# Two Chapters on modelling and control of mixed traffic flow with CAVs 

Mohsen Ramezani


Dr. Reza Mohajerpoor Post-Doc


Eric Ye
BEng Student

AmirHosein Valadkhani PhD Student


## Dong Zhao

MPhil Student


ÉCOLE POLYTECHNIQUE fédérale de lausanne

気 MONASH
University



Congestion cost US: more than \$120 billion in 2011 Congestion cost UK: £20 billion per year
Congestion costs Europe about 1\% of its GDP annually Cost of Transport in Switzerland: 8.5 billion CHF in 2015

Congestion Cost Australia: $\$ 16.5$ billion in 2015


## A holistic approach of mobility (3M)



## Outline

- Chapter One: Modelling

Characterizing traffic Flows with Mixed Autonomous and Humandriven Vehicles

- Estimation of the saturation flow of the mixed traffic
- Validation of the headway models
- Estimation of the delay of a two-lane road
- Validation of the delay models
- Optimal lane management
- Chapter Two: Control

Lane density optimisation of autonomous vehicles for highway congestion control

## More Efficient Traffic Systems by CAVs



## Estimation of the Saturation Flow

General arrangement:


Worst arrangement (lowest saturation flow)


Best arrangement (highest saturation flow)



- $A V$ Penetration rate?
- Order of vehicles?
$\square$ The number of $A V s$ in the mixed traffic follows a binomial distribution


## Estimation of the Saturation Flow

## General arrangement of vehicles



Best arrangement of vehicles


Worst arrangement of vehicles

## Estimation of the Saturation Flow

GGeneral random arrangement

$$
\begin{aligned}
& \mathrm{E}[\bar{h}(k, n)]=\sum_{k=0}^{n} \bar{h}_{k}(n) P(X=k) \\
& \overline{h_{k}}(n)=\frac{1}{n-1} A_{k}(n) H / C_{n}^{k} \quad \begin{array}{c}
\text { Average headway of all } \\
\text { possible platoon combinations }
\end{array} \\
& P(X=k)=C_{n}^{k} p^{k}(1-p)^{n-k} \\
& C_{n}^{k}=\frac{n!}{(n-k)!k!} \\
& p=E[k / n]
\end{aligned}
$$

$$
\left.\mathrm{E}[\bar{h}(k, n)] \approx \bar{h}_{\bar{k}}\right|_{\bar{k}=\lfloor n p\rfloor}
$$

Approximate formula

## Estimation of the Saturation Flow

$\square$ Worst arrangement (lowest saturation flow)

$$
\begin{aligned}
& \bar{h}_{k}^{\text {worst }}(n)=\left\{\begin{array}{cc}
\frac{k \cdot h_{\mathrm{av}-\mathrm{nv}}+(k-1) h_{\mathrm{nv}-\mathrm{av}}+(n-2 k) h_{\mathrm{nv}-\mathrm{nv}}}{n-1} & k / n<0.5 \\
\frac{k \cdot h_{\mathrm{av}-\mathrm{nv}}+(k+1) h_{\mathrm{nv}-\mathrm{av}}}{n-1} & k / n=0.5 \\
\frac{(n-k) h_{\mathrm{av}-\mathrm{nv}}+(n-k) h_{\mathrm{nv}-\mathrm{av}}+(2 k-n-1) h_{\mathrm{av}-\mathrm{av}}}{n-1} & k / n>0.5
\end{array}\right. \\
& \mathrm{E}\left[\bar{h}{ }^{\text {worst }}(k, n)\right] \approx \bar{h}_{\bar{k}}{ }^{\text {worst }}{ }_{\bar{k}=[n p\rfloor} \quad \text { Approximate formula }
\end{aligned}
$$

Best arrangement (highest saturation flow)


$$
\bar{h}_{k}^{\text {best }}(n)=\left\{\begin{array}{cc}
\frac{(k-1) h_{\mathrm{av}-\mathrm{av}}+(n-k-1) h_{\mathrm{nv}-\mathrm{nv}}+h_{\mathrm{nv}-\mathrm{av}}}{n-1} & 0<k<n \\
h_{\mathrm{nv}-\mathrm{nv}} & k=0 \\
h_{\mathrm{av}-\mathrm{av}} & k=n
\end{array}\right.
$$

$$
\mathrm{E}\left[\bar{h}^{\text {best }}(k, n)\right]=\left.\bar{h}_{\bar{k}}^{\text {best }}\right|_{\bar{k}=\lfloor n p\rfloor} \quad \text { Approximate formula }
$$

## Validation of the Headway Model




## Delay Estimation

Dedicated lanes


Mixed-mixed lanes


Mixed-AV lanes

$\alpha_{\mathrm{av}}$
Proportion of AVs using the mixed lane

Mixed-HV lanes

$\alpha_{\text {nv }}$
Proportion of HVs using the mixed lane

## Delay Estimation

## - Assumptions:

- Well defined fundamental diagram
- Constant arrival, and saturation flow and density in one cycle


$$
\begin{aligned}
& \mathrm{E}\left[D^{n v-a v}\left(k, n_{a}\right)\right]=\sum_{k=0}^{n_{a}} D_{k}^{n v-a v} P(X=k) \\
& D_{k}^{n v-a v}=\sum_{\zeta=\mathrm{nv}, \mathrm{av}} \beta_{k}^{\zeta} \frac{Q_{k}^{a, \zeta} K^{j}}{K^{j}-K_{k}^{a, \zeta}}\left(R+L_{\zeta}\right)^{2}
\end{aligned}
$$



## Validation of the Delay Model




## Optimal Lane Management Policy



## Outline

- Chapter One: Modelling

Characterizing traffic Flows with Mixed Autonomous and Humandriven Vehicles

- Estimation of the saturation flow of the mixed traffic
- Validation of the headway models
- Estimation of the delay of a two-lane road
- Validation of the delay models
- Optimal lane management
- Chapter Two: Control

Lane density optimisation of autonomous vehicles for highway congestion control




## Road Network



## Proactive control

deviations from the critical the number of lane
count in each lane
$\min _{n_{i}^{*}(k)} J=\left[\sum_{i=1}^{I} \alpha_{i}\left(n_{i}^{*}(k)-n_{i}^{c r}\right)^{2}+\beta \sum_{i=1}^{I} i\left(n_{i}^{*}(k)-n_{i}(k)\right)\right]$
s.t. $\sum_{i=1}^{I} n_{i}(k)=\sum_{i=1}^{I} n_{i}^{*}(k)$
$n_{i}^{*}(k), \ldots, n_{I}^{*}(k) \in \mathbb{N}=\{0,1,2, \ldots\}$
$\underset{\text { Right-moving }}{\text { LC }}\left\{\begin{array}{l}n_{1}(k) \geq n_{i}^{*}(k) \\ n_{I}(k) \leq n_{I}^{*}(k)\end{array}\right.$
Left-most lane $n_{i}^{\mathrm{cr}}=\gamma_{i}\left(\rho^{\mathrm{cr}}-\rho^{\mathrm{r}}\right) L$
Other lanes $n_{i}^{\mathrm{cr}}=\gamma_{i} \rho^{\mathrm{cr}} L$
Solution space:
$\prod_{i=1}^{I-1}\left(n_{i}+1\right)$

## Reactive control

- Rule-based
- Collaborative



## Reactive control



## Reactive control

```
Algorithm 1 Reactive Control pseudo-code
    for Ramp vehicles do
        Determine time to merge \(\left(T_{r}=d_{r} / v_{r}\right)\)
        for AVs in left lane of Highway do
            Project future position, \(\left(d_{m}=v_{m} T_{r}\right)\)
            if Conflicting with merging \(\left(d_{r}-x \leq d_{m} \leq d_{r}+x\right)\) then
                Mark as conflicting AV
            end if
        end for
    end for
    for Each lane except right-most do
        if Vehicle is a conflicting AV then
            if (Lead gap > Minimum acceptable safe gap) \& (Lag gap > Minimum acceptable
            safe gap) then
                    Advise lane change
            else
                If adjacent vehicle on the target right lane preventing lane change is an AV, mark
                    as conflicting AV
            end if
        end if
    end for
```


## Simulation



## Simulation



1300, 1127

## Results - Total Travel Time



## Results - Travel Time Distribution



## Results

## No Control




Lane 2


Ramp Vehicle Count


## Results

## ALINEA



## Results

## Lane Change Control




Lane 2


Ramp Vehicle Count


## Results - Demand Variation



## Results - Multiple Ramps

## No Control




Lane 3



## Results - Multiple Ramps

## ALINEA

## Lane 1



Lane 3


Lane 2


Ramp Vehicle Count


## Results - Multiple Ramps

## Lane Change Control




Lane 3



## Results - Multiple Ramps



## Discussion




