{ij} \ge w_j \quad \perp \quad X_{hij} \ge 0$$

with \perp indicating complementary slackness: if X_{hij} is positive, then the wage rate in j exactly compensates for the value of labor supply in i and the shadow value of the time required to commute from i to j. Worker heterogeneity with respect to the value of leisure suggests that μ_{hi} differ with h, however all workers are perfect substitutes in production, so workers commuting to j all ean w_i .

The value of labor supply by household h in region i is associated with a market clearance condition:

$$\bar{E}_{hi} \ge \sum_{j} X_{hij} \perp \omega_{hi} \ge 0$$

and labor markets clear through adjustment of city-specific wages with iso-elastic labor demand:

$$D_i = \bar{D}_i \left(w_i / \phi_i \right)^{-\epsilon_i} \tag{Demand}$$

Productivity term ϕ_i is assumed to take the form:

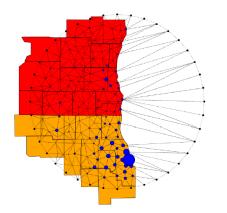
$$\phi_i = \left(\frac{\delta_i}{\bar{\delta}}\right)^i$$

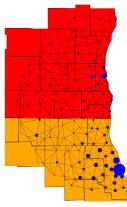
in which δ_i is the density of location *i* and $\overline{\delta} = 1000$.

We calibate labor demand at location *i* assuming that D_i equals the population at location *i*, and ϵ_i equals unity $\forall i$. Extended household income depends on the value of labor income and the imputed value of leisure endowment:

$$M_{hi} = \omega_{hi} \bar{L}_{hi} + \mu_{hi} \bar{\ell}_{hi}$$

Leisure demand depends on income and relative prices:

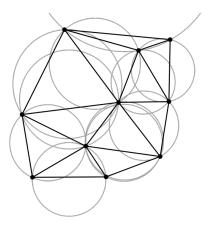

$$\ell_{hi} = \bar{\ell}_h \frac{M_{hi}}{\bar{M}_{hi} c_{hi}} \left(\frac{\pi_{hi}}{\mu_{hi}}\right)^{\sigma}$$


in which π_{hi} , the cost of living index, is a CES composite of the price of goods (=1) and the price of leisure (μ_{hi}):

$$\pi_{hi} = \left(\theta_h \mu_{hi}^{1-\sigma} + 1 - \theta_h\right)^{1/(1-\sigma)}$$

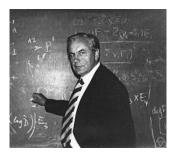
nonnegative variables U(h D(i) W(i) PI(t OMEC MU(t X(h,	Labor demand, Wage rate, i) Price index for utility, (h,i) Shadow value of labor supply, j) Shadow value of leisure				
equations dema	d, supply, market, commute, pricelevel, leisure, budget;				
demand(i)	<pre>D(i) =e= d0(i) * (W(i)/phi(i))**(-epsilon(i)) + gamma(i);</pre>				
<pre>supply(h,i)</pre>	x0(h,i) =e= sum(j,X(h,i,j));				
market(i)	<pre>sum((h,j),X(h,j,i)) =e= D(i);</pre>				
<pre>commute(h,i,j)</pre>	<pre>OMEGA(h,i) + tau(i,j)*MU(h,i) =g= W(j);</pre>				
pricelevel(h,i)	<pre>PI(h,i) === (theta(h,i)*(MU(h,i)/mu0(h))**(1-sigma(h)) + 1 - theta(h,i))**(1/(1-sigma(h)));</pre>				
leisure(h,i)	ell0(h,i) =e= U(h,i) * ell0(h,i) * (PI(h,i)/(MU(h,i)/*mu0(h)))**sigma(h) + sum(j,tau(i,j)*X(h,i,j));				
<pre>budget(h,i)</pre>	<pre>PI(h,i)*U(h,i) =e= MU(h,i)*ell0(h,i) + OMEGA(i)*x0(h,i);</pre>				
model labor /demand D. supply OMEGA, market W. commute X. pricelevel PT. leisure MH, budget H/-					

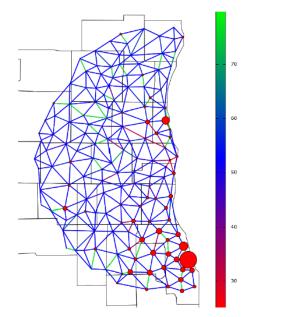
model labor /demand.D, supply.OMEGA, market.W, commute.X, pricelevel.PI, leisure.MU, budget.U/;


(a) Delaunay Triangulation with Boundary Nodes

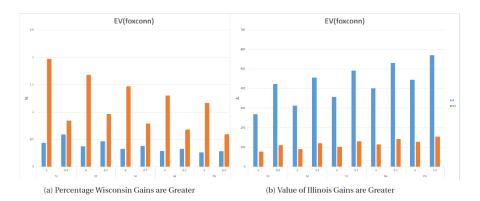
(b) Resulting Network

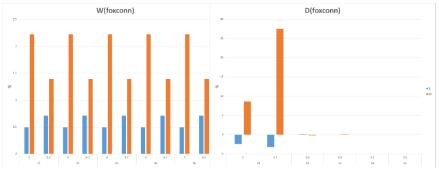
Delaunay Triangulation


W


A Delaunay triangulation for a given set P of discrete points in a plane is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P):

Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation; they tend to avoid sliver triangles. The triangulation is named after Boris Delaunay for his work on this topic from 1934.


(c) Calibrated Travel Speeds (miles per hour)


Here is a linear programming formulation for calculating the shortest path through the nextwork:

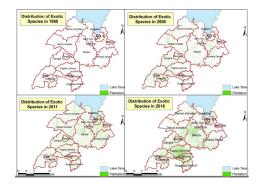
```
variable OBJ Dual objective;
equations objdef, optimal;
objdef.. OBJ === sum((i,destination(k)), T(i,k));
optimal(a(i,j),destination(k)).. TAU(i,j) + T(j,k) =g= T(i,k);
model routechoice /objdef, optimal/;
```

We can evaluate travel times using Google's average speed, and then we set up a bilevel program to find arc speeds which come closest to matching the Google Map travel times:

```
target(i,j)
                                   Target of Google estimate of travel duration;
parameter
variable
                OB.JBL
                            Bilevel calibration problem (outer objective);
               objbilevel;
equation
objbilevel..
                   OBJBL =e= sum(dcalc(i,j), sqr(T(i,j) - target(i,j)));
model bilevel /objbilevel, objdef, optimal/;
$onecho >"%emp.info%"
bilevel TAU
max OBJ T objdef optimal
$offecho
         Choose speeds between 20 and 80 mph:
*
TAU.LO(a) = dist(a) / 80;
TAU.UP(a) = dist(a) / 20;
solve bilevel using EMP minimizing OBJBL;
```


(c) Wages Increase More in Wisconsin

(d) Job Gains in Wisconsin Offset by Losses in Illinois


Ethiopia is the biggest and fastest growing Eucalyptus planter in East Africa (Dessie and Gessesse 2009)

Countries	General Description						
	Population (1)	Land (ha) (1)	Forest (ha) (2)	Natural forest (ha) (2)	Plantation forest (ha) (2)	<i>Eucalyptus</i> forest (ha) (3)	
Ethiopia	83099000	122148000	4593000	4377000	216000	506000	
Somalia	8699000	63754000	na	na	na	na	
Djibouti	833000	231800	6000	na	na	na	
Sudan	38560000	250000000	61627000	60986000	641000	23000	
Kenya	37538000	58265000	17096000	16864000	232000	60000	
Uganda	30884000	24103800	4190000	4147000	43000	11000	
Rwanda	9725000	2633800	307000	46000	261000	102765	
Burundi	8508000	2783000	152000	67000	86000	40000	
Total	217846000	523919400	95102000	86487000	1479000	742765	
Source: (1) WPP (2007), (2) WRI (2000), (3) Amare (2002); FAO (1979); Oballa et al. (2005); CDF (2007)							

Table 1 Current population, land and forests of East Africa

Current Expansion of Eucalyptus in Ethiopia

- According to a study on 10 woredas in Amhara region (BoA, Barhir Dar 2017), the share of exotic species coverage rises from 0:4% in 1985 to 10% in 2016.
- The dominant land cover in the study area is cropland, which accounts for more than 50% from the total area.

- Failure to protect watershed and provide soil conservation, wildlife habitat and recreational or aesthetic values
- Removal of too much water from streams and underground water, adverse effects of their leaf litter on soil humus, heavy consumption of soil nutrients, inhibition of growth of other plants
- Exhausting the once productive farmland because of its fast growth (Alemie 2009), and the eradication is difficult (Diez 2005)

- Road infrastructure
- Increasing demand for fuel wood and construction material from home and abroad (FAO 2009)
- For small land holders, eucalyptus suits their limited resources and yields more money than other tree crops (FAO 2009)
- Land tenure

Demographic and Geographic Data

e | mapspam.info

ABOUT - DATA CENTER - METHODOLOGY -

Home of the Spatial Production Allocation Model

Much more than a palindrome, MapSPAM shares results from the Spatial Production Allocation Model by HarvestChoice. This site is a platform where users can access SPAM data and contribute feedback to its development. Feel free to comment, and thank you for your visit.

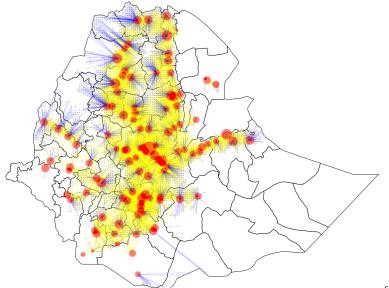
57 / 68

Learn about Data Citation Standards

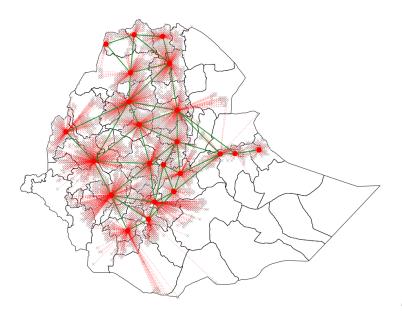
SPAM Commodity Coverage

whea	Wheat		
rice	Rice		
maiz	Maize		
barl	Barley		
pmil	Pearlmill		
smil	Smallmill		
sorg	Sorghum		
ocer	Oth_Cereal		
pota	Potato		
swpo	$Sweet_Pot$		
yams	Yams		
cass	Cassava		
orts	Oth_Root		
bean	Bean		

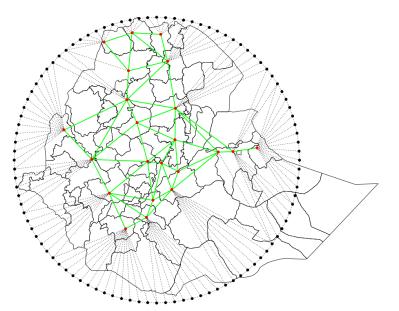
chic Chickpea Cowpea cowp Pigeonpea pige lent l entil Oth_Pulse opul Soybean soyb Groundnut grou Coconut cnut oilp Oilpalm Sunflower sunf rape Rapeseed Sesameseed sesa Oth Oil ooil Sugarcane sugc


sugb Sugarbeet cott Cotton Oth_Fibre ofib Ara Coffee acof Rob Coffee rcof 0202 Cocoa Tea teas Tobacco toba bana Banana Plantain plnt Trop_Fruit trof temf Temp_Fruit Vegetable vege Rest_Crop rest

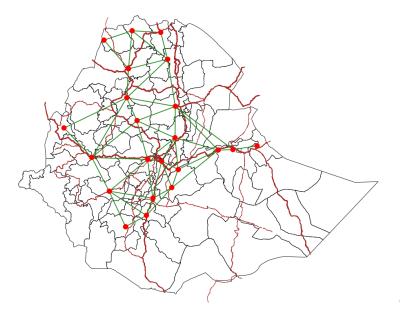
SPAM Technology and Value Data


set	v	Variable in the dataset /	set vp	Value of production /		
500	Å	Physical area	vp_crop	"Value of production of all 42 crops",		
	н	Harvested area	vp_food	"Value of production of food crops",		
	P	Production	vp_nonf	"Value of production of non-food crops",		
	Ŷ	Yield.	ha_crop	"Harvested area of all crops",		
	v	Value of production	ha_crop ha food	"Harvested area of food crops",		
1.	v	value of production				
/;			ha_nonf	"Harvested area of non-food crops",		
			vpha_crop	"VoP per ha of all crops",		
set	t	Technology /	vpha_food	"VoP per ha of food crops",		
	A	Total	vpha_nonf	"VoP per ha of non-food crops"/;		
	Н	Rainfed high inputs				
	L	Rainfed low inputs				
	I	Irrigated				
	S	Subsistence				
	R	Rainfed (= $A-I = H+L+S$)				
/;						
set	id	Spam pixel ID,				
	fips2	Production level (FIPs	code),			
	cell5m	Cell 5m ID,				
	cntr	Country,				
	adm1	Administrative level 1,	,			
	adm2	Administrative level 2.				
	iso3	Country /%iso3%/;				
		5 · · · · · · · · · · · · · · · · · · ·				
<pre>set adm(id,iso3,fips2,cell5m,cntr,adm1,adm2) Administrative assignments;</pre>						
parame	parameter data(id,v,t,g) "Dataset for region %iso3%";					

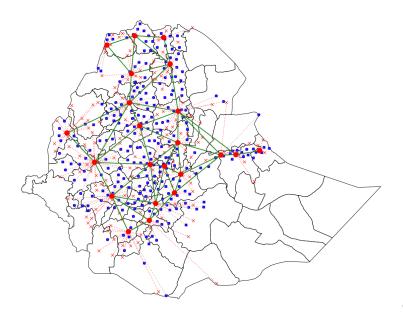
Ethiopian Cities and Harvest Choice Cells



Harvest Choice Marketsheds

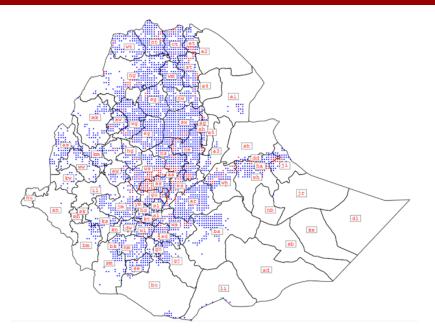


Construction of the Transportation Network

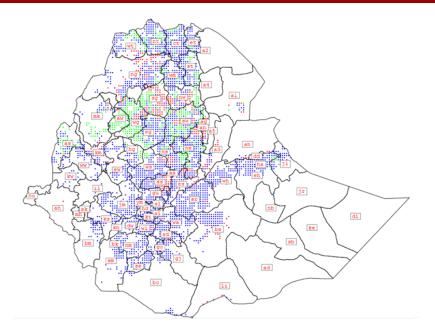


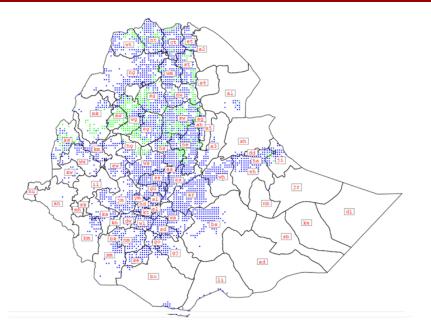
Comparison with Open Street Map Road Network

Clustered Rural Nodes



- bmk Benchmark equilibrium, assuming neither eucalyptus cultivation nor land reform.
- exempt Labor productivity shock in manufacturing with eucalyptus plantation providing an "exemption" for labor market migration.
- **reform** Labor productivity shock with land reform legalized land transfer, rural labor market and share cropping.
 - ban As in reform with a ban on cultivation of eucalyptus.


Exemption



Land Reform

Land Reform with Eucalyptus Ban

