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Optimizing Swiss railway operations?
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DADA

Dynamic data driven Approaches for stochastic Delay propagation Avoidance in railways

Increase performance of railway systems (capacity and delays)
by developing intelligent real-time railway traffic control approaches,
which explicitly consider uncertainty and variability in operations

Based on a current network state,

SO .

determine traffic control actions (retiming; reordering, rerouting, cancelling,...)
e.g. should the yellow train overtake the blue?
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which proactively reduce delays and delay propagation
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Predicting train delays
A matter of handling uncertainty

Given a trafealizatiabtable, and a set of
pasttaltrwad armdfdepamweletmme observations,
S arfival and c lay distribution

time
[Schaafsma, 2009]

E’"Zl'jﬂ'Ch 28.04.2022 6



Constraints, dynamics of railway operations and a lot of influences
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Data-driven prediction approaches exploit patterns in the data
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Event-driven approaches can model system constraints, and describe
the uncertainty within railway operation dynamics
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Train Delay Prediction

. Vast literature on railway delay prediction

EENEHEN Equation

Network System mOdGlS
Markov «  When to use which model?
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General multi-step predictions Max-Plus
et feshe - event-driven
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Spanninger, T., Trivella, A., Buchel, B., & Corman, F. (2022). A review of
train delay prediction approaches. Journal of Rail Transport Planning &
Management, 22, 100312.
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Markov Chain Model

station
rt, dt, rt, dt, rt; dt; rt,
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Case Study
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Application of Markov Chain Models

States and Transitions
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Probabilistic Prediction
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What is the best Markov Chain Setting

1. Parameters to choose

2.  Evaluation of model settings

Dependency structure Delay Bins Aggregation
( Events — Events N ( Number of bins N ( Spatial N
( Processes — Processes N ( Static (domain) binning N ( Temporal N
Order of Markov Chain Adaptive binning Train/Line heterogeneity

El'HzUrich 28.04.2022 14



Dependency structure
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Events and Processes: Variability

1. Running processes
are shorter than
planned

Distribution of process time deviation Distribution of delays
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Evaluation of the prediction
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Number of Bins

Variable: Delay [ |

Variable: Process time deviation

Spatial specification
more important than
temporal

Higher likeliness with
more bins... level of 10 20 30 40
saturation Bins
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Conclusion
Markov Chain Models for Train Delay Prediction

1.

Intuitive approach to describe/predict train delay evolution
Use process time deviations instead of absolute amounts of delays

Reduce uncertainty by specification of transition probabilities
1. Spatial specification (Location heterogeneity)
2. Line specification (heterogeneity in schedules, priorities)

3. Temporal heterogeneity (peak / non-peak hours)

More bins increase the prediction performance until a point of saturation
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Stochastic Optimization

Over a time horizon of

possible decisions
Maximizing the expected
value of some performance
function, over all possible T
outcomes

Depending on control actions depending
on the state S, and the policy chosen
Depending on
the state S, Based on the new
he cost information W, ,available
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Find a policy = prd J
=

sequence of starting state 5,
The previous state And some information

Based on a current network state,
Y _ -

determine traffic control actions
(should the yellow train overtake the blue?)

O BMIMIZE

control actions

State evolves

over time based on on a stochastic process w

a set of states,
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Impact on Society
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Thank you!

- Thomas Spanninger

l’\ tspanninger@ethz.ch




