
Approximation of point equilibria in MATSim

Gunnar Flötteröd
September 5, 2023



Motivation

• Try to compete with static assignment.
I Well understood computation process and solution properties.
I Application (CBA) calls for reproducible, unique solution.

• [Speed. Parallel replanning, minimize number of mobsim runs.]
• [[Support facilities when using MATSim for decision support.]]
• For myself: Figure out if this is worth maintaining for external users.

2 / 14



Code is here:

https://github.com/vtisweden/matsim-projects

3 / 14



org.matsim.contrib.emulation

• Move agents according to fixed travel times through the network.
• May be combined with replanning: agents replan less randomly.
• Much more lightweight than running a mobility simulation.
• Versions of this have been around in MATSim for decades.

4 / 14



Emulation is useful

• Play through what-if scenarios.
I Replanning: discard obviously useless strategies.
I Optimization (eg station placement): Linearize demand curves.

• Compute distances between populations.
I Scoring: plan overlap.
I Replanning: stabilization.

• Allows to compute gap functions that monitor deviation from equilibrium.

5 / 14



Assignment: stochastic equilibrium

6 / 14



Deterministic equilibrium

7 / 14



Approximate deterministic equil.

• Find travel plans that cannot (or hardly) be unilaterally improved.
• Compatible with what MATSim’s coevolutionary algorithm looks for.
• Look for point solutions (concrete plans, no distributions thereof).

I Agents become “greedy” (strict utility maximizers).
I Minimize “innovation noise” and solution variability.
I Measurable solution quality (gap function).

• Attempts to get rid of within-assignment randomness.
I Considers expected plan performance given stochastic mobsim.
I Choice model error terms: if at all, simulated and freeze.

8 / 14



org.matsim.contrib.greedo

• Turns MATSim into a point equilbrium approximizer. Balances
I unilateral utility improvement (emulation-based replanning)
I and step size (population distance between iterations).

• Details here:

9 / 14



Minimal configuration

<module name="emulation">
<param name="iterationsPerCycle" value="10" />
...

</module>

<module name="greedo">
<param name="replanningRateIterationExponent" value="-1.0" />
<param name="populationDistance" value="Kernel" />
<param name="replannerIdentifier" value="UPPERBOUND" />

...
</module>

10 / 14



Code example (vanilla carsharing)
Greedo greedo = new Greedo();
greedo.setEmulator("twoway_vehicle", NetworkLegEmulator.class);
greedo.setEmulator("access_walk_tw", OnlyDepartureArrivalLegEmulator.class);
greedo.setEmulator("egress_walk_tw", OnlyDepartureArrivalLegEmulator.class);
greedo.setActivityEmulator

(PlanCalcScoreConfigGroup.createStageActivityType("twoway"),
OnlyStartEndActivityEmulator.class);

greedo.addHandler(RoadPricingEmulationHandler.class);
[...]
Config config = ...
greedo.meet(config);
[...]
Scenario scenario = ...
Controler controler = new Controler(scenario);
greedo.meet(controler);
[...]
controler.run();

11 / 14



Code example, continued

@Singleton
class GreedoReplanning implements PlansReplanning, ReplanningListener,
AfterMobsimListener

@Inject
GreedoReplanning(Provider<EmulationEngine> emulationEngineProvider, ...)

@Override
public void notifyReplanning(ReplanningEvent event) {

[...]
EmulationEngine emulationEngine = emulationEngineProvider.get();
emulationEngine.setOverwriteTravelTimes(true);
emulationEngine.emulate(iterationNumber, mode2travelTimes, eventHandler);
[...]

12 / 14



Stockholm scenario

• >20’000 links, >5000 agents (1% sample), car-only.
• All-day travel plans. Utility function:

I penalization of travel times,
I penalization of deviations from desired arrival time times.

• Better response plans computed by
I shortest path calculations,
I random departure time variations.

13 / 14



Indicative results

14 / 14


