
A MATSim model for a low carbon future mobility in the UK context 

The UK faces a considerable challenge in decarbonising transport. At Newcastle University, we are 

exploring the use of MATSim to meet that challenge and deliver a net zero transport future. In this 

abstract, we describe an ongoing PhD research project exploring the role of infrastructure 

interventions and behavioural changes to enable the use of sustainable transport modes in the Tyne 

and Wear region (North East of England).  This PhD research project proposes four novel innovations 

to simulate transport scenarios with MATSim in the UK context: 1) a new, open-access and very 

detailed synthetic population methodology for any region in the UK; 2) a new network attribute 

(“quietness”) inclusion ranking links for cycling based on their built characteristics; 3) a bicycle 

contribution code update to consider the “quietness” attribute; and 4) tailored “stick” and “carrot” 

scenarios to test urban mobility policies to enable the agents to use active travel modes (walking and 

cycling) instead of private motor vehicles in the area of study. 

The fundamental underpinning of transport Agent-Based Models (ABMs) is a synthetic population of 

agents that represent transport demand in the model region, with individual socio-demographic 

characteristics and activity plans. Socio-demographic attributes were generated combining two open-

source tools: SPENSER (Lomax et. al, 202) and synthetic_population_dev (Alvarez, 2023). The first 

generates a synthetic population with four attributes (age, sex, ethnicity group and household ID), 

using 2011 UK census data that can be projected up to the year 2040 (in our case, 2019). The latter, 

allows generating eight additional attributes to define family dependencies (marital status, children 

dependency), spending power (economic activity, occupation, annual gross income) and mobility 

access (driving license, car access and bicycle access), based on 2011 UK census and 2019 statistical 

data. The implementation of these eight attributes is a fundamental task to represent individuals more 

accurately and to assign them activity plans based on their characteristics. The activity plans were 

obtained from the National Travel Surveys (NTS), the primary source of data on personal travel 

patterns by residents of England, providing information on how, why, when and where people travel, 

factors affecting travel, and individual socio-demographic characteristics. Individuals from the 

synthetic population were matched with NTS individuals based on similar socio-demographic 

characteristics. The assumption was that individuals with similar socio-demographic attributes 

perform similar activities during a typical working day. Additionally, individuals from the same 

household in the synthetic population were matched, whenever possible, with NTS individuals sharing 

the same household to allow interactions between individuals from the same dwelling (e.g. a parent 

accompanying a child to school). This provides a more realistic representation of the population during 

their daily activities. Geospatial locations were assigned applying Spatial Interactions Modelling (SIM) 

techniques, where competitiveness, attractiveness and distances between previous and following 

activities were considered, using OpenStreetMap (OSM) buildings classified with OSMOX (Arup, 2021) 

in different categories, based on their tags. Additionally, individuals from the same household and 

sharing activities (e.g., a child going to school and an adult accompanying the child) were set to go to 

the same location. 

Once the synthetic population was generated, a combination between the road network used by the 

agents and the public transport information of the area of study was required. Roads were extracted 

from OSM, while public transport information was obtained from UK GTFS datasets. Elevation data 

was incorporated to nodes and gradient to links, using a 10-meter resolution Digital Elevation Model 

(DEM). Additionally, a new “quietness” attribute (Cyclestreets, 2023) was added to the network. It 

ranks each link for cycling purposes depending on its characteristics (e.g., road type, cycle 

infrastructure, path width, barriers, surface type and quality, kerbs). The values are ranked between 

0.0 to 1.0, being 0.0 very bad conditions for cycling (e.g., motorway) and 1.0 excellent (e.g., dedicated 



cycle path). To include this information in the model, MATSim’s bicycle contribution code (Ziemke, 

2019) was updated during a research stay at Technical University of Dresden (TUD).  

Once synthetic population and network were generated, a MATSim scenario with a 20% sample 

population (around 200,000 agents) was set up. Public transport modes were simulated based on their 

schedules (i.e., deterministic), allowing walking access and egress to all transit stops, and also cycling 

to railway stations. The updated bicycle contribution code was enabled, with the new “quietness” and 

the existing “gradient” values used. Their values were calibrated until results showed that agents were 

choosing smooth (based on the gradient) and safe (based on the quietness) routes, being validated 

against real bicycle counts in specific links in the area of study.  

The base-case scenario was calibrated and validated against external statistical datasets (e.g., 

transport split modes; average trip time and distance by transport mode; transport split modes when 

commuting to work only; percentage of commuting trips per range of distance; average trip time and 

distance for educational purpose; vehicle counts per hour in different roads; and percentage of 

vehicles en-route per hour) from different sources (DfT, TADU, NTS). Currently, the project is at this 

stage. The model will be considered validated and ready to test different urban mobility policies when 

differences between simulated results and statistical data are minimum. 

The tailored urban mobility policies to simulate have been classified in two categories: “stick” and 

“carrot”. The first are those where the agents are penalised when using private motor vehicles, while 

the latter are those where the agents are rewarded or offered new alternatives to use active modes. 

On the one hand, “stick” policies are two: the definition of Low Traffic Neighbourhoods (LTNs), where 

access restrictions in residential areas will apply to those agents using cars; and distance-based tolling 

or “pay-as-you drive”, where the agents will pay a monetary penalty per kilometre driven. On the 

other hand, “carrot” policies are three: the implementation of fully segregated and safe cycle paths in 

the area of study, reducing the capacity of each link proportionally; a monetary reward per kilometre 

walked or cycled; and the implementation of secure cycle hubs next to Metro stations to allow the 

use of bike and metro combined in trips. Results from each scenario will be compared against the 

base-case scenario to identify differences in agents’ behaviour and explore shifts towards sustainable 

modes of transport. Criteria to assess the success or failure of the simulated policies could include the 

reduction in the number of vehicles on the roads, the reduction of carbon emissions generated, or the 

change in the number of kilometres walked/cycled by agents and their impact in the economy and 

health. 
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