

Prediction of train delay propagation in real-time

Thomas Spanninger IVT – Transport Systems

Agenda

- 1. Group of Transport Systems
- 2. Research Project: DADA
- 3. Prediction of train delays
- 4. Markov Chain Models in Application

IVT – Transport Systems

Prof. Francesco Corman

Optimizing Swiss railway operations?

[Federal Office for Spatial Development ARE OFDT, Perspective 2040];[Dutch Railways NS, 2018]

DADA

Dynamic data driven Approaches for stochastic Delay propagation Avoidance in railways

 Increase performance of railway systems (capacity and delays) by developing intelligent real-time railway traffic control approaches, which explicitly consider uncertainty and variability in operations

which proactively reduce delays and delay propagation

Predicting train delays A matter of handling uncertainty

Constraints, dynamics of railway operations and a lot of influences

Data-driven prediction approaches exploit patterns in the data

Event-driven approaches can model system constraints, and describe the uncertainty within railway operation dynamics

Train Delay Prediction

Spanninger, T., Trivella, A., Büchel, B., & Corman, F. (2022). A review of train delay prediction approaches. *Journal of Rail Transport Planning & Management*, *22*, 100312.

- Vast literature on railway delay prediction models
- When to use which model?
- Markov Chains are ...
 - event-driven
 - stochastic
 - simple
 - interpretable

Markov Chain Model

Case Study Buchs SG – St. Margrethen SG

Application of Markov Chain Models

States and Transitions

Probabilistic Prediction

What is the best Markov Chain Setting

- 1. Parameters to choose
- 2. Evaluation of model settings

Dependency structure	Delay Bins	Aggregation
Events \rightarrow Events	Number of bins	Spatial
$Processes \to Processes$	Static (domain) binning	Temporal
Order of Markov Chain	Adaptive binning	Train/Line heterogeneity

Dependency structure

Events and Processes: Variability

- 1. Running processes are shorter than planned
- 2. 80% of runs shorter than planned, 80% quantile of absolute delays already +1 min
- Smaller variability in running time deviation than absolute delays

28.04.2022 16

for delay

Data aggregation/specification

Evaluation of the prediction

- 1. Intuitive approach to describe/predict train delay evolution
- 2. Use process time deviations instead of absolute amounts of delays
- 3. Reduce uncertainty by specification of transition probabilities
 - 1. Spatial specification (Location heterogeneity)
 - 2. Line specification (heterogeneity in schedules, priorities)
 - 3. Temporal heterogeneity (peak / non-peak hours)
- 4. More bins increase the prediction performance until a point of saturation

Stochastic Optimization

REFERENCES

Büchel, B., Spanninger, T., & Corman, F. (2021, June). Modeling Evolutionary Dynamics of Railway Delays with Markov Chains. In 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 1-6). IEEE.

Schaafsma, A. A. M., & Weeda, V. A. (2009). Operation-driven scheduling approach for fast, frequent and reliable railway services. In *Proceedings of the 3rd International Seminar on Railway Operations Modelling and Analysis (IAROR), Zurich, Switzerland*.

Spanninger, T., Büchel, B., & Corman, F. (2021, June). Probabilistic Predictions of Train Delay Evolution. In 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 1-6). IEEE.

Spanninger, T., Trivella, A., Büchel, B., & Corman, F. (2022). A review of train delay prediction approaches. *Journal of Rail Transport Planning & Management*, 22, 100312.

Thank you!

Thomas Spanninger tspanninger@ethz.ch