EHHzürich

Prediction of train delay propagation in real-time

Thomas Spanninger
IVT - Transport Systems

Agenda

1. Group of Transport Systems
2. Research Project: DADA
3. Prediction of train delays
4. Markov Chain Models in Application

IVT - Transport Systems

Prof. Francesco Corman

Optimizing Swiss railway operations?

[Federal Office for Spatial Development ARE OFDT, Perspective 2040];[Dutch Railways NS, 2018]

DADA

Dynamic data driven Approaches for stochastic Delay propagation Avoidance in railways

- Increase performance of railway systems (capacity and delays) by developing intelligent real-time railway traffic control approaches, which explicitly consider uncertainty and variability in operations

which proactively reduce delays and delay propagation

Predicting train delays

A matter of handling uncertainty

Constraints, dynamics of railway operations and a lot of influences

Data-driven prediction approaches exploit patterns in the data

Event-driven approaches can model system constraints, and describe the uncertainty within railway operation dynamics

Train Delay Prediction

Spanninger, T., Trivella, A., Büchel, B., \& Corman, F. (2022). A review of train delay prediction approaches. Journal of Rail Transport Planning \& Management, 22, 100312.

- Vast literature on railway delay prediction models
- When to use which model?
- Markov Chains are ...
- event-driven
- stochastic
- simple
- interpretable

Markov Chain Model

$$
A T_{i}=D T_{0}+\sum_{k=1}^{i} r t_{k}+\sum_{k=1}^{i-1} d t_{k}
$$

Markov Property

$$
P\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right)=P\left(x_{i} \mid x_{i-1}\right) \quad x_{i+1}=T \cdot x_{i}
$$

Case Study

Buchs SG - St. Margrethen SG

ETHzürich

Application of Markov Chain Models

States and Transitions

Probabilistic Prediction

Station 2

Station 3

What is the best Markov Chain Setting

1. Parameters to choose
2. Evaluation of model settings

Dependency structure

Events and Processes: Variability

1. Running processes are shorter than planned
2. 80% of runs shorter than planned, 80\% quantile of absolute delays already +1 min
3. Smaller variability in running time deviation than absolute delays

Small margins for delay absorption

[^0]
Data aggregation/specification

 SBB

Evaluation of the prediction

Number of Bins

Spatial specification more important than temporal

Higher likeliness with more bins... level of saturation

Variable: Delay	Variable: Process time deviation

Conclusion
 Markov Chain Models for Train Delay Prediction

1. Intuitive approach to describe/predict train delay evolution
2. Use process time deviations instead of absolute amounts of delays
3. Reduce uncertainty by specification of transition probabilities
4. Spatial specification (Location heterogeneity)
5. Line specification (heterogeneity in schedules, priorities)
6. Temporal heterogeneity (peak / non-peak hours)
7. More bins increase the prediction performance until a point of saturation

Stochastic Optimization

Impact on Society

REFERENCES

Büchel, B., Spanninger, T., \& Corman, F. (2021, June). Modeling Evolutionary Dynamics of Railway Delays with Markov Chains. In 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 1-6). IEEE.

Schaafsma, A. A. M., \& Weeda, V. A. (2009). Operation-driven scheduling approach for fast, frequent and reliable railway services. In Proceedings of the 3rd International Seminar on Railway Operations Modelling and Analysis (IAROR), Zurich, Switzerland.

Spanninger, T., Büchel, B., \& Corman, F. (2021, June). Probabilistic Predictions of Train Delay Evolution. In 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 1-6). IEEE.
Spanninger, T., Trivella, A., Büchel, B., \& Corman, F. (2022). A review of train delay prediction approaches. Journal of Rail Transport Planning \& Management, 22, 100312.

ETHzürich

Thank you!

Thomas Spanninger tspanninger@ethz.ch

[^0]: ETHzürich

