

Engineering and Physical Sciences Research Council

A MATSim model for a low carbon future mobility in the UK context

David Alvarez Castro

() /DACNC/

in /d-alv/

ightary with the set of the set

@David_AlvCas

UKRI EPSRC Supervisory team Alistair Ford Philip James Roberto Palacín Dominik Ziemke

1. PhD project aims

To identify

- infrastructure interventions
- changing human behaviour

to **reduce GHG emissions** in urban areas in the Tyne and Wear region of England (blue area on the map) and enable the agents the use of **active modes**.

1. PhD project aims

To identify

- infrastructure interventions
- changing human behaviour

to **reduce GHG emissions** in urban areas in the Tyne and Wear region of England (blue area on the map) and enable the agents the use of **active modes**.

Four innovations to simulate transport scenarios with MATSim in the UK context:

- a new, open-access and very detailed synthetic population 1) methodology for any region in the UK;
- an additional network attribute ("quietness") 2)
- a bicycle contribution code update 3)
- tailored "stick" and "carrot" scenarios

100

Census 2011 ONS 2019 National Travel Survey OpenStreetMap A simplified digital twin of the actual population (2019).

2.6 million inhabitants in area of study

Demand				
	Individual	Family dependencies	Mobility	Spending
Curatheatic negative	characteristics	Marital status	access	power
Synthetic population	Person ID		Driving licence	Economic activity
Socio-demographic	Household ID	Children dependency	Car access	Occupation
Activity plan	Age		Bike access	Annual Gross Income
	Sex			

Tools: SPENSER platform (UoL) Own developed codes (NU) PAM (Arup) OSMOX (Arup)

Datasets: Census 2011 ONS 2019 National Travel Survey OpenStreetMap

University of Nottingham

UK | CHINA | MALAYSIA

Demand	Individual	Family dependencies	Mobility	Spending
Synthetic population	Person ID	Marital status	Driving licence	Economic activity
Socio-demographic	Household ID	emarch dependency	Car access	Occupation
Activity plan	Age		Bike access	Annual Gross Income
	Sex			
Tools: SPENSER platform (UoL) Own developed codes (NU) PAM (Arup) OSMOX (Arup)				
Datasets: Census 2011 ONS 2019 National Travel Survey OpenStreetMap				
	£	🗟 National Travel Sur	rvev 😂 🚔	$ \rightarrow $
Home				

National Travel Survey (NTS). Link: <u>https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=7553</u>

National Travel Survey (NTS). Link: https://beta.ukdataservice.ac.uk/datacatalogue/studies/study?id=7553

Research Council

OSMOX (Arup). Link: <u>https://github.com/arup-group/pam</u> OSMOX (Arup). Link: <u>https://github.com/arup-group/osmox</u> OpenStreetMap. Link: <u>https://download.geofabrik.de/</u>

A simplified digital representation of the road and public transport network

Newcastle University

3. 1. Cycleability rating

Cycleability rating

Factors included:

- Road type
- Cycle infrastructure
- Path widths/quality
- Barriers, obstructions
- Land ownership
- Surface type and quality
- Kerbs

<pre><iink 435.0"="" freespeed="</pre></th><th>4.4705 capacity-" from="5223/35686025143/45" id="135000" length="59.8291/1039/853" permianes-"1.0<="" th="" to="5223/356852/8458531"></iink></pre>	
<attributes></attributes>	
<attribute class="java.lang.String" name="cyclable">1</attribute>	
<attribute class="java.lang.String" name="geometry">ibc}eroAooina}gB{ncpE_o [cjqwCow~Z</attribute>	Values between 0.0 and 1.0
<attribute class="java.lang.String" name="osm:way:highway">residential</attribute>	
<attribute class="java.lang.String" name="osm:way:maxspeed">20 mph</attribute>	
<pre><attribute class="java.lang.String" name="osm:way:osmid">67624770</attribute></pre>	0.0. very poor
<attribute class="java.lang.String" name="quietness">0.6</attribute>	0.0. very poor
<attribute class="java.lang.String" name="slope">-0.018093156425236068</attribute>	1.0: excellent

Cyclestreets. Cycleability ratings https://bikedata.cyclestreets.net/cycleability/

Bicycle contribution (Ziemke et al, (2019))

Extension of the agent-based transport simulation framework MATSim for bicycle traffic.

- Road comfort (OSM tags: surface, highway, smoothness)
- Road infrastructure type (OSM tag: highway)
- Road gradient (DEM)

Bicycle contribution (Ziemke et al, (2019))

Extension of the agent-based transport simulation framework MATSim for bicycle traffic.

- Road comfort (OSM) (surface, highway, smoothness)
- Road infrastructure type (OSM) (highway)
- Road gradient (DEM)
- Road quietness (Cyclestreets)

Marginal utility of quietness

 $\beta_{quietness(a)} = \beta_{max quietness(a)} \cdot (1 - quietness(a))$

5. MATSim simulation. Calibration

Parameter	Values
Population sample	20%
Number of iterations	1,500
Controler	Qsim
Modes	car, car passenger, bike, walk, PT (bus. rail, metro, ferry)
Car use	Only by those with access to car: considerCarAvailability (true)
PT	Deterministic, SwissRailRaptor, SBBPt, useCapacityConstraints (false), access and egress (walk)
Bicycle extension	Marginal utility of comfort (0.0), infrastructure (0.0), gradient (-0.02), quietness (-0.035)
Strategies	80%, ReRoute (0.1), TimeAllocationMutator (0.1), SubtourModeChoice (0.1), ChangeExpBeta (0.7)
ASC	Car: -0.37 Car_passenger: -1.7 Bike: -1.1 Walk: 0.0 Bus: -7.2 Rail: -0.001 Subway: -0.001 Ferry: -0.001

5. MATSim simulation. Validation results

% of transport modes used (school trip only)

% of transport modes used

% of transport modes used (commuting only)

Average trip time (min) per transport mode

Average trip distance (km) per transport mode

5. MATSim simulation. Validation results

5. MATSim simulation. Validation results

7. Tailored "stick" and "carrot" scenarios

The phrase "**stick and carrot**" is a metaphor for the use of a combination of <u>reward</u> and <u>punishment</u> to induce a desired behaviour (Wikipedia).

1. Ultimate cycle network scenario

Carrot scenario:

Duplicated network only allowed for bikes

Quietness = 1.0 (fully safe and segregated cycle paths)

Transport mode	Change
Car (all)	- 0.52 %
PT	+ 0.37%
Walk	- 0.59%
Bike	+ 0.74%

1. Ultimate cycle network scenario

Carrot scenario:

Duplicated network only allowed for bikes

Quietness = 1.0 (fully safe and segregated cycle paths)

Stick + carrot scenario:

Carrot scenario

+

Flow capacity reduced proportionally (no. of lanes) to transfer road car space to cycle paths

Transport mode	Change
Car (all)	- 0.52 %
РТ	+ 0.37%
Walk	- 0.59%
Bike	+ 0.74%

Transport mode	Change
Car (all)	- 1.94%
PT	+ 1.21%
Walk	- 0.32%
Bike	+ 1.06%

2. Low Traffic Neighbourhoods scenario

Cars only allowed in motorway, trunk, primary, secondary and tertiary links (red links in the image)

Quietness = 1.0 (fully safe and segregated cycle paths) in the other links

Transport mode	Change
Car (all)	- 3.24%
РТ	+ 2.95%
Walk	+ 0.98%
Bike	- 0.7%

3. Pay as you drive scenario

Stick scenario:

Car users (drivers and passengers) **pay a** <u>daily</u> **penalty**

£10

Transport mode	Change
Car (all)	- 8.9%
PT	+ 5.5%
Walk	+ 1.89%
Bike	+ 1.51%

3. Pay as you drive scenario

Car users (drivers and passengers) **pay a** <u>daily</u> **penalty**

£10

Car users (drivers and passengers) receive a monetary penalty per km driven.

£0.50 per km

Transport mode	Change
Car (all)	- 8.9%
РТ	+ 5.5%
Walk	+ 1.89%
Bike	+ 1.51%

Transport mode	Change
Car (all)	- 6.43%
PT	+ 4.72%
Walk	+ 0.6%
Bike	+ 1.0%

Work in progress

4. Active travel reward scenario

Carrot scenario:

Active travel users receive a monetary reward per km walked/cycled

> £0.50 per km £0.20 per km

Work in progress

5. Cycle Hubs scenario (PT + AT)

Carrot scenario:

Cyclist are allowed to access and egress metro stations.

New cycle hubs set up next to metro stations.

Agents can leave the bicycles in a secure and safety place

Work in progress

Global stick and carrot scenario:

Combination of previous single policies to enable the agents to use more active travel modes instead of private motor vehicles

Suggestions and comments to improve the model and scenarios are very welcome!

Thank you for your attention

Engineering and Physical Sciences Research Council

A MATSim model for a low carbon future mobility in the UK context

David Alvarez Castro

/DACNC/

in /d-alv/ 🛛 🔀

 \times d.alvarez2@newcastle.ac.uk

@David_AlvCas

UKRI EPSRC Supervisory team Alistair Ford Philip James Roberto Palacín Dominik Ziemke