MATSim User Meeting, KU Leuven, Belgium, 2022-05-31

Evaluation of low traffic neighborhoods: the Paris case study

Biao Yina, Azise Oumar Diallob, Tatiana Sereginaa, Nicolas Coulombela

^aLVMT, Ecole des Ponts ParisTech, France

bLAET, Ecole Nationale des Travaux Publics de l'Etat, France

Context

Cities face multiple challenges:

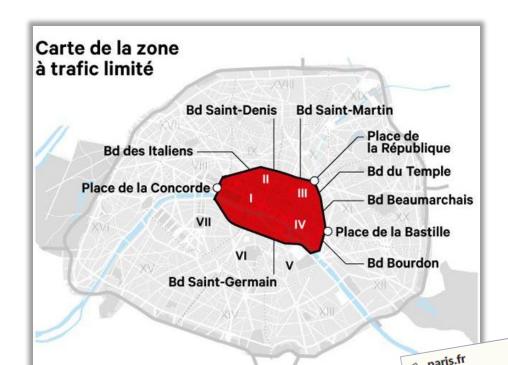
- environmental transition: climate change, air quality
- accessibility: recent focus on local accessibility (15-minute city)
- quality of life

Increasing interest for policies limiting traffic

- low emission zones → air quality
- low-traffic neighborhoods → local accessibility, air quality, climate change

But possible rebound effects?

The case of Paris


☐ Contemplated low-traffic neighborhood in 2024

«LES ÉCHOS» / SOURCE : M

Germain.

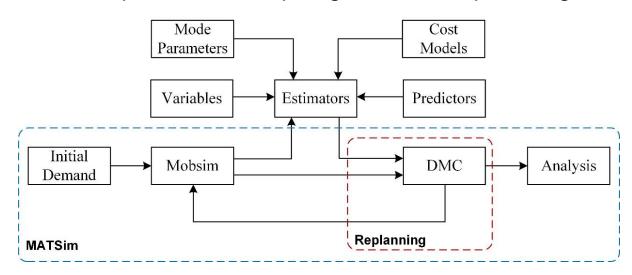
LesEchos

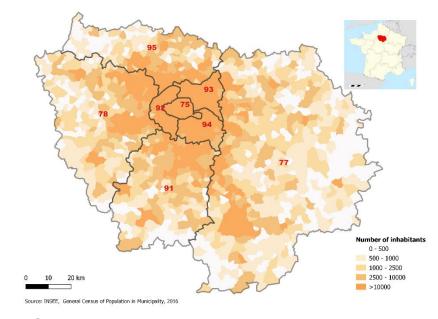
Entreprises Finance - Marchés Bourse Monde Tech-Médias Start-up Politique

Les restrictions de circulation automobile dans le centre de Paris repoussées à 2024

D'abord annoncée pour le premier semestre 2022, l'entrée en vigueur d'une « zone apaisée » dans le centre de Paris interviendra finalement en 2024, a annoncé jeudi la mairie. Mais le préfet de police de Paris, Didier Lallement, a exprimé dans la foulée ses « fortes réserves sur le projet tel qu'envisagé ».

Outline


- 1. Configuration of intermodality
- 2. Calibration
- 3. Paris case study
- 4. Results
- 5. Discussion and conclusion



1. Configuration of intermodality

- ☐ Overview of Eqasim
 - A novel **Discrete Mode Choice (DMC)** extension under the MATSim framework
 - Pipeline of synthetic population generation (Île-de-France, Sao-Paulo, Los Angeles, etc)
 - Calibrated with 2010 HTS (EGT 2010) in Île-de-France scenario
 - Open source: https://github.com/eqasim-org

Coupling DMC module in MATSim (Hörl and Balac, 2021)

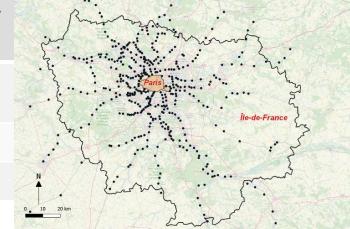
Île-de-France (~12 million inhabitants)

1. Configuration of intermodality

☐ Add two forms of intermodalities into Eqasim

Park & Walk

- Activate walk-car-walk trips
 - by setting AccessEgressType. accessEgressModeToLink;
- Compute accessEgressWalkTime within a multi-stage car trip


Park & Ride (Car & PT)

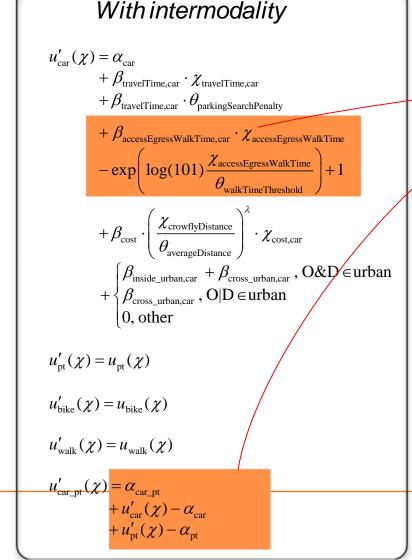
- Adapt the P&R module (Diallo's PhD thesis) to Île-de-France scenario
- Create the new routing modes of car_pt and pt_car with a tour constraint
- Implement 500 P&R facilities (outside Paris) in Île-de-France

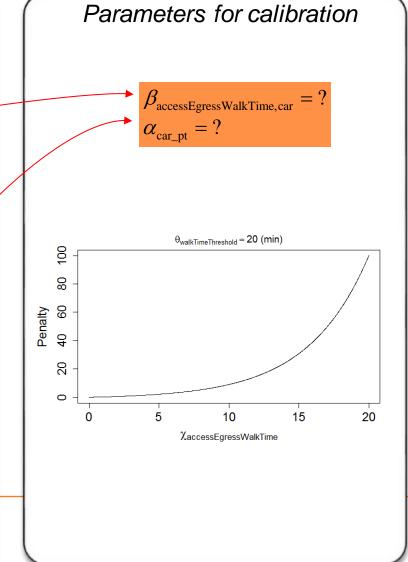
Our scenarios

Scenario	Walk access/egress for car trips	Parking & Ride (Car & PT) trips
Reference_default (Eqasim)	No	No
Reference	Yes	Yes
Driving restriction zone		Yes

P&R in Île-de-France

1. Configuration of intermodality

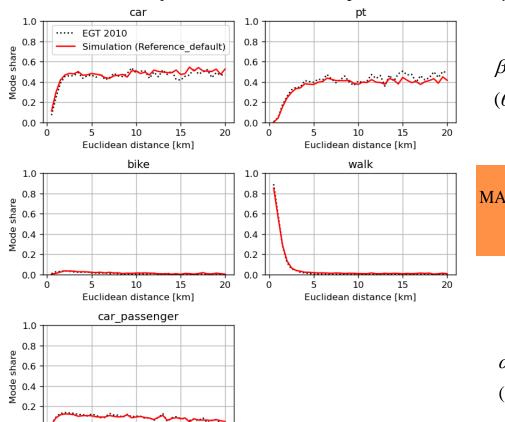

☐ DMC utility functions in Île-de-France scenario


$$\begin{split} u_{\text{car}}(\chi) &= \alpha_{\text{car}} \\ &+ \beta_{\text{travelTime,car}} \cdot \chi_{\text{travelTime,car}} \\ &+ \beta_{\text{travelTime,car}} \cdot \theta_{\text{parkingSearchPenalty}} \\ &+ \beta_{\text{travelTime,walk}} \cdot \theta_{\text{accessEgressWalkTime}} \\ &+ \beta_{\text{cost}} \cdot \left(\frac{\chi_{\text{crowflyDistance}}}{\theta_{\text{averageDistance}}} \right)^{\lambda} \cdot \chi_{\text{cost,car}} \\ &+ \left\{ \beta_{\text{inside_urban,car}} + \beta_{\text{cross_urban,car}}, \text{ O&D } \in \text{urban} \\ &+ \left\{ \beta_{\text{cross_urban,car}}, \text{ O} \middle| \text{D} \in \text{urban} \\ 0, \text{ other} \\ \end{split} \right.$$

$$\begin{split} u_{\text{pt}}(\chi) &= \alpha_{\text{pt}} \\ &+ \beta_{\text{numberOfTransfers}} \cdot \chi_{\text{numberOfTransfers}} \\ &+ \beta_{\text{inVehicleTime}} \cdot \chi_{\text{inVehicleTime}} \\ &+ \beta_{\text{transferTime}} \cdot \chi_{\text{transferTime}} \\ &+ \beta_{\text{accessEgressTime}} \cdot \chi_{\text{accessEgressTime}} \\ &+ \beta_{\text{cost}} \cdot \left(\frac{\chi_{\text{crowflyDistance}}}{\theta_{\text{averageDistance}}} \right)^{\lambda} \cdot \chi_{\text{cost,pt}} \end{split}$$

$$\begin{split} u_{\text{bike}}(\chi) &= \alpha_{\text{bike}} + \beta_{\text{travelTime,bike}} \cdot \chi_{\text{travelTime,bike}} \\ &+ \beta_{\text{age,bike}} \cdot \text{max}(0, \quad \alpha_{\text{age}} - 18) \\ &+ \begin{cases} \beta_{\text{inside_urban,bike}}, \text{ O\&D} \in \text{urban} \\ 0, \text{ other} \end{cases} \end{split}$$

$$u_{\text{walk}}(\chi) = \alpha_{\text{walk}} + \beta_{\text{travelTime.walk}} \cdot \chi_{\text{travelTime.walk}}$$



2. Calibration

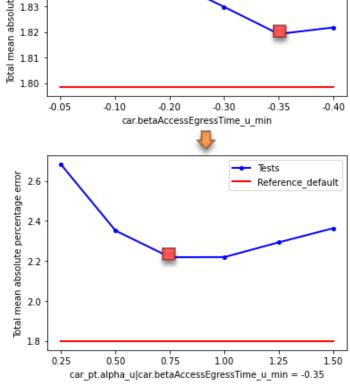
5 10 15 Euclidean distance [km]

☐ The two parameter adjustments (1% population in IDF)

$$\beta_{\text{travelTime,walk}} = -0.15$$
 $(\theta_{\text{accessEgressWalkTime}} = 4)$

1.86

1.85 1.84


ParisTech

MAPE =
$$\sum_{i} \sum_{j} \frac{\left| \operatorname{Sim}_{i,j} - \operatorname{HTS}_{i,j} \right|}{\left| \operatorname{HTS}_{i,j} \right| \operatorname{DC} \right|},$$
$$(i \in M, j \in \operatorname{DC})$$

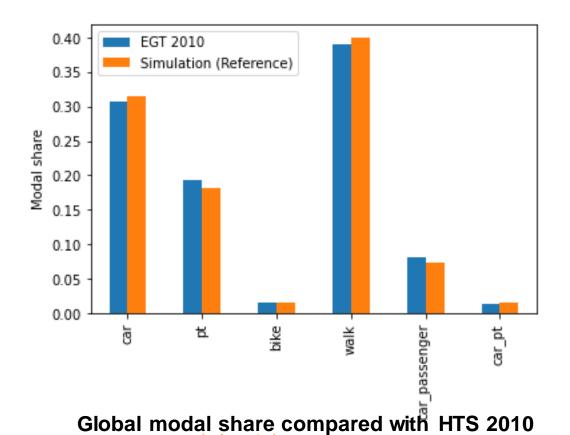
$$\alpha_{\text{car}} + \alpha_{\text{pt}} = 1.35$$

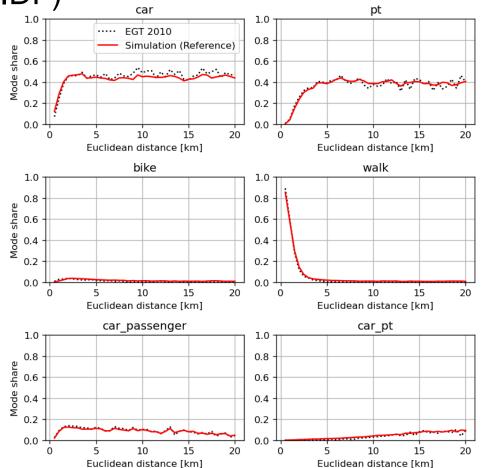
$$(\alpha_{\text{car}} = 1.35, \alpha_{\text{pt}} = 0)$$

Tests

Reference default

Tests with intermodality


Calibrated modal shares by distance in Île-de-France (default: without intermodality)

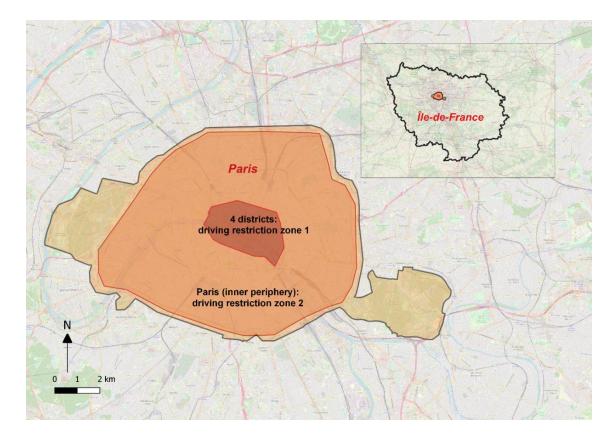


2. Calibration

- ☐ Parameter verification (5% population in IDF)
 - car.betaAccessEgressWalkTime = -0.35
 - car_pt.alpha = **0.75**

Calibrated modal shares by distance in Île-de-France (with intermodality)

ParisTech


3. Paris case study

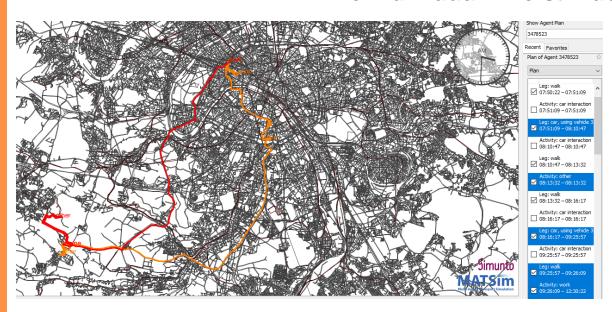
□ Scenario

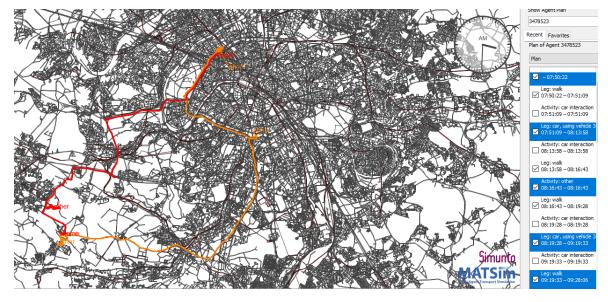
- Case 1: 4 inner districts
- Case 2: all Paris
- Permission:
 - only residents can drive in the zone
 - vehicle type: only passenger cars

☐ Configuration

- Population file: sub-population = resident / non-resident
- Network file: remove "car" from links in DRZ and add "carInternal" for all links
- Mode availability: replace "car" by "carInternal" for residents
- Set carInternal the same attributes as car (parameters in DMC, routing mode, tour constraint, etc.)

Two cases of driving restriction zone in Paris





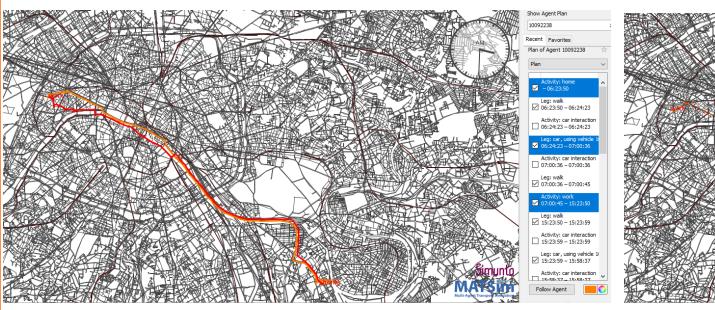
3. Paris case study

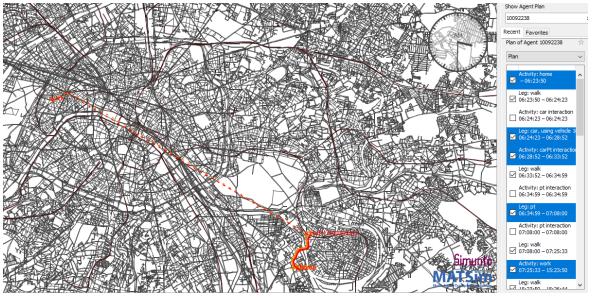
□ Example of travel behaviors before/after driving restriction zone (DRZ) in Paris

The individual who still uses the car: id = 3478523

Before DRZ (car for work)

After DRZ (car for work)





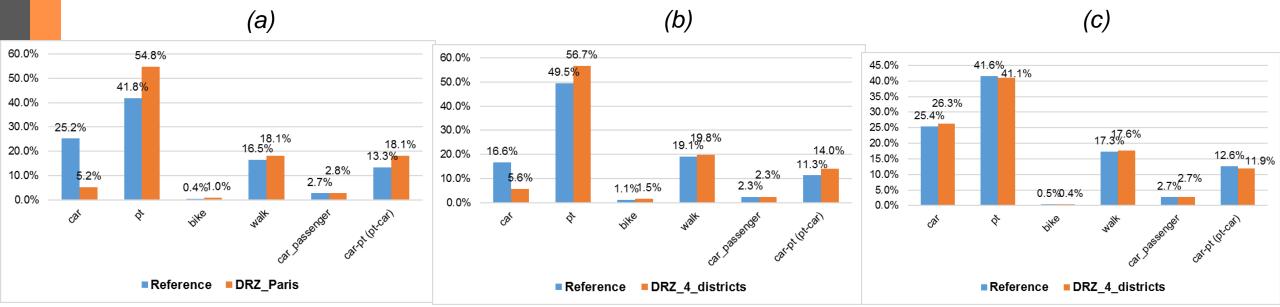
3. Paris case study

□ Example of travel behaviors before/after DRZ in Paris

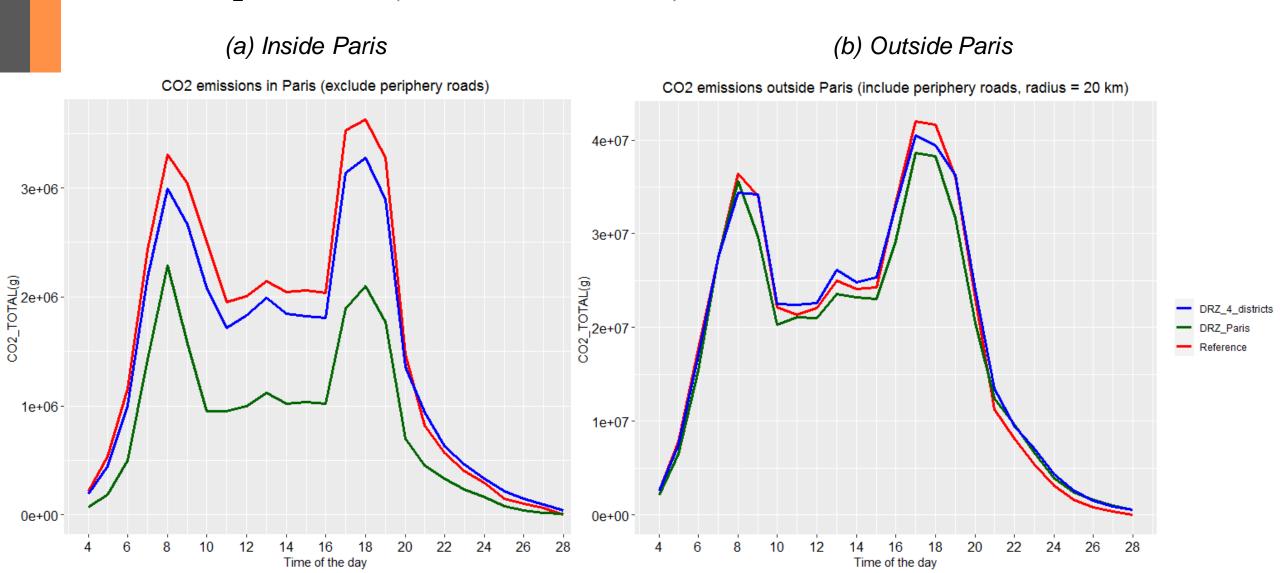
The individual who changes the modes: id = 10092238

Before DRZ (car for work)

After DRZ (car+pt for work)



■ Modal shares

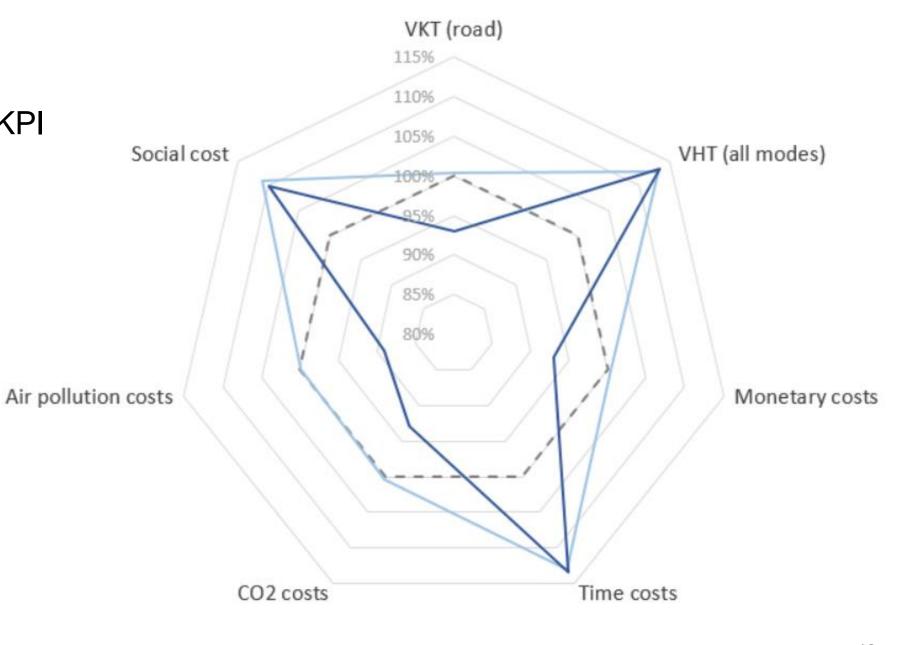

5% population in Île-de-France (~ 2.0 million trips)

	car	pt	bike	walk	car_passenger	car + pt
Reference	31.5%	18.1%	1.5%	40.0%	7.3%	1.56%
DRZ_4_districts	31.3% (+0.1%*)	18.2%	1.5%	40.1%	7.3%	1.50%
DRZ_Paris	27.8% (+2.3%*)	19.0%	1.5%	40.3%	7.3%	1.73%

^{*} DRZ residents' carInternal trips

CO₂ emissions (based on HBEFA 4.1)

Air pollutants (g/day)


	Paris region (R<=20 km)	Paris			Outside of Paris (R<=20 km)		
	CO2	NOx	SO2	PM2.5	NOx	SO2	PM2.5
Reference	5.12x10 ⁸	1.19x10 ⁵	199.67	964.65	1,43x10 ⁶	2.37x10 ³	1.07x10 ⁴
DRZ 4 districts	5.17x10 ⁸ (+1,0%)	1.08x10 ⁵ (-9,2%)	181.54 (-9,1%)	880.32 (-8,7%)	1,45x10 ⁶ (+1.8%)	2.41x10 ³ (+1.8%)	1.09x10 ⁴ (+2.0%)
DRZ Paris	4.67x10 ⁸ (-8,8%)*	0.61x10 ⁵ (-48,7%)	105.08 (-48,7%)	546.76 (-47,4%)	1,35x10 ⁶ (-5.6%)	2.24x10 ³ (-5.5%)	1.02x10 ⁴ (-4.9%)

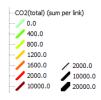
^{*} Values in parenthesis are those compared with reference.

☐ Socio-economic KPI

5. Discussion and conclusion

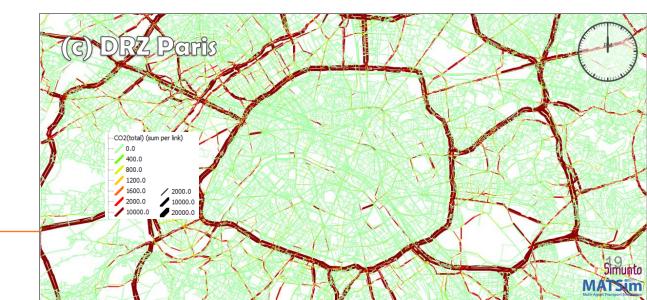
■ Main findings

- Projected scenario (4 districts)
 - Limited impact on modal shift, thus negligible environmental benefits
 - Even increase in CO₂ emissions
 - Very costly in terms of time
- Ambitious scenario (Paris)
 - More effective, with substantial environmental benefit
 - For a barely greater time cost than in the previous scenario
 - Increase in social cost
 - A x4 valuation of environmental benefits would be needed to offset the extra time cost
- .Impacts greatly vary inside/outside Paris -> equity issues


☐ Future work

- Add parking contraints
 - searching parking locations (road-side lots or garages), capacity limitation and parking fees
- Generalize intermodality with other modes (e.g. micromobility + PT)
- Calibrate parameters with real-time data from GoogleAPI
- Investigate more detailed DRZ policies, e.g., only prohibit passing vehicles (except taxis, buses, emergency and rescue services, ridesharing vehicles, person with reduced mobility)


Thank you for your attention! Questions?



- ☐ Traffic emissions based on HBEFA 4.1 (before scaling)
 - CO₂ (g/link/day) on the road network

