

Open-source based methodology for creating small-scale commercial traffic for MATSim simulations

Ricardo Ewert, Technische Universität Berlin

MATSim User Meeting 2023

Figure 1: Rough approximation of CO2-emissions by segment in tons per year based on the vehicle-kilometers provided in PTV/TCI [1] for Berlin

Objective:

- MATSim model of the Small Scale Commercial Traffic to integrate in MATSim scenarios
- Using only open Data

Methodology:

- Demand creation by using the given methodology in IVV 2005 [2]
- Tour planning by using the toolkit Jsprit
- Simulating/Calibrating with MATSim including mode choice
 - Parts of the traffic by bike, pt, walk (not for goodsTransport)

Simulated together

			Traffic	с Туре			
Purpose	Start	Stop	Commercial Person Traffic	rcial Goods Traffic			
1	production	production	Business trips	Delivery			
2	production	consumers, trade and transport locations	Business trips	Delivery			
3	trade and service locations	consumers, trade and transport locations	Services, visits	Delivery, Services			
4	transport locations	consumers and trade locations	Services, visits	Distribution transport			
5	construction industry	consumers and construction sites	construction	construction			
6	Residential areas	consumers		private collection of goods			

Generation of Small Scale Commercial Traffic - Methodology

• Generation rates based on IVV 2005 [2]:

Generation rates "Start"

k	Strukturmerkmal								
Verkehrszwec	Einw.	Ew.	Beschäft. Prim.	Beschäft. Bau	Beschäft. Bau Beschäft. Sek. Rest Beschäft. Handel Beschäft. Verk./Nachr. Beschäft.		Beschäft. TertRest		
1	0	0,0	0	0	0,059	0	0	0	
2	0	0,029	0	0	0,045	0	0	0	
3	0	0,021	0	0	0	0,0192	0	0,184	
4	0	0,021	0	0	0	0	0,203	0	
5	0	0,03	0	0,29	0	0	0	0	

Generation rates "Stop"

×	Strukturmerkmal								
Verkehrszwec	Einw. Erw. Beschäft. Prim. Beschäft. Bau Beschäft.		Beschäft. Sek. Rest	Beschäft. Handel	Beschäft. Verk./Nachr.	Beschäft. TertRest			
1	0	0	0	0	0,020	0	0	0	
2	0,002	0	0,029	0,029	0,009	0,029	0,039	0,029	
3	0,025	0	0,0168	0,168	0,0168	0,0168	0,097	0,168	
4	0,002	0	0,025	0,025	0,025	0,025	0,075	0,025	
5	0,004	0	0,015	0,002	0,015	0,015	0,020	0,015	

• needed data: structure data for each traffic cell

berlin

- Data connection:
 - Production: Employees in the secondary sector excluding construction

Inhabitants and all employees

- Consumers:

- Construction:

-

- Trade: Employees in the trade sector
 - Transport locations: Employees in the transport and communications sector
 - Employees in the construction sector

- Input statistics for each region

Area	Inhabitants	Employee	Employee Primary Sector	Employee Construction	Employee Secondary Sector Rest	Employee Retail	Employee Traffic/Parcels	Employee Tertiary Sector Rest
Berlin	3645000	2067600	900	90200	131100	215200	85300	1544900
Brandenburg	2531492	1120100	27400	96500	149900	136300	80900	629100

- For generation:
 - data for smaller areas (e.g. traffic cells or districts) needed
 - □ Shape Landuse + Buildings (incl. Levels)

- OSM data contains:
 - Land-use
 - Buildings (incl. number of levels)
 - Quality of the data is very different
- Calculating the share of the used square meters per sector (based on the given employee data)

□ Resulting data distribution per cell

Employee Tertiary Sector Rest	Employee Traffic/Parcels	Employee Retail	Employee Secondary Sector Rest	Employee Construction	Employee Primary Sector	nts Employee	Inhabitar	areaName	arealD
4 392	44	718	39	900	2	323 2094	lorf 203	Hohen Neuendorf	Brandenburg_1206514400
8 3153	388	170	68	0	123	828 3902	er) 98	Herzberg (Elster)	Brandenburg_1206222400
D 11386	2010	2402	6392	1855	34	581 24078	205	Ludwigsfelde	Brandenburg_1207224000
3 456	53	164	0	12	0	621 686	ibahn 76	Glienicke/Nordba	Brandenburg_1206509600
4 3296	414	678	431	222	191	475 5231	avel) 114	Groß Kreutz (Have	Brandenburg_1206924900
5 4687	616	67	59	0	225	435 5654	104	Odervorland	Brandenburg_1206700006

Generation of Small Scale Commercial Traffic

- Population density; example Berlin

berlin

- Calculating the traffic volume per cell, purpose and trafficType

$$Q_{VZ,Vk} = \sum_{Stm}^{8} (X_{VZ,Stm} * ER_{Q(Vk,Stm})$$
(1)

$$Z_{VZ,Vk} = \sum_{Stm}^{8} \left(X_{VZ,Stm} * ER_{Z(Vk,Stm} \right)$$
(2)

- Q = traffic volume (start)
- Z = traffic volume (stop)
- Vz = cell
- Vk = purpose
- Stm = structure data type
- X_{Vz} = volume of structure data type in this cell
- \Rightarrow traffic volume for each cell

- Creation OD-Matrix:
 - General approach for the gravity model

 $F_{ij(Vk)} = k * Q_{i(Vk)} * Z_{j(Vk)} * e^{-\beta w_{ij}}$ (3)

- resistanceValue:
 - $e^{(-\beta^* w(ij))}$ w(ij)...transportCosts
 - β ...resistance factor
- At the moment:
 - source fixed gravity model

 \Rightarrow OD-Matrix with trips between every area for every purpose and every traffic type

- Using Jsprit [3] for tour generation:
 - Toolkit for solving vehicle routing problems (VRP)
- General assumptions:
 - One carrier per start zone
 - tour duration distribution from KiD
 - service times distribution from KiD
 - tour start distribution from KiD
 - Services between 0:00 and 24:00
 - Different vehicle Types for different purposes

Figure: Vehicle Routing Problem [4]

- Key facts:
 - needed data:
 - structure data for regions
 - extracted OSM Data
 - created model:
 - freight model with realistic tours
 - MATSim modell including different sectors and vehicle types
 - limits:
 - no tours for detailed for a certain sector (e.g. care services)
 - no goods transport per volume
 - overlap of private and commercial personal traffic
 - code:
 - MATSim-lips -> Application contrib
 - contains function to include existing commercial models

- next steps:
 - publishing the methodology in a paper
 - publishing a new version of the Open Berlin Scenario [5] including commercial traffic
 - publishing paper with first cases in the direction of decarbonization of small-scale freight traffic (e.g. taxes)

- [1] PTV/TCI, 2009. Gesamtverkehrsprognose 2025 für die Länder Berlin und Brandenburg. URL: https://www.brandenburg.de/media_fast/4055/GVP2025_Ergebnisbericht_2009-11-23.pdf.
- [2] IVV. Kleinräumige Wirtschaftsverkehrsmodelle, FE-Nr. 70.0689/2002/, (2005).
- [3] jsprit. 23. Juni 2021. [Online]. Verfügbar unter: https://github.com/graphhopper/jsprit
- [4] A. Gupta und S. Saini. (2017), An Enhanced Ant Colony Optimization Algorithm for Vehicle Routing Problem with Time Windows, in 2017 Ninth International Conference on Advanced Computing (ICoAC), Chennai: IEEE, S. 267–274. doi: 10.1109/ICoAC.2017.8441175
- [5] Ziemke, D., Kaddoura, I., Nagel, K., 2019. The MATSim Open Berlin Scenario: A multimodal agent-based transport simulation scenario based on synthetic demand modeling and open data. Procedia Computer Science 151, 870–877. doi:10.1016/j.procs.2019.04.120.

Thanks for your attention

Contact:

Ricardo Ewert

Technische Universität Berlin

ewert@vsp.tu-berlin.de

