SIMULATIONS OF DIFFERENT SCENARIOS OF THE USE OF AUTONOMOUS VEHICLES WITH A MULTI-AGENT MODEL

MATHILDE MOLINER, OUASSIM MANOUT, NICOLAS SAUNIER, FRANCESCO CIARI

MUM 2022

MAY 31, 2022, LEUVEN

What could be impacts of autonomous vehicles ?

Answer throught a agent-based model : MATSim

MUM 2022

31/05/22 2

SCENARIOS

private

shared

MUM 2022

pooled

MODEL – DVRP CONTRIBUTIONS

private

Adaptation from the taxi contribution

New dispatcher : match the vehicle and the request with the household_id of the agent

shared

Contribution taxi from M. Maciejewski, "Dynamic Transport Services," in The Multi-Agent Transport Simulation MATSim, pp. 145– 152, Axhausen, Kay W. and Horni, Andreas and Nagel, Kai, 2016.

Dispatcher: rule-based

pooled

Contribution DRT J. Bischoff, M. Maciejewski, and K. Nagel, "City-wide shared taxis : A simulation study in Berlin," in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 275–280, 2017.

Dispatcher : Insertive

SCENARIO DESCRIPTION

- Fleet size, how many vehicles and where ?
- Score of the new mode : $U_{AV} = C + \beta_{time} * time + \beta_{km} * distance + price$

• With $price = \begin{cases} base fare + distance fare * distance + time fare * time \\ min fare \end{cases}$

SCENARIO DESCRIPTION

Scenario	private	shared	pooled
Fleet size	1 vehicle/household Front of each house	10 % of demand On residential links in the island	10 % of demand On residential links in the island 4 seats
Distance cost	Same as conventional car	Same as conventional car + 30 % of margin	(Same conventional as car + 30 % of margin) / occupancy
Perception of time on boars	¾ of value for public transit	¾ of value for public transit	Same as public transit
Min fare		Distance cost * Q1_distance	Distance cost * Q1_distance

MANAGE NON ACCESS TO PRIVATE VEHICLES

- Fleet of autonomous vehicles created on the population, PAV_id = household_id
- Avoid this mode choice for unmotorized agent : creation of subpopulation

MONTREAL CASE

Metropolitain area of Montreal : 4 millions inhabitants 4300 km²

Scenario 5 % in MATSim : 159 000 agents 300 000 links 123 000 nodes

31/05/22

8

MAIN RESULTS

- Modal share
- Congestion
- VKT
- Gases emissions
- Service level

9

MODAL SHARE

Conservation of modal share

10

VEHICLE KILOMETER TRAVELLED

Scénario	0 - VC	1 - PAV	2 - SAV	3 - PSAV
VKT (10 ⁶ km)	2.98	5.11 + 71%	5.12 + 72%	4.14 +39 %
%km à vide	-	31	31	21
Conso. Énergie (10 ⁶ MJ) *	35.5	54.7 +54 %	38.1 +8 %	28.6 - 19 %
Émission GES (10 ⁹ g GEG) *	2.36	3.64 + 54%	2.94 + 25%	2.21 -6 %

MUM 2022

31/05/22

11

TRAVEL AND WAITING TIME

FLEET USAGE

Fleet usage for shared vehicles

EMPTY_DRIVE OCCUPIED_DRIVE STAY

MUM 2022

31/05/22 13

WAITING TIME FOR SHARED FLEET

INCREASE FLEET SIZE TO 20% OF DEMAND

31/05/22

15

MUM 20<u>22</u>

CONCLUSION

	PAV	SAV	PSAV
Impact on public transit and active modes			
Individual trip distance			
Vehicle distance			
Congestion			
Energy consumption			\odot
GHG emission			
Maximisation of vehicle utilisation	$\underbrace{\bullet}$	\bigcirc	$\underbrace{\bullet}$
Empty trips			\bigcirc
Waiting time			

16

FUTHER WORK AND IMPROVEMENT

- Good size for the fleet
- Score adjusment (calibration)
- Implement parkings
- Comparision with the city of Lyon
- Include carsharing between household for private autonomous vehicles based on DRT

CHALLENGE IN COMPUTATION TIME

Computation time :

- Based scenario of Montreal : 3 min per iteration
- Taxi contribution : 2h30 per iteration
- DRT contribution : 9h per iteration

THANK YOU FOR YOUR ATTENTION