Dynamic demand management and routing

STELIOS TIMOTHEQOU

ASSISTANT PROFESSOR
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

KIOS RESEARCH AND INNOVATION CENTER OF EXCELLENCE
UNIVERSITY OF CYPRUS

K& [Oq Joint work with C. Menelaou, P. Kolios, C. Panayiotou gf“gyegﬁﬂg



KIOS
Research and Innovation
Center of Excellence



Yrigi

Greek mythology: “Kios” from the Greek Koiog (Kee- os) e Ui\
the Titan of inquisitive mind and the questioning "’f "
intelligence e, 5

Our Mission & Vision

* To conduct multidisciplinary research and innovation in the area of
Information and Communication Technologies (ICT) with emphasis on the
Monitoring, Control, Security and Management of Critical Infrastructures

= To provide an inspiring environment for conducting excellent, cutting-edge
research at a global scale, producing new knowledge that can be applied to
solve timely and real-life problems in the considered Critical Infrastructure
Systems (CIS)



_ KIOS at a Glance

= KIOS Research Center was established as a research unit in 2008

= Strategic Infrastructure Project
(Desmi 2008 — EU Structural Funds)

= KIOS elevated to a Center of Excellence
(CoE) in 2017 (EU TEAMING HORIZON 2020)

= Operates within the University of Cyprus (at the level of Faculty)
= Collaborates strategically with Imperial College, London

= Creates synergies with national and international industrial and governmental
organizations
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KIOS at a Glance - Research

Technical focus & specialization
Intelligent monitoring, control, management and security of complex,
large-scale, dynamical systems

Application Areas === Critical Infrastructure Systems

;
“I\

Energy & Intelligent Water Systems &  Telecommunication Emergency
Power Systems Transportation Environmental Systems & Networks Management
Systems Monitoring Response




KIOS at a Glance - Research

Heterogeneous - Interdependent - Interconnected Sensors, Actuators
Risks, Faults, Attacks Big Data, Internet of Things

Monitoring, Control

Management, Security Big Data = Smart Decisions

J




_____KIOS CoE Current State

= 153 people at KIOS CoE (+13 people at the KIOS CoE spoke at Imperial College
London)

= 24 active multi-disciplinary research projects funded by international, EU and
national funding agencies

= 17 active industry funded projects via the KIOS Innovation Hub
= New MSc Program in Intelligent Critical Infrastructures
= New CIS testbed facilities
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\‘,‘ Daily chart

| The hidden cost of congestion

k

\

\ In rich countries, city—dwellers lose nearly $1,000 ayear while sitting in
traffic

\ ﬁm\] a\J e\_ Main menu

Cost of congestion: The growing problem of advanced economies
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Traffic congestion countermeasures

gV [oaV1g= - Building new roads.

e Widening arterial roads.

EXpa N Sio N e Widening roads/intersections.

e Perimeter Control/Gating.

TraffiC * Ramp Metering.

e Route Guidance.

M d nage me nt * Expanding the supply and availability of travelling

modes.

De Man d e Providing incentives and rewards for sustainable
travel habits.

IVI a nage me nt e Imposing pricing and tolling schemes.
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Traffic congestion countermeasures

Traffic
Management

Joint Demand and

Traffic Management

Demand

Management
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Problem statement

* Input :
« Specific road transportation system
operated by connected vehicles r——
« Traffic demand

* Objective:

* Minimize some metrics of interest (e.g.,
total time spent, earliest destination S
arrival time). /\})/

* Outputs:

 Route followed by each vehicle (or
traffic flow) in the network

« Time to start the journey for each
vehicle (or traffic flow)




Manage Demand

Q

demand

time

Objective
« Shift (in-time): delay vehicles at the origin (demand management)
« Shift (in-space): utilize alternative paths (traffic management)
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Macroscopic Fundamental Diagram
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« Maintain the network’s outflow below the critical capacity
« Maximize the utilization of the infrastructure



Individual vs Collective Optimum

* Routing methods should consider the benefit of the "whole” as
opposed to the benefit of the individual [*]

[¥] Colak, Serdar, Antonio Lima, and Marta C. Gonzalez. "Understanding congested travel in urban areas." Nature
communications 7 (2016): 10793.
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Individual vs Colleasi— =
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Overview

Joint Demand and Traffic
Management

Microscopic Level Macroscopic Level

Route Reservation Joint Multi-Region Joint Path-Based
Management and Management and
Route Guidance Route Guidance

EDAT TLB OTA
Problem Problem Problem
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Perimeter Control / Gating / Ramp Metering

« Restrict the inflow In a protected region such
that the density does not exceed the capacity

@ | | @ Objective
B P\g ’
% , 

Protected

Rzl - Approach does not take any control action for
the endogenous flows (flows initiated in the
region)

- Unwanted gueues may be observed at the
@ boundaries

» Keyvan-Ekbatani, M., Kouvelas, A., Papamichalil, I. and Papageorgiou, M., 2012. Exploiting the fundamental diagram of urban networks for
feedback-based gating. Transportation Research Part B: Methodological, 46(10), pp.1393-1403.

» Geroliminis, N., Haddad, J. and Ramezani, M., 2012. Optimal perimeter control for two urban regions with macroscopic fundamental
diagrams: A model predictive approach. IEEE Transactions on Intelligent Transportation Systems, 14(1), pp.348-359.

» Papageorgiou, M., Hadj-Salem, H. and Blosseville, J.M., 1991. ALINEA: A local feedback control law for on-ramp metering. Transportation
Research Record, 1320(1), pp.58-67.

» Papamichail, |., Papageorgiou, M., Vong, V. and Gaffney, J., 2010. Heuristic ramp-metering coordination strategy implemented at Monash
freeway, Australia. Transportation Research Record, 2178(1), pp.10-20.

» Carlson, R.C., Papamichail, I. and Papageorgiou, M., 2014. Integrated feedback ramp metering and mainstream traffic flow control on
motorways using variable speed limits. Transportation research part C: Emerging technologies, 46, pp.209-221. 22



Policy Based Approaches

Objective
« Implement policies that can change
demand patterns
« Congestion Pricing Fingeston
« Parking fees charging
* Public transportation
- Non-popular measures

» Jaensirisak, S., Wardman, M. and May, A.D., 2005. Explaining variations in public acceptability of road pricing
schemes. Journal of Transport Economics and Policy (JTEP), 39(2), pp.127-154.

» Verhoef, E.T., 2002. Second-best congestion pricing in general networks. Heuristic algorithms for finding second-best
optimal toll levels and toll points. Transportation Research Part B: Methodological, 36(8), pp.707-729.
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Route Guidance / Routing Methods

Objective

« Guide vehicles through alternative
routes to reduce the Iimbalance in
congestion distribution.

 Determine best route from origin to
destination using time-varying networks.

-
S 28888080
R R R R E R R A

Alterh\ae

Route
WHEN ARQW ON

- Not very effective in high demand
scenarios

il

» Knoop, V.L., Hoogendoorn, S.P. and Van Lint, JW.C., 2012. Routing strategies based on macroscopic fundamental diagram. Transportation
Research Record, 2315(1), pp.1-10.

» Papageorgiou, M. Yildirimoglu, M., Ramezani, 1990. Dynamic modeling, assignment, and route guidance in traffic networks. Transportation
Research Part B: Methodological, 24(6), pp.471-495.

> Yildirimoglu, M., Ramezani, M. and Geroliminis, N., 2015. Equilibrium analysis and route guidance in large-scale networks with MFD
dynamics. Transportation Research Procedia, 9, pp.185-204.

> Yildirimoglu, M., Sirmatel, I.I. and Geroliminis, N., 2018. Hierarchical control of heterogeneous large-scale urban road networks via path
assignment and regional route guidance. Transportation Research Part B: Methodological, 118, pp.106-123.
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Joint Demand and Traffic
Management

Microscopic Level Macroscopic Level

Route Reservation Joint Multi-Region Joint Path-Based
Management and Management and
Route Guidance Route Guidance

EDAT TLB OTA
Problem Problem Problem




Route Reservation
Architecture



Reservation Architecture

RSU State

e Network topology
e Past reservations

C _
* pij (t) < Pij» = Utravel = Ur

Update
reservations

Link O - Aat 3 to 4.
LiInk A-B at4to5. be 1 . Larfe. BtoCV\{iII reach its
: * critical density from 2

Link B-Cat5to7. until 5
Link C-D at 7 to 8.
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Earliest Destination Arrival Time (EDAT) Problem

* Input :
« Reservation status
 Vehicle request: Origin - Destination Nodes
(O-D pair)
« Time of request
« Objective
« Minimize the arrival time at destination
* Route traffic through congestion free routes

* Output:

* Initial delay at the origin
* Route to be followed

28



Notation

» Road network as a graph G(V,E) with (i,j) € E and {v;,v;} €V

- For every road segment (i, j)

» [l;; segment’s length
> A;j segment’s number of lanes
> pii=lijp! | X jee iy jam density

» p;;(t) Instantaneous segment’s density

C

> pf = (pp—]) pi; critical density

> ¢;; = |lij/us/T| time-slots required to traverse (i, j)

> n;;(t) cumulative vehicle reservations within the road segment (i, j)

> d,, earliest arrival time at junction v;



Adminisibility and travel cost

* Aroad segment (i, j) is admissible at time t=d,,, if the number of

reservations is not larger than the segment’s critical density for the
required traversal time: n,(0) =1 ng(0) =2

. j (7)

1, if
xij(dy,) = Aijli
0, otherwise

c —
S pl] VT = dvi) Ll dvi + Cl]

 Cost to traverse road segment (i, j):

(_ .
Cij' 1fxij(dvi) =1

Cij(dvi) = { 00, ifxij(dvi) =0andi #0
LC_'ij +w ifxl-j(dvi) =0andi =0

_ ne(1) =2 np(1) =1
where, w denotes the least number of time-slots that a vehicle

should wait at v; 30



Earliest Destination Arrival Time (EDAT) Problem
* Let p;, be the hy, path from O to D:

pn = (v, v1), (v, v)), (W3, v3), ..., (V-1 VL)
where, vi* € V, Lpthe length of path, v,= 0 and v, = D and
dgg = t,, w =0
dyn = dgg + Cvg’v{l(dﬁg, to)
dﬁfh B d‘i’llilh—l N Cvfh-l’vfh (dﬁgh—l’ o)

* Then, the EDAT problem determines the path that allows the vehicle to arrive
at the destination at the earliest arrival time such that only admissibe links are
used:

d; = mind?
W,Dh
s.t. Model Dynamics

31



Solutions to the EDAT problem

 Theorem: EDAT is an NP-Complete problem.

« Solutions:
* Directed Acyclic Graph (DAG) Based Algorithm (Optimal in Discrete Time)

= Creates a time-space graph with every possible admissible path from any node to any
other node

= A dynamic programming methodology that returns the optimal solution (discrete time) of the
EDAT problem, but suffers from the curse of dimensionality

 Time Expanded (TE) (heuristic)

= Creates a graph with “delayed” copies for the original graph with the non-admissible links
removed

» Use Dijkstra’s algorithm to find the best path
 Route Reservation Algorithm (RRA) (heuristic)
= Solves the Relaxed EDAT problem using a modification of Dijkstra’s Algorithm
» |f solution does not involve waiting at intermediate node, then return path
= Otherwise, increase waiting at the origin and resolve
 MILP solution (Optimal)

» Solves the EDAT problem Mixed Integer Linear Program with a continuous time formulation
32



Performance Evaluation - Setup

« Evaluation is done using the SUMO-Simulation of Urban MObility Micro-Simulator.

« Simulator parameters:

» Krauss-Car-following model

Speed deviation = 0.9

Acceleration = 2.5 m/s?
Deceleration = 4.5 m/s?
Minimum-gap = 2.5m

* Driver reaction time = 0.5 s
« Maximum speed = 14 m/s
* Vehicle length = 5m

» Behrisch, et al. "SUMO-simulation of urban mobility: an overview." Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation
ThinkMind, 2011.
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Performance Evaluation - Setup

San Francisco Area

« 1.8 Km? area of Downtown of San
Francisco

« 208 two-way, single-lane road
segments

* 99 road-junctions

« Monte-Carlo simulations were conducted
for different flow rates in the range of
1000 -8000 veh/h.

44veh
km

» Selected p;; =
calibration)

/lane (through
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Flow/Density Simulation Results
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Travel Time Simulation Results:
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Simulation Video
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Extensions
and
Improvements



Other extensions

1. Predict travel times of road links

Challenge

 In reality the average speed of vehicles is not
constant (free-flow)

Solution

« Exploit vehicle connectivity to collect real-time
travel time information

* Predicts transit-times to improve the route
reservations performance

2. Hierarchical multi-regional demand management

and routing
Challenge

 Scalability issue for large networks

Solution

* Hierarchical approach performs both inter-
regional and intra-regional vehicle routing

Network Density

600 1
-------- Residual IDAC
— — Actual
400 Predicted
ansdh
200 [t o
\
|
\'\-‘-‘WL' A
U — =
0 2000 4000 6000

Simulation Time

Region1
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~ Region3

60 80 100 120

26 40
Number of Vehicles



Other extensions

3. Traffic load balancing

Challenge
« Maintain long-term homogeneity of traffic
* Vehicles may have to take much longer paths
Solution
» Solution to EDAT (d}, = MI?IIDI; an)
* Find alternative admissible paths from O to D
such that vehicle can arrive at D at time
dp <dp <axdp, wherea>1 aiming 1o
minimize the spatio-temporal variance of
traffic densities in the network.
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On-Time Arrivals Using
Route Reservations



On-Time Arrivals (OTA) Problem

* Input

 Reservation status
 Vehicle requested O-D pair
* Vehicle desired time at the destination

* Objective

 Minimize the difference between the actual departure and the desired arrival
times such that congested links are avoided and travelers do not arrive too early
at their destination

* Qutput

 Vehicle departure time
« Admissible path from O to D

« Solution approach
* The solution to the OTA problem is obtained, based on dynamic programming,
by constructing a time-space graph 47



OTA Results
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« Evaluation is done using SUMO microsimulator.
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Joint Demand and Traffic
Management

Microscopic Level Macroscopic Level

Route Reservation Joint Multi-Region Joint Path-Based
Management and Management and
Route Guidance Route Guidance

EDAT TLB OTA
Problem Problem Problem




Joint Multi-Region Demand
Management and Route
Guidance



Joint Demand Management and Route Guidance

Region Demands ' T Flows

['NFDs Models | Admitted Demand

Vehicular flows that

request to enter the
network

Region 8

B 60 6 6 reion7

>
P q

Region 5

q |/\
l
Destination

Origin

Region 2
Region4 P

» K. Aboudolas and N. Geroliminis, “Perimeter and boundary flow control in multi-reservoir
heterogeneous networks,” Transportation Research Part B: ethodological, vol. 55, pp.
265—-281. 2013.
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Joint Demand Management and Route Guidance

Region Densities EDLI.D:LI.Z@I.IQDJ . Region Transfer

Region Demands ' T Flows

I"NFDs Models | Admitted Demand

Region 7

Destination

Origin
Region 5

Region 2
Region 4

Region 3
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Joint Demand Management and Route Guidance
Region Densities [ Optimization | - Region Transfer

Region Demands ' T Flows

I"NFDs Models | Admitted Demand

’s‘ Region 7
Destination
Origin
Region 5
Region 2
. Region 4
Region 3
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Joint Demand Management and Route Guidance

Region Densities mw . Region Transfer

Region Demands T e
Tl ESEMM&M Admitted Demand

"“0 .: 0“
R‘eg‘lon 8 . ﬁ&
s Region 7
v -
Destination
Origin &
Region 5
Region 2
. Region 4
Region 3
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Joint Demand I\/Ianagement and Route Guidance

Region Densities mw . Region Transfer
Region Demands T e
ESEMM&M Admitted Demand
My
Region 8 d :
Region 7 4
\ 4
N (i
. Destination
Origin
Region 5
Region 2
. Region 4
Region 3
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System Model

A

- The intended outflow (i.e., g,-(p,-(k))) is denoted by the NFD as: 9
f C q?
) L pp (), if 0 < pr () < pf i i
dr (pr (k)) = rc [ w
(p]q_T C) (p! — pr(k)) ,otherwise Ur r
k r Tr |

4ra() = 220 () = 4, (0)pra (),

qra(k) = ZjEJr drjd (k),
qr(k) = Xaep qra(k).

51



System Model

C,{‘;’-AX is the maximum physical flow that can be exchanged between two regions

 The inter-boundary capacity of each region is

Crj 4 rC%'AX' if - pilk) < ap]!,
cMax C.:(pi(k)) =4 cMAX (k
J 7”1( J ) r 1_'0]( ) ,otherwise
l1—«a p!
\ J
>

ap]l Pj P]!
with ocpjl is the point where the inter-boundary capacity starts to decrease (0 < a < 1).

* The actual transfer flow between neighboring regions relies on its remaining storage
capacity and thus,
Arjd (k) )

yeD 1rjy

52



System Model

« The demand dynamics on each region can be defined as:

Instantaneous

Cumulative
External Demand

External Demand

D,;(k+1)=D, (k) —d,g(k) +d,q(k), k=1,..., with D,4(0) =0,

Admitted External

Demand

« The traffic dynamics on each region can be defined as:

pratk +1) = pra(k) + 1= dra(k) + 72 T ez, @jra(0) =Grja (),
pr(k) — ZdED pra(k)



System Model

* S%(k) be the cumulative number of vehicles that request to enter the network

Se(k + 1) = S%(k) + 2 2 d,q (),
0€0 deD
«  SP(k) be the cumulative number of vehicles that successfully arrive at their destination

SP(k+ 1) = SP() +T5 ) Gyjalh) {rj} €D,
deD

with $¢(0) = S?(0) = 0.
* Objective Function:

Is the cumulative travel time of all vehicles J-rr (veh.h) over all time-steps k

Jerr =Ty ) (5900 = 5" (),
k

54



Objective Function

Jerr =T, ) (5900) = 5" ()
k

A

# of Vehs

The shaded area represents
o) the cumulative time spend
of all vehicles J-rr (veh.h).

>

t

Note that the CTT includes the time spend in network and the waiting time at the origins.
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NLP Formulation

* A new problem is solved every m time-steps assuming that the control and prediction
horizons are equal to mN,,.

* For the [-th MPC problem solution [ = 1, ..., we define the time horizon K; where:
K, = {m(l —1)+1, ...,m((l 1)+ Np)}.
* Under these conditions we formulate the [-th problem of finding g, ;4 (k) and d, (k) as:

min JHEEQ) =Ts ) (5900 = 5°(K)
keX;
s.t. Traffic Dynamics

d,qg(k) < DMA* k€ K,,0 € 0,d € D,
dy,q(k) <D, (k) k € K;,0 € 0,d €D,
0<p,.(k) < p,{(k),k € K;,r €ER,
52(0) = $P(0) =0,
Variables: p, (k), pra(K), dod (K), Drq(K), qrja(K), 4ra(K), q(pr- (k) ), @rja (K), S2(K), SP(K), uy (k)
56



NLP Formulation

 The Problem (14) is a non-convex non-linear problem due to the following constraints

(¢
“epr(R), if 0= p,(K) < pf

Qr(pr(k)) = q€

m (p,{ — Dy (k)) ,otherwise
R

ara() = 2220) 1 (0) = 4, () pra )

[ cMAXif pi(k) < ap;,
Crj (Pj (k)) = et (1 _ G (k)> otherwise
i)’ '
QTjd(k) )
ZyED qrjy (k)

In order to handle these constraints we develop two approximate formulations:

1) A non-congested linear formulation that leads to a feasible solution (upper bound)
2) A relaxed linear formulation which provides a lower bound solution

k 1-a

Grja(k) = min (erd(k); Crj (Pj(k))

57



Non-congested Linear Feasible Solution

- To guarantee an operation in the congestion free regime we restrict the maximum
value of the density of each regionas 0 < p,.(k) < min(pr,apr)

( C

“epr(R), if 0< pr(k) < pf o° )

ar(pr(®)) =\ 4¢ (0! — @(pr(0) = e pr(k) = urpr ()
r

(ol-05)\

— D, (k)) ,otherwise

r(pr(k) _ [
Gra() =229 4 () = u, ()prall) T 4ra(k) = ul pra (i)
CM.AX’ if pjlk) < cpr[, o
| 1- .y , 0otherwise,
J

CIr]d( ) glrjd(k) = qrjd(k)

ryal) = min (q’”"d(k)’ o) 5, qr,y(k)> — ) Gralk) < CHAX

deD .-




Linear Relaxation (Lower Bound)

* Considering the triangular NFD form its true that the intended outflow can be equivalently be
written as

CIr(pr(k)) = min (% pr(k): Wy (,07{ - pr(k)) )

* Thus the intended outflow rate of each region can be relaxed by bounding g,-(p,-(k)) to be
smaller than two linear terms as

Cc
A

q q-(pr(k)) < Z—Zpr(k) g

a,(pr (k) < wy (pﬂ - pr(k))

4

LOWER BOUND SOLUTION




Linear Relaxation (Lower Bound)

The problem can be relaxed into a Linear program as fillos
0 < p, (k) < pl holds,
(

C
opr(0, i 0<p(k) S pf s

dr (pr (k)) = 4

C
\
r(pr(k)

aralk) = : ff:ﬂ(k) : pra(k) = up(k)prq(k) —

CM.AX, if pik)< “P][:
Gy (00) = { cmax [, | —_—

e \ 1~ o) , 0therwise, I

J

Qr]d( )
2yep Irjy (k)

rjqa(k) = min (%"jd(k): Crj (Pj(k)

<

dEeD

r T'k
q(p())<p

qr(pr(k)) < Wy (pr pr(k))

C

pr (k)

Gra(k) < ulprq(k)

Crj (Pj (k)) < X

Crj (Pj(k)) <

MAX
rj 1 _
1-a

CIr]d(k) < Qr]d(k)
qu(k) < Cr] ,0] (k))

p;j(k)
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Implementation

External Demands

Physical Plant

MPC Controller

| Optimization |

1 1

Approximated NFDs
Models

Current State
NL NFDs Models -

Admitted Demands
and Split Ratios
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Simulation Setup

 The simulated urban area consists of 16 regions of which four regions considered as origins
(i.e., regions: 1, 4, 11 and 16) and four region considered as destinations (i.e., regions: 2, 8,

9 and 14).
- All regions are assume to have identical triangular NFD as follows : p&¢ = 30 veh/km, p. =
130 veh/km, L, =1 km, ul =60 km/h, ¢g¢ = 1800 veh/h, C;i** = 2000 veh/h, a =0.25,

mN, = 20, and m = 5.

et Bt L e il ¢+ The following MPC schemes are examined:

1. RG The ordinary Route Guidance scheme,

Region 9 Region 10 Region 11 Region 12 accordlng to a MILP formulat!on. ..

2. LRDM The linear relaxation of the joint

demand management and route guidance.

Region 5 Region 6 Region 7 Region 8 (lOWGT bound SOIUtion)

3. NCDM The non-congested feasible solution of
the joint demand management and route
guidance. (upper bound solution)

Region 1  Region 2 Region 3  Region 4
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Simulation Results

~Generated Vehs
4000-ExitVehs-LRDM

= ~ExitVehs-RG
e ~ExitVehs-NCDM
© 2000 |
=
0 oo | |
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#

LRDM NCDM
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Optimality Gap

Demand
Scenarios
NCDM 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0005%
RG 0.0% 0.0% 0.8% 5.4% 29% 82.5% NSF NSF

Objective(Alg) — Objective(LRDM)
Objective(LRDM)

Optimality Gap = * 100%, Alg = [NCDM, RG]

NSF= No solution Found within the simulation period. o



Path-Based Joint Demand
Management and Route
Guldance



Path-Based Joint Demand Management and Route Guidance

~
~

~

~

~

Region 1

66



Simulation Results

« The simulated urban area consists of 7 regions of which three regions are
considered as origins (i.e., regions 1, 2 and 6) and three region as destinations (i.e.,
regions 4, 5, and 7).

« All reglons are assumed to have |dent|cal triangular NFDs with parameters: p¢ = 30

veh/km, p! = 130 veh/km, L, = 1 km, u/ = 60 km/h, g€ = 1800 veh/h, C;i** = 2000
veh/h, a = 0.25, mN, = 30, and m = 2.

* The following MPC schemes are examined:

1. RG: The ordinary Route Guidance
scheme, according to a MILP formulation.

2. LRDM: The linear relaxation of the joint
demand management and route guidance.

3. NCDM: The non-congested feasible
solution of the joint demand management
and route guidance.

Region
7
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Simulation Results

><1O4
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Simulation Results

Density

LRDM

Density

NCDM
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Optimality Gap

 DemandScenarios | 1| 2 | 3 | 4 | S5 | 6 _

NCDM 0.0463% 0.0211% 0.0526% 0.0857% 0.0955% 0.0587%
RG 0.8% 6.09% 435% NSF NSF NSF

Objective(Alg) — Objective(LRDM)
Objective(LRDM)

Optimality Gap = * 100%, Alg = [NCDM, RG]

NSF= No solution Found within the simulation period.
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Other group contributions

Unsignalized Intersection Crossing using Connected and Autonomous Vehicles
Distributed Network Traffic Signal Control

Traffic state estimation with bound guarantees

Fault-tolerant traffic state estimation

Electric vehicle routing with charging in transportation networks using probabilistic
models

Origin-destination matrix estimation using Bayesian theory
Event-based communications in public transportation systems

Data offloading transfers through intervehicle communication transmissions
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Conclusions

* Proposed a novel route reservation architecture aiming to maximize the efficiency of
the urban transport system

* Proposed algorithms can eliminate congestion altogether through:
» walting at home
* intelligent routing

* The emergence of connected and automated vehicles can make this reservation
architecture a reality
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Future Work

« Reservation Architecture
e Distributed Reservation Architecture.

 Closed Loop: Re-route / Reschedule vehicles if an accident occurs or
vehicles significantly deviate from their scheduled path.

 Investigate the on-time arrival problem with stochasticity in which vehicles
are probabilistically compliant to their given instructions.

 Macroscopic Approaches
 Formulate the problem as a robust optimization problem to deal with noise
and uncertainty.

 Investigate the effect and the performance of this MPC approach in other
strategies such as Ramp metering and Variable Speed Limit.
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