

DYNAMIC RIDE-SHARING FOR MATSIM Presenting the DRS module

Eyad NASSAR Master Student – Technical University Munich

Markus STRAUB Research Engineer at Center for Energy – Digital Resilient Cities and Regions

Johannes MÜLLER Scientist at Center for Energy – Digital Resilient Cities and Regions

MOTIVATION FOR A NEW MODULE

- Properly simulate occupancy rates of cars
- **Teleportation** of *ride* agents may be OK for trips with acquaintances, but:
 - No precise representation of matching
 - Definitely not precise enough for general ride-sharing
- Previous work by Wang et al (2017)
 - Only available as prototype
 - Uses *dvrp* with new agents
 - riders' requests are only emitted when they already want to start the trip

Wang, B., Liang, H., Hörl, S., Ciari, F., 2017. Dynamic ride sharing implementation and analysis in matsim. hEART 2017.

DEFINING DYNAMIC RIDE-SHARING

- Driver
 - uses private car for personal trip
- Rider
 - picked up and brought to destination by driver
- Drivers and riders
 - not necessarily acquaintances
- Matching
 - via platform (e.g. app) on trip-by-trip-basis (=dynamic)

FACTORS INFLUENCING DRS USAGE

Sociodemographics	Mode related	Situational	Judgemental
gender*	organisation time	trip distance	awareness
age*	waiting time	time of trip	ease of use
income*	travel time	travel schedule	safety
household size*	parking time	alternative modes	comfort
car availability*	parking cost	population density	flexibility
native	travel cost	DRS platform*	privacy
	reliability		

person attribute drsAffinity & planCalcScore utility of travel time (*) covered in Upper Austria model

PREPARING A POPULATION

- Many factors influencing DRS are covered by
 - Subpopulation assignment
 - Mode choice model (scoring parameters)
 - Population attribute drsAffinity

Upper Austria Model

- Subpopulation / mode choice model
 - based on travel survey and socioeconomic parameters [1]
- drsAffinity
 - Based on pro:motion typology (information types) [2]

[1] Müller, J., M. Straub, A. Naqvi, G. Richter, S. Peer, and C. Rudloff, MATSim Model Vienna: Analyzing the Socioeconomic Impacts for Different Fleet Sizes and Pricing Schemes of Shared Autonomous Electric Vehicles. In Proceedings of the 100th TRB Annual Meeting, 2021.
[2] Markvica, K., A. Millonig, N. Haufe, and M. Leodolter, Promoting active mobility be- havior by addressing information target groups: The case of Austria. Journal of transport geography, Vol. 83, 2020, p. 102664.

THE IMPLEMENTED DRS FLAVOUR

- Maximum of one rider per trip
- Door-to-door service for riders
- Matching of drivers and riders before the start of each day
 - no spontaneous requests during the day or during the trip
- Mobility guarantee for riders that could not find a match

PLUGGING INTO THE MATSIM LOOP

MATCHING

EXECUTING PLANS

Matched agents

- Rider shows up at pickup point and waits
- Driver goes to pickup point and
 - Picks up rider if already there or
 - Waits for pickupWaitingSeconds to pick up rider
- Driver continues to rider's destination and drops him off
- Finally the driver drives to his own destination

Unmatched agents

- Riders get a mobility guarantee and are teleported
 - riderMobilityGuaranteeMonetaryConstant
- Drivers take trip like a regular car trip

DRS PARAMETERS: FULL LIST

Costs	Matching Algorithm	Simulation / Plan Adjustment	Plan Innovation
carAndDrsDaily- MonetaryConstant	cellSize	pickupWaitingSeconds	subtourModeChoice- ChainBasedModes
driverProfitPerKm	maxPossible- Candidates	riderDepartureTime- AdjustmentSeconds	subtourModeChoice- Modes
riderMobilityGuarantee- MonetaryConstant	minDriverLegMeters		drsAffinity (person attribute)
rider costs (set in planCalcScore*)	minRiderLegMeters		
	timeSegmentLength- Seconds		

(*) planCalcScore.modeParams.monetaryDistanceRate

Colored parameters are not set in the module's config section

UPPER AUSTRIA MODEL DRS PARAMETER VALUES

Parameter	Default Scenario	Maximum Scenario
drsAffinity*	50%	100%
driverProfitPerKm	0.05€	0.5€
rider costs per km*	0.05€	0.05€
cellSize	4000m	4000m
timeSegmentLengthSeconds	1 hour	2 hours
minDriverLegMeters & minRiderLegMeters	20m	20m
pickupWaitingSeconds	3 minutes	1 minute
riderMobilityGuaranteeMonetaryConstant	10€	10€
riderDepartureTimeAdjustmentSeconds	15 minutes	2 hours

(*) parameters influencing results but not directly set in DRS config

UPPER AUSTRIA MODEL DRS PARAMETER SENSITIVITY ANALYSIS

Scenario	Modal split DRS rider
Default DRS parameters, drsAffinity 50%	0.21%
Best single parameter variation (drsAffinity 100%, driverProfitPerKm 0.5€)	0.55%
Maximum (combination of best parameter values)	1.8%

LIMITATIONS AND FUTURE WORK

- Maximum of one rider per driver's trip
 - Increase limit
- **Detour of driver** to rider's destination even if rider does not show up
 - Re-route drivers during mobsim
- pickupWaitingSeconds unnecessarily prolongs some pickups
 - Regularly check for rider arrival during mobsim
- Matching algorithm
 - Option for predefined pickup points (instead of door-to-door)
 - Use sociodemographic attributes
 - Avoid local optimums
- Still many trips of unmatched drivers after reaching equilibrium
 - Reduce to 0

DIY!

- Source code available as open source!
 - https://github.com/ait-energy/matsim-drs
- Start exploring
 - RunSimpleDrsExample.java
 - config_drs.xml

Maven repo & dependency

<repositories>

- <repository>
 - <id>matsim</id>
- <url>https://repo.matsim.org/repository/matsim/</url>
- </repository>
- </repositories>

<dependencies>

- <dependency>
 - <proupId>at.ac.ait.matsim</proupId>
 - <artifactId>matsim-drs</artifactId>
- <version>14.1-SNAPSHOT</version>
- </dependency>
- </dependencies>