MATSIM MODEL VIENNA Intermodal Traffic Simulation for Vienna, Austria

Markus STRAUB
Research Engineer at Center for Energy - Digital Resilient Cities and Regions
Dr Johannes MUELLER
Scientist at Center for Energy - Digital Resilient Cities and Regions

IN A NUTSHELL

HIGHLIGHTS

FACILITIES

- Education, errand, leisure, shopping
- OSM POIs
- Home
- Geostat 1 km² population grid
- OSM residential areas
- Work (statistics by WKO*)
- 71\% service: same facilities as errand, leisure, shopping
- 25\% production: OSM industrial landuse
- 4\% agriculture: ignored

由hopping [10273]
\& work [45434]

POPULATION SYNTHESIS

- Data source: Austrian mobility survey „Österreich unterwegs 2013/14"
- resolution: municipal districts

0

optimization: find best match of travel times

- Synthesis by weighted resampling
- based on survey person-day weights
- of mobile population on workdays
- Activity location distinctness classification
- Spatial disaggregation of distinct locations
- Utilizing facility distributions
- Optimize journey facility locations to match reported travel time (publication upcoming)

ARIADNE INTERMODAL ROUTER

- Modes of transport
- Walk
- Bike (including topography)
- Public transport
- Car
- Combinations: P+R, Bike+Ride,...

Intermodal plans of an agent

REPLANNING WITH INTERMODAL TRAFFIC

- Replanning in MATSim
- co-evolutionary algorithm
- random mutation
- For intermodal plans
- combinatorial explosion
- Approach (similar to Hörl et al, 2018*)
- Limit alternative day plans to plausible ones
- Pre-calculation and caching
- Simulation
- Car + DRT: on the MATSim network
- Other: teleportation with the previously calculated travel time

* Pairing discrete mode choice models and agent-based transport

MODE CHOICE MODEL: SUBPOPULATIONS

I. Parameter estimation for two latent classes
SP/RP Survey
II. Calculation of Class Membership Probabilitv

	sex	Age below 35	Age above 55	Kids in household	...	Membership prop for class 2
Agent 1						
...						
Agent n						

III. Assigning agents to a group according to class membership probability

MODE CHOICE MODEL: SUBPOPULATIONS

PARAMETERS FOR MODE CHOICE

Subpopulation $\boldsymbol{c}_{\boldsymbol{b i k e}}$	$\boldsymbol{c}_{\boldsymbol{c a r}}$	$\boldsymbol{c}_{\boldsymbol{p} \boldsymbol{t}}$	$\boldsymbol{\beta}_{\boldsymbol{b i k e}}$	$\boldsymbol{\beta}_{\boldsymbol{c a r}}$	$\boldsymbol{\beta}_{\boldsymbol{p} \boldsymbol{t}}$	$\boldsymbol{\beta}_{\boldsymbol{w a l k}}$	$\boldsymbol{\beta}_{\text {lineSwitch }}$	$\boldsymbol{\beta}_{\boldsymbol{d u r}}$	
1	2.55	0.85	0.14	-9.38	-12.20	-5.29	-11.06	-0.71	10.71
2	2.72	0.80	0.13	-10.50	-12.29	-5.47	-11.39	-0.75	9.34
3	2.85	0.76	0.12	-11.38	-12.36	-5.61	-11.65	-0.78	6.75
4	2.94	0.74	0.12	-11.99	-12.40	-5.70	-11.83	-0.80	9.11
5	3.04	0.71	0.12	-12.65	-12.45	-5.81	-12.03	-0.83	7.35
6	3.18	0.67	0.11	-13.53	-12.52	-5.95	-12.28	-0.86	9.99
7	3.28	0.64	0.10	-14.20	-12.57	-6.05	-12.48	-0.88	13.02
8	3.42	0.59	0.10	-15.15	-12.64	-6.20	-12.76	-0.92	7.28
9	3.66	0.52	0.09	-16.73	-12.76	-6.45	-13.23	-0.97	6.23
10	4.09	0.39	0.07	-19.58	-12.97	-6.90	-14.07	-1.08	5.92

CALIBRATION AND VALIDATION

ÖU modal split (Lower Austria) (trips)

Simulated modal split (Vienna) (trips)

Simulated modal split (LowAT) (trips)

CALIBRATION AND VALIDATION

180 traffic count stations (95 in Vienna) mean relative error for peak hours ($6-9 \mathrm{~h}, 15-18 \mathrm{~h}$), city count stations: 0.34

MATSIM MODEL VIENNA

Application Example

SHARED AUTONOMOUS ELECTRIC VEHICLES FOR THE FIRST AND LAST MILE

- Concept: SAEVs can only be used in the suburbs of Vienna
- Fixed and separated areas, each with a metro station
- Research question: what is the environmental \& socio-economic impact of SAEVs?
- MATSim modules
- drt - demand responsive transport
- dvrp-dynamic vehicle routing problem
- ev - electric vehicles

IMPACT OF SAEVS

- Numbers of SAEV rides
- correlate with price level
- Waiting times
- decrease with higher fleet size
- CO2 reductions
- only sufficient if private car ownership is reduced
- Mode shifts
- towards SAEVs (and without additional policies): expected to come from active modes (walk, bicycle)

OPEN ACCESS

- Open access release of the MATSim Model Vienna
- Full population (including subpopulations)
- Network
- Facilities
- Excludes: Ariadne routing
https://github.com/ait-energy/matsim-model-vienna

RELATED LITERATURE

- Prandtstetter, M., M. Straub, and J. Puchinger, On the way to a multi-modal energy efficient route. In IECON 201339th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2013, pp. 4779-4784.
- Hössinger, R., F. Aschauer, S. Jara-Díaz, S. Jokubauskaite, B. Schmid, S. Peer, K. Axhausen, and R. Gerike, A joint time-assignment and expenditure-allocation model: value of leisure and value of time assigned to travel for specific population segments. Transportation, Vol. 47, No. 3, 2020, pp. 1439-1475.
- Schmid, B., S. Jokubauskaite, F. Aschauer, S. Peer, R. Hössinger, R. Gerike, S. R. Jara-Diaz, and K. Axhausen, A pooled RP/SP mode, route and destination choice model to investigate mode and user-type effects in the value of travel time savings. Transportation Research Part A: Policy and Practice, Vol. 124, 2019, pp. 262-294.
- Greene, W. H. and D. A. Hensher, A latent class model for discrete choice analysis: contrasts with mixed logit. Transportation Research Part B: Methodological, Vol. 37, No. 8, 2003, pp. 681-698.
- Hörl, S., Balac, M., Axhausen, K. (2018). Pairing discrete mode choice models and agent-based transport simulation with MATSim.
- Müller, J., Straub, M., Naqvi, A., Richter, G., Peer, S., \& Rudloff, C. (2021). MATSim Model Vienna: Analyzing the Socioeconomic Impacts for Different Fleet Sizes and Pricing Schemes of Shared Autonomous Electric Vehicles. Proceedings of the $100^{\text {th }}$ Annual Meeting of the Transportation Research Board

THANK YOU!

Authors of the MATSim Model Vienna (A-Z):

Christian Rudloff
Gerald Richter
Johannes Müller

 Markus Straub

