

Afshin Jafari, Alan Both, and Dhirendra Singh

RMIT University, Melbourne, Australia firstname.lastname@rmit.edu.au

MATSim User Meeting 22 March 2021

MATSim Melbourne project

About this project

This repository will provide an open and validated MATSim traffic model for the greater Melbourne area. The project is a collaborative effort between individuals and groups from RMIT University, University of Melbourne, CSIRO Data61, Swinburne University, KPMG Australia, and others.

added a pom.xml kinagel committed on 1 Nov 2017	Ľ	a1bad7b	<>	
Initial commit ahixsingh committed on 1 Nov 2017		286d715	<>	

https://github.com/matsim-melbourne

0

MATSim Melbourne matsim-melbourne		
Repositories 5 🔗 Packages A People 4 At 1	Teams 1 II Projects	lo Settings
Q Find a repository Type Language Sort		Customize pins 🛛 📮 New
demand MATSim Melbourne demand ● R 4월 GPL-3.0 양1 ☆1 ① 2 않 0 Updated 2 days ago		Top languages Java R
network MATSim Melbourne network ● R	~M	People 4 >
baseline MATSim Melbourne baseline scenario ● Java ♀ 0 ☆ 0 ① 0 \$\$ 0 Updated on 27 Nov 2020		Invite someone

Demand Generation

Constructing census-like synthetic persons with VISTA-like travel itineraries https://github.com/matsim-melbourne/demand

Both, A., Singh, D., Jafari, A. (2021) *What dost thou do? Reconstructing Melbourne's daily activities from travel diaries*, Work in progress paper.

Activity area (SA1) selection example

Distance likelihood

Attraction (work) likelihood

Combined likelihood

Synthetic plans vs VISTA

Synthetic distances vs VISTA (beeline)

Network Preparation

Constructing a MATSim-compatible transport network using open data https://github.com/matsim-melbourne/network

Jafari, A., Both, A., Singh, A., Gunn, L., Giles-Corti, B. (2021) *Building the road network for city-scale active transport simulation models*, Work in progress paper.

Customisation of network detail

Removing disconnected links

Intersection simplification

MATSim Melbourne Model - Baseline

https://github.com/matsim-melbourne/baseline

Singh, D., Jafari, A., Both, A. (2021) *MATSim Melbourne Model: an open activity-based transport model for Greater Melbourne*, Work in progress paper.

Parameter estimations

Baseline MATSim Melbourne Model

- Multinomial logit model
- Car, Public Transport, Bicycle, Foot
- VISTA 2012-14 Journey to work trips
- ATAP for fuel and a flat rate for PT
- Google Distance Matrix API
- Next step:
 - Parameter estimation for environmental factors affecting cycling – Bicycle Contrib

Parameter		Estimation			
Marginal utility of money	β_m	17.56			
Marginal utility of time spent travelling by:					
Car	$\beta_{trav,Car}$	-0.0			
Public transport	$\beta_{trav,PT}$	-1.02			
Bicycle	$\beta_{trav,Bike}$	-5.93			
Foot	$\beta_{trav,Walk}$	-3.43			

- Automated vs manual calibration
- Destination choice:
 - Attractiveness and distances
- Mode choice:
 - Census journey to work travel modes
- Route choice:
 - Driving: Highway hourly typical traffic volume

- Automated vs manual calibration
- Destination choice:
 - Attractiveness and distances
- Mode choice:
 - Census journey to work travel modes
- Route choice:
 - Driving: Highway hourly typical traffic volume
 - Cycling: Manual and automatic hourly counts

- Automated vs manual calibration
- Destination choice:
 - Attractiveness and distances
- Mode choice:
 - Census journey to work travel modes
- Route choice:
 - Driving: Highway hourly typical traffic volume
 - Cycling: Manual and automatic hourly counts
 - Walking: City of Melbourne pedestrian count data

- Automated vs manual calibration
- Destination choice:
 - Attractiveness and distances
- Mode choice:
 - Census journey to work travel modes
- Route choice:
 - Driving: Highway hourly typical traffic volume
 - Cycling: Manual and automatic hourly counts
 - Walking: City of Melbourne pedestrian count data
 - Public transport: PT survey data

Baseline

- ✤ 1% sample
- ✤ AM peak

Intervention scenarios

- A participatory scenario identification approach
 - 20+ active transport planning and decision makers
- Example scenarios:
 - Impact of a major public transport project on the transportation system
 - Current bicycle infrastructure usage and identifying gaps
 - Health impact of encouraging more people to use active transportation

Questions and discussion

Acknowledgements:

The Australian Prevention Partnership Centre Data61, CSIRO Healthy Liveable Cities Group, CUR, RMIT MATSim Melbourne Community

