

Calibration of MATSim in the District of Liège (Belgium) using Mobile Phone-based OD-matrices: Preliminary Results

Suxia Gong¹, Ismaïl Saadi^{1,2,3}, Jacques Teller¹, Mario Cools^{1,4,5}

¹LEMA research group, Urban & Environmental Engineering Department, University of Liège, Belgium

² IFSTTAR, COSYS-GRETTIA, University Gustave Eiffel, France

³ F.R.S.-FNRS, Brussels, Belgium

⁴ Faculty of Business Economics, Hasselt University, Belgium

⁵ Department of Information Management, Modelling and Simulation, KU Leuven, Belgium

31.05.2022

OVERVIEW

✓ Data ✓ Methods ✓ Progress ✓ Outlook

Energy & Environment Invent the next generation of tools to boost the energetic and

environmental transition

LE FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL ET LA WALLONE INVESTISSENT DANS VOTRE AVENR 2

www.enmieux.co

1. Data

Data	Spatial resolution of the finest granularity	Geographical Scale	Timeframe	
BELDAM census 2011)	Household postal code	Belgium	2011	
Mobile phone data	Sub-commune	Province of Liège in Belgium	15.01.2018 - 08.02.2018, 23.02.2018 - 18.03.2018	
STATBEL Population distribution	Statistical sectors	Belgium	2018	
STATBEL Population 1km2 grid	100m by 100m grid	Belgium	2016	

14

Kilometers

1.2 Mobile Phone Zones – OD matrices

LIÈGE université **Urban & Environmental** LEMA Engineering

24-h number of trips for each pair of origin–destination zones •

20 21 22

weekdayt

weekdav2

weekday3

veekdav4

weekday!

veekdav6

weekdayi

weekdav1

eekday2

veekdav3

veekdav4

veekdav!

weekdave veekdavi

1.3 Mobile Phone Cells – population aggregation

360 sub-communes

310 mobile phone zones

1.4 Mobile Phone Cells – mean nrof_trip per ind.

Daily total mean number of trips arrival/inhabitants Regular week Daily total mean number of trips departure/inhabitants Regular week

2. Methods

• a synthetic population augmented with home-based daily activity chains has been prepared

2.1 Travel survey

• First leave home activity and time

The first leave home purpose by population group in Liège Province

First leave home time by purpose in Liège Province

Ο

ς

9

v

Ŵ

2.1 Travel survey

• Mode choice

Mode split by distance and purpose in Liège Province

LIÈGE université Urban & Environmental Engineering

LEMA

2.2 Travel survey and Mobile phone-OD matrices

LIÈGE université Urban & Environmental Engineering

• Trip length distributions

3. Mobile phone-OD matrices to distribute trip

• Known: at which day which o'clock number of trips happened within Municipalities or between Municipalities

Complete daily travel plans

- Nrof_trips per mode in OD matrix
- Mean activity duration
- Travel cost matrix per mode and car_ownship

Starting point: go through mobile od-trips origin by origin using population's current location as the reference

oriain	destination	weekdav nr	epoch	hour nr	nrof trip
62003	62003		06:00:00	6	815
62003	62003	1	07:00:00	7	614
62003	62003	1	08:00:00	8	174
62003	62003		09:00:00	9	618

Index	ade	aender	status	licence	car inHH	munitv nr	munity	sequence	leaH time
3	0	1	1	0	1	408	62063	HLH	7.66667
4	3	1	3	1	1	404	62032	HWH	7.16667
5	0	Θ	1	0	1	412	62099	HEH	8.33333

3. MATSim (Multi-Agent Transport Simulation).

The objective is create agents' daily activity plans as an initial demand for MATSim

Inputs:

- A config file
- A population file
- A network

4. Outlook

1). Improve the trip distribution using mobile phone data

2). Extend the length of activity sequence

3). Feed land use features and matrix of commutes to the smart location choice

Autres Usages
Production primaire
Production secondaire
Production tertiaire
Réseaux De Transport, Logistique et Réseaux D'Utilité Publique
Usage Résidentiel
Zones Naturelles

Thank you!

suxia.gong@uliege.be