Two Chapters on modelling and control of mixed traffic flow with CAVs

Mohsen Ramezani

Dr. Reza Mohajerpoor Post-Doc

BEng Student

Eric Ye

Ye Li

AmirHosein Valadkhani PhD Student

Dong Zhao MPhil Student

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Congestion cost US: more than **\$120** billion in 2011 Congestion cost UK: **£20** billion per year Congestion costs Europe about 1% of its GDP annually Cost of Transport in Switzerland: **8.5** billion CHF in 2015 Congestion Cost Australia: **\$16.5** billion in 2015

A holistic approach of mobility (3M)

Outline

<u>Chapter One: Modelling</u>

Characterizing traffic Flows with Mixed Autonomous and Humandriven Vehicles

- Estimation of the saturation flow of the mixed traffic
- Validation of the headway models
- Estimation of the delay of a two-lane road
- Validation of the delay models
- Optimal lane management
- <u>Chapter Two: Control</u>

Lane density optimisation of autonomous vehicles for highway congestion control

More Efficient Traffic Systems by CAVs

General arrangement: Flow NV-AV HV-HV AV-AV AV-NV q_{c} V_f [Worst arrangement (lowest saturation flow) ◒ Best arrangement (highest saturation flow) $k_{\rm c}$ Density k,

- AV Penetration rate?
- Order of vehicles?

The number of AVs in the mixed traffic follows a binomial distribution

•

General arrangement of vehicles

Best arrangement of vehicles

Worst arrangement of vehicles

General random arrangement

$$\operatorname{E}[\bar{h}(k,n)] = \sum_{k=0}^{n} \bar{h}_{k}(n) P(X=k)$$

$$\overline{h_k}(n) = \frac{1}{n-1} A_k(n) H / C_n^k$$

Average headway of all possible platoon combinations

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

$$C_n^k = \frac{n!}{(n-k)!\,k!}$$
$$p = E[k/n]$$

$$\mathbb{E}[\bar{h}(k,n)] \approx \bar{h}_{\bar{k}} |_{\bar{k}=\lfloor np \rfloor}$$
 Approximate formula

□Worst arrangement (lowest saturation flow)

$$\bar{h}_{k}^{\text{worst}}(n) = \begin{cases} \frac{k \cdot h_{\text{av-nv}} + (k-1)h_{\text{nv-av}} + (n-2k)h_{\text{nv-nv}}}{n-1} & k/n < 0.5\\ \frac{k \cdot h_{\text{av-nv}} + (k+1)h_{\text{nv-av}}}{n-1} & k/n = 0.5\\ \frac{(n-k)h_{\text{av-nv}} + (n-k)h_{\text{nv-av}} + (2k-n-1)h_{\text{av-av}}}{n-1} & k/n > 0.5 \end{cases}$$

 $\mathbf{E}[\bar{h}^{worst}(k,n)] \approx \bar{h}_{\bar{k}}^{worst} |_{\bar{k}=\lfloor np \rfloor} \qquad \qquad \mathsf{Approximate formula}$

□ Best arrangement (highest saturation flow)

$$\bar{h}_{k}^{\text{best}}(n) = \begin{cases} \frac{(k-1)h_{\text{av-av}} + (n-k-1)h_{\text{nv-nv}} + h_{\text{nv-av}}}{n-1} & 0 < k < n \\ h_{\text{nv-nv}} & k = 0 \\ h_{\text{av-av}} & k = n \end{cases}$$
$$\mathbf{E}[\bar{h}^{\text{best}}(k,n)] = \bar{h}_{\bar{k}}^{\text{best}}|_{\bar{k}=[np]} \qquad \text{Approximate formula} \end{cases}$$

Delay Estimation

Dedicated lanes

Mixed-mixed lanes

Mixed-AV lanes

Mixed-HV lanes

 $\alpha_{\rm av}$

Proportion of AVs

using the mixed lane

Proportion of HVs using the mixed lane

 $\alpha_{\rm nv}$

Delay Estimation

- Assumptions:
- Well defined fundamental diagram
- Constant arrival, and saturation flow and density in one cycle

Flow
$$q_c$$

 v_f
 k_c Density k_i

$$E[D^{NV-AV}(k,n_a)] = \sum_{k=0}^{n_a} D_k^{NV-AV} P(X=k)$$
$$D_k^{NV-AV} = \sum_{\zeta=nv,av} \beta_k^{\zeta} \frac{Q_k^{A,\zeta} K^j}{K^j - K_k^{A,\zeta}} (R+L_{\zeta})^2$$

R. Mohajerpoor, M. Saberi, and M. Ramezani, "Analytical derivation of the optimal traffic signal timing: minimizing delay variability and spillback probability for undersaturated intersections," Transportation Research Part B. vol. 119, pp. 45-68, 2019

Validation of the Delay Model

Optimal Lane Management Policy

Outline

<u>Chapter One: Modelling</u>

Characterizing traffic Flows with Mixed Autonomous and Humandriven Vehicles

- Estimation of the saturation flow of the mixed traffic
- Validation of the headway models
- Estimation of the delay of a two-lane road
- Validation of the delay models
- Optimal lane management
- <u>Chapter Two: Control</u>

Lane density optimisation of autonomous vehicles for highway congestion control

Road Network

Proactive control

- Rule-based
- Collaborative

Algorithm 1 Reactive Control pseudo-code

for Ramp vehicles do Determine time to merge $(T_r = d_r/v_r)$ for AVs in left lane of Highway do Project future position, $(d_m = v_m T_r)$ if Conflicting with merging $(d_r - x \le d_m \le d_r + x)$ then Mark as conflicting AV end if end for end for

```
for Each lane except right-most do
```

```
if Vehicle is a conflicting AV then
```

```
if (Lead gap > Minimum acceptable safe gap) & (Lag gap > Minimum acceptable safe gap) then
```

Advise lane change

else

If adjacent vehicle on the target right lane preventing lane change is an AV, mark as conflicting AV

end if

end if

end for

Simulation

Simulation

Results – Total Travel Time

Results – Travel Time Distribution

Results

No Control

Results

ALINEA

Results

Lane Change Control

Results – Demand Variation

No Control

ALINEA

Lane Change Control

Discussion

mohsen.ramezani@sydney.edu.au

Results – AV Penetration Rate

