

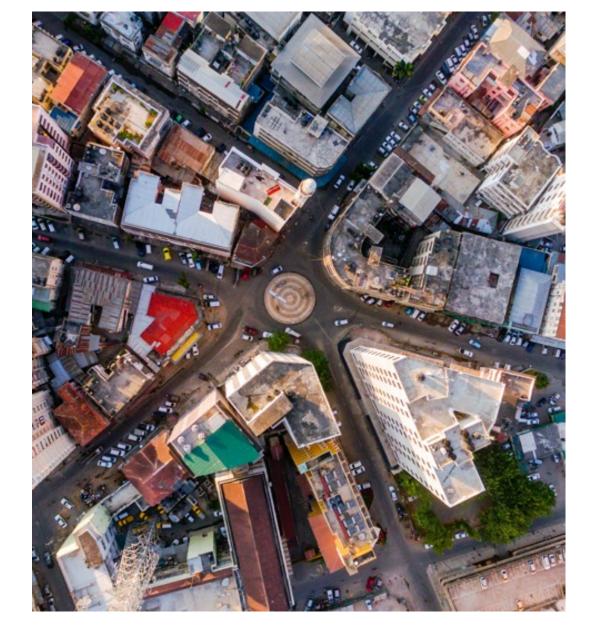
A MATSim-based framework to Incorporate High Resolution Built Environment Data for Modelling Walkability and Cyclability

Corin Staves¹ (PhD Student) SM Labib² (Assistant Professor) Irena Itova¹ (Research Associate) Qin Zhang¹ (Research Associate) James Woodcock¹ (Programme Lead in Public Health Modelling) Rolf Moeckel³ (Associate Professor) Belen Zapata-Diomedi⁴ (Postdoctoral Fellow)

¹ MRC Epidemiology Unit, University of Cambridge
 ² Faculty of Geosciences, Utrecht University
 ³ Professorship for Travel Behaviour, Technical University of Munich
 ⁴ Centre for Urban Research, Royal Melbourne Institute of Technology

MATSim User Meeting Zurich, 5 September 2023

Contents


1 Built Environment and Active Travel

State of art and current challenges

2 Research Overview & Methods

Developing a fully disaggregate active accessibility model incorporating the built environment, land use, and transport

3 Example Applications

Built Environment Influences Active Travel

Pedestrian and Cycling Infrastructure

- o Width
- o Surface quality
- Separation from traffic
- Traffic speed / volume

Junctions and Crossings

- o Signal type
- Crossing speed / volume

Images from UK Department for Transport Cycle Infrastructure Design Book: https://www.gov.uk/government/publications/cycle-infrastructure-design-ltn-120

Built Environment Influences Active Travel

Vehicle Infrastructure

- o Traffic filters
- Freight loading zones

Ambience

- \circ Tree cover
- o Green visibility
- Points of interest
- o Streetlighting

Influences on Travel Behavior

- Route Choice
- Mode Choice
- Trip Generation
- Public transport subscription
- Bicycle ownership
- Car ownership
- Choice of residence / workplace

Lots of research on this topic...

• Examples in Public Health research...

- Cain, K. L., Millstein, R. A., Sallis, J. F., Conway, T. L., Gavand, K. A., Frank, L. D., Saelens, B. E., Geremia, C. M., Chapman, J., Adams, M. A., Glanz, K., & King, A. C. (2014). Contribution of streetscape audits to explanation of physical activity in four age groups based on the Microscale Audit of Pedestrian Streetscapes (MAPS). Social Science & Medicine, 116, 82–92. https://doi.org/10.1016/j.socscimed.2014.06.042
- Zapata-Diomedi, B., Herrera, A. M. M., & Veerman, J. L. (2016). The effects of built environment attributes on physical activity-related health and health care costs outcomes in Australia. *Health & Place*, *42*, 19–29. https://doi.org/10.1016/j.healthplace.2016.08.010

• Examples in Transport modelling...

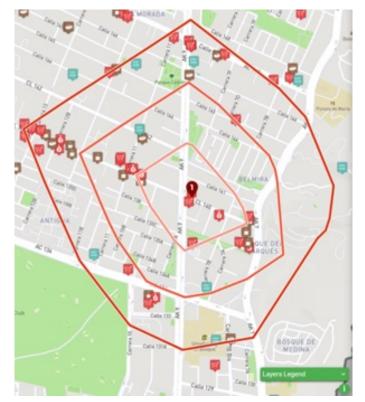
- Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3), 199–219. https://doi.org/10.1016/S1361-9209(97)00009-6
- Thao, V. T., & Ohnmacht, T. (2020). The impact of the built environment on travel behavior: The Swiss experience based on two National Travel Surveys. Research in Transportation Business & Management, 36, 100386. <u>https://doi.org/10.1016/j.rtbm.2019.100386</u>

• Examples in **MATSim**...

- Ziemke, Dominik et al. Modeling bicycle traffic in an agent-based transport simulation. Procedia Computer Science, 2017 (<u>https://doi.org/10.1016/j.procs.2017.05.424</u>)
- Antoniou, Eleni et al. Simulation of e-bike and e-scooter trips using MATSim. Presented at MUM2022 (<u>https://ethz.ch/content/dam/ethz/special-interest/baug/ivt/ivt-</u> <u>dam/events/2022/05/31/presentations/Antoniou_EtAI_MUM_2022_Presentation.pdf</u>)

Walkability and Cyclability as an <u>Accessibility</u> indicator

- **Describes a location** (e.g., household or workplace)
- Indicator of travel behavior and social equity
- Typically use **aggregate**, **area-level** measurements of land use and/or the transport network
- Examples:
 - o Density of pedestrian or cycle paths in an area
 - o Network connectivity
 - o Land use diversity
 - o Number of shops within 800m (10-minute) walk
 - o Some aggregation of the above



Walkability and Cyclability: Common Limitations

- Spatial aggregation
 - Modifiable Aerial Unit Problem (MAUP)
- Hard cutoffs
 - Smooth decay functions are more behaviorally realistic
- Assumption of independence between built environment, network, and land use
 - People perceive the built environment as they use the network to get places
 - Assuming independence distorts modelled relationship and assessments

Why?

- Simple to develop and describe
- Challenging to integrating built environment, network, and land use
- Computational feasibility

https://www.open-accessibility.org

Research Overview and Methods

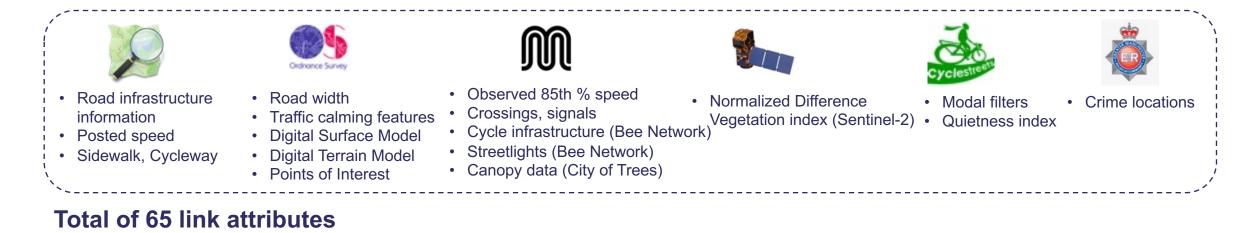
Developing a fully disaggregate walkability and cyclability assessment tool

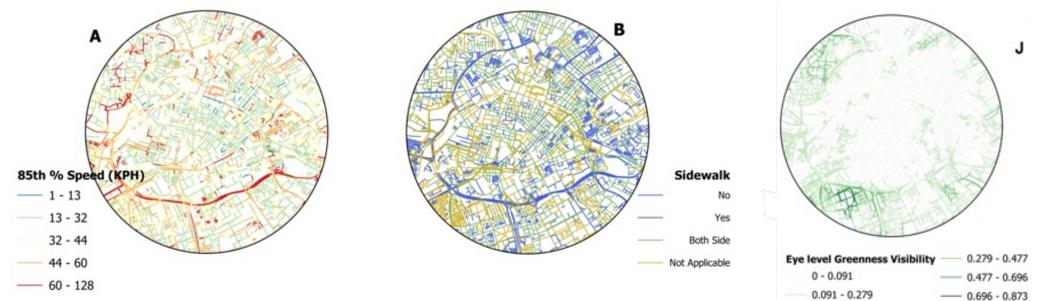
Main Research Goals (Overview):

- 1. Incorporate built environment characteristics into a MATSim network at the street segment (link) resolution
- 2. Specify an active mode accessibility model incorporating the **built environment, transport network,** and **land use** through a two-component approach
- 3. Efficiently estimate accessibilities at any level of disaggregation, e.g.:
 - Zones
 - Grid cells
 - Exact households

Study Area: Greater Manchester

Research Goals:


- 1. Incorporate built environment characteristics into a MATSim network at the street segment (link) resolution
- 2. Specify an active mode accessibility model incorporating the **built environment, transport network,** and **land use** through a two-component approach
- 3. Estimate accessibilities at any level of disaggregation, e.g.:
 - Zones
 - Grid cells
 - Exact households



Goal 1: Incorporating Built Environment Attributes into MATSim

Examples:

Result (network.xml):

<attribute name="POIs" class="java.lang.Double">0.0</attribute> <attribute name="aadt" class="java.lang.Double">1226.4529</attribute> <attribute name="aadt2" class="java.lang.Double">0.0</attribute> <attribute name="aadtFwd" class="java.lang.Double">613.22645</attribute> <attribute name="allowsCar" class="java.lang.Boolean">true</attribute> <attribute name="allowsCarFwd" class="java.lang.Boolean">true</attribute> <attribute name="crime" class="java.lang.Double">0.0</attribute> <attribute name="cross85PercSpeed" class="java.lang.Double">NaN</attribute> <attribute name="crossAadt" class="java.lang.Double">NaN</attribute> <attribute name="crossLanes" class="java.lang.Double">NaN</attribute> <attribute name="crossSpeedLimitMPH" class="java.lang.Double">NaN</attribute> <attribute name="crossVehicles" class="java.lang.Boolean">false</attribute> <attribute name="crossWidth" class="java.lang.Double">NaN</attribute> <attribute name="cycleosm" class="java.lang.String">null</attribute> <attribute name="cvcleway" class="java.lang.String">no</attribute> <attribute name="disconnected bike" class="java.lang.Boolean">false</attribute> <attribute name="disconnected car" class="java.lang.Boolean">false</attribute> <attribute name="disconnected walk" class="java.lang.Boolean">false</attribute> <attribute name="dismount" class="java.lang.Boolean">false</attribute> <attribute name="edgeID" class="java.lang.Integer">404423</attribute> <attribute name="endsAtJct" class="java.lang.Boolean">false</attribute> <attribute name="fwd" class="java.lang.Boolean">false</attribute> <attribute name="hgvPOIs" class="java.lang.Double">0.0</attribute> <attribute name="junction" class="java.lang.String">no</attribute> <attribute name="motorway" class="java.lang.Boolean">false</attribute> <attribute name="name" class="java.lang.String">New Drake Green</attribute> <attribute name="ndvi" class="java.lang.Double">0.390443881352742</attribute> <attribute name="negPOIs" class="java.lang.Double">0.0</attribute> <attribute name="osmID" class="java.lang.Integer">699773100</attribute> <attribute name="guietness" class="java.lang.Integer">80</attribute> <attribute name="shannon" class="java.lang.Double">0.0</attribute> <attribute name="speedLimitMPH" class="java.lang.Integer">30</attribute>

Research Goals:

- 1. Incorporate built environment characteristics into a MATSim network at the street segment (link) resolution
- 2. Specify an active mode accessibility model incorporating the **built environment, transport network,** and **land use** through a two-component approach
- 3. Estimate accessibilities at any level of disaggregation, e.g.:
 - Zones
 - Grid cells
 - Exact households

Two-component Accessibility Model

Function of **destination locations** and the **impedance of reaching them**:

$$A_i = \sum_j f(W_j, c_{ij})$$

Where:

- *W_j* is the weight of destinations
- *c*_{*ij*} is the cost of reaching them (potential to incorporate built environment)
- *f*() is some decreasing function (usually exponential)

Background:

- Hansen, W. G. (1959). How Accessibility Shapes Land Use. Journal of the American Institute of Planners, 25(2), 73–76. https://doi.org/10.1080/01944365908978307
- Used predominantly in transport modelling to evaluate car and public transport accessibility
- Research gap w.r.t. using this for active modes and built environment

Composite Link Cost

Included Elements	Origin			
Distance	Dominant in existing tools			
Travel time				
Gradient	MATSim Bicycle Extension			
Surface type (e.g., asphalt, gravel, sand,)	(Ziemke et al. 2019)			
Ambience (e.g., greenness, POIs, lighting,)	New			
Link Stress (e.g., vehicle traffic, cycle infrastructure,)	From guidance in UK Cycle Infrastructure Design Handbook (https://www.gov.uk/government/publications/ cycle-infrastructure-design-ltn-120)			
Intersection Stress (e.g., crossing type, crossing traffic/speed,)				

Costs are aggregated from the link to the route level, along the **least-cost** path

Composite Link stress (*sl***)**

For each link, we score its **stress** based on guidance from the UK Department for Transport.

Function of infrastructure type & separation and traffic speed & volume

Example for cycling:

Speed Limit ¹	Motor Traffic Flow (pcu/24 hour) ²	Protected Space for Cycling			Cycle Lane	Mixed Traffic
		Fully Kerbed Cycle Track	Stepped Cycle Track	Light Segregation	(mandatory/ advisory)	
20 mph ³	0 2000 4000 6000+					
30 mph	0 2000 4000 6000+					
40 mph	Any					
50+ mph	Any					

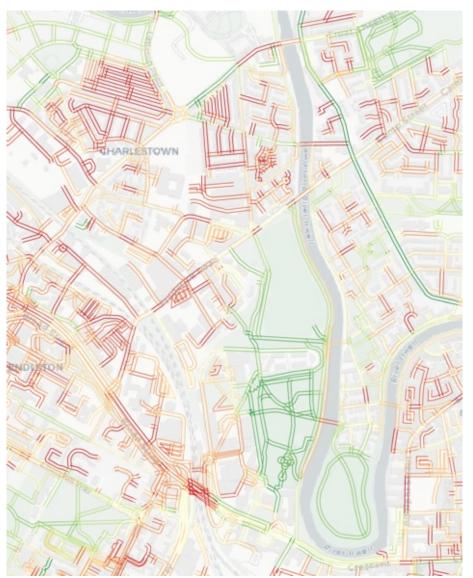
https://www.gov.uk/government/publications/cycle-infrastructure-design-ltn-120

Composite Junction stress (s_j)

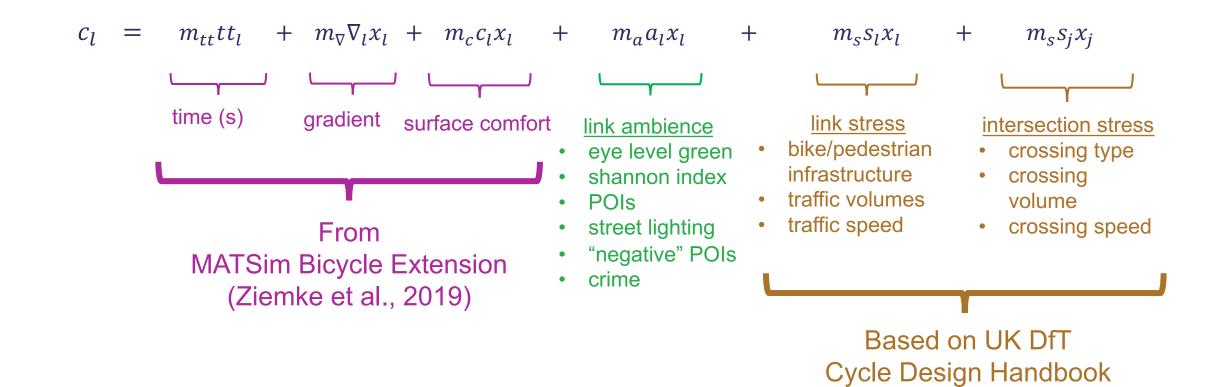
We score stress for each intersection based on the **signalization**, **crossing type**, and **crossing traffic speed & volume**

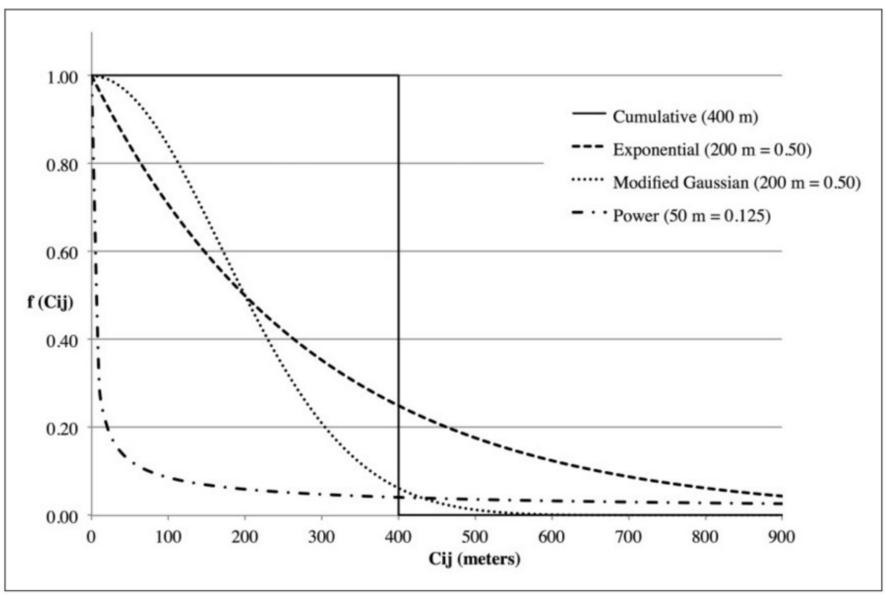
Speed Limit	t Total traffic flow to be crossed (pcu)	Maximum number of lanes to be crossed in one movement	Uncontrolled	Cycle Priority	Parallel	Signal	Grade separated	
≥ 60mph	Any	Апу						
40 mph and 50 mph	> 10000	Any						
	6000 to 10000	2 or more						
	0-6000	2						
	0-10000	1		1				and the second se
≤ 30mph	> 8000	>2		1				IN STREET
	> 8000	7						
	4000 8000	2						
	0-1000	2						
	0-4000	1						19

https://www.gov.uk/government/publications/cycle-infrastructure-design-ltn-120

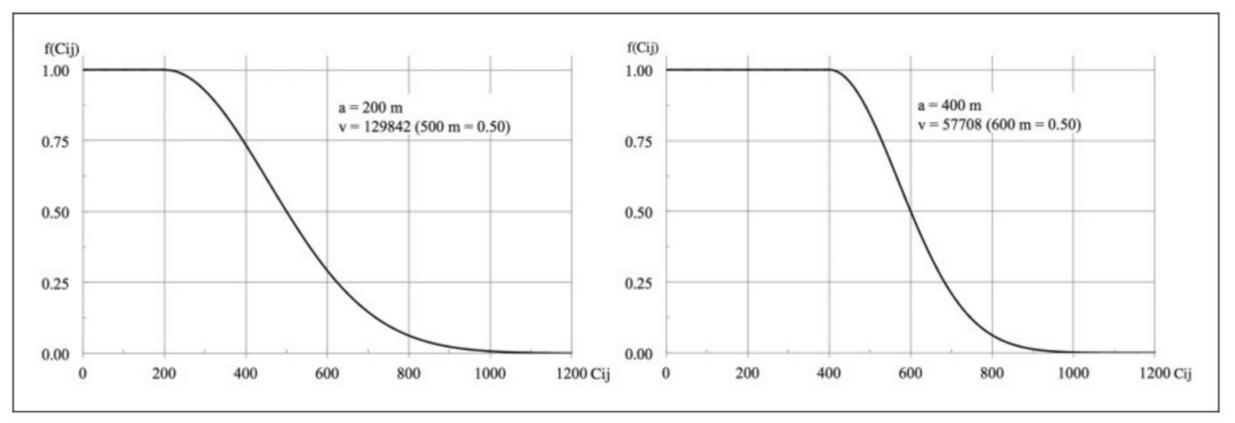

Composite Link Ambience

We score the **ambience** (or "attractiveness") for each link based on:


- Shannon diversity index
- Points of interest
- Green visibility (daytime)
- Street lighting (at nighttime)
- Crime rates


Cost Function

<u>Where</u>


 x_l is the length of link l, x_j is the width of intersection j at the to-node of link lm is the marginal cost of each link attribute, attributes tt_l , ∇_l , c_l , a_l , s_l , and s_j as defined above. c_l , a_l , s_l , and s_j are restricted to the range 0–1.

Decay function

Vale, D. S., & Pereira, M. (2017). The influence of the impedance function on gravity-based pedestrian accessibility measures: A comparative analysis. *Environment and Planning B: Urban Analytics and City Science*, 44(4), 740–763. https://doi.org/10.1177/0265813516641685

"Cumulative gaussian" decay function

Vale, D. S., & Pereira, M. (2017). The influence of the impedance function on gravity-based pedestrian accessibility measures: A comparative analysis. *Environment and Planning B: Urban Analytics and City Science*, 44(4), 740–763. https://doi.org/10.1177/0265813516641685

Decay function: Implementation in MATSim

```
public class CumulativeGaussian extends DecayFunction {
5 usages
final private double a;
3 usages
final private double v;
public CumulativeGaussian(double a, double v, Double cutoffDist, Double cutoffTime) {
    super(cutoffTime, cutoffDist);
    this.a = a;
    this.v = v;
1 usage 🚨 Corin Staves
public CumulativeGaussian(double a, double v) {
    super(Double.NaN, Double.NaN);
    this.a = a;
    this.v = v;
4 usages 🗳 Corin Staves
public double getDecay(double cost) { return cost <= a ? 1. : Math.exp(-1 * (cost - a) * (cost - a) / v); }</pre>
```

Research Goals:

- 1. Incorporate built environment characteristics into a MATSim network at the street segment (link) resolution
- 2. Specify an active mode accessibility model incorporating the **built environment, transport network,** and **land use** through a two-component approach
- 3. Estimate accessibilities at any level of disaggregation, e.g.:
 - Zones
 - Grid cells
 - Exact households

MATSim tools & data structures

SpeedyGraph

- A "highly optimized data structure" for representing a MATSim network"
- Originally developed by SBB to efficiently calculate skim matrices
- <u>https://github.com/SchweizerischeBundesbahnen/matsim-sbb-extensions</u>
- Enhanced to include pre-calculated link disutilies

LeastCostPathTree

- Efficiently calculates least cost path trees to *all* nodes using the *SpeedyGraph* structure
- Specifying cutoffs reduces computation time further
- Also developed for MATSim SBB extensions

Steps

- 1. Convert network to a SpeedyGraph
- 2. Snap destinations to nodes
- 3. For every analysis point
 - Build a LeastCostPathTree

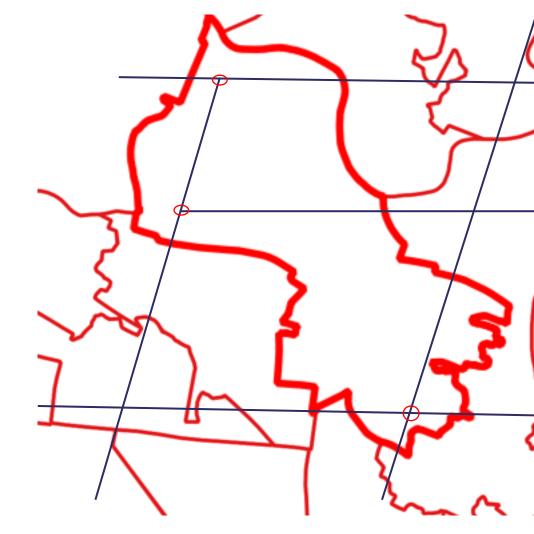
 Loop over every destination node and calculate two-component accessibility based on cost, destination weight, and chosen decay function

Calculating Accessibility of Points

Identify closest network link

Define "pseudo-node" at point

- Define two "pseudo-links" between point and to/from node of closest link
- Calculate accessibility at new "pseudo-node"



Calculating Accessibility of Polygons

 If polygon contains at least one node, use the average accessibility of the nodes in the polygon

Calculating Accessibility for Polygons

 If polygon contains at least one node, use the average accessibility of the nodes in the polygon

 If polygon contains no nodes, calculate polygon centroid and use point method

UNIVERSITY

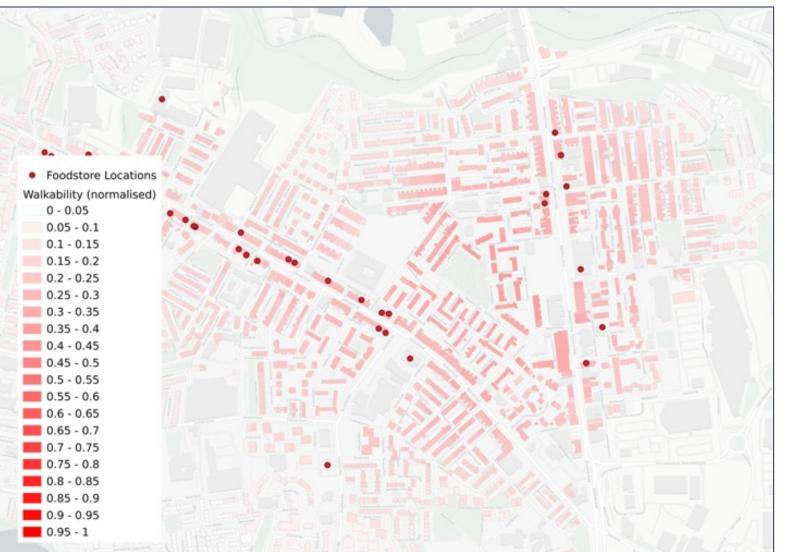
Example: Walking accessibility to Foodstores

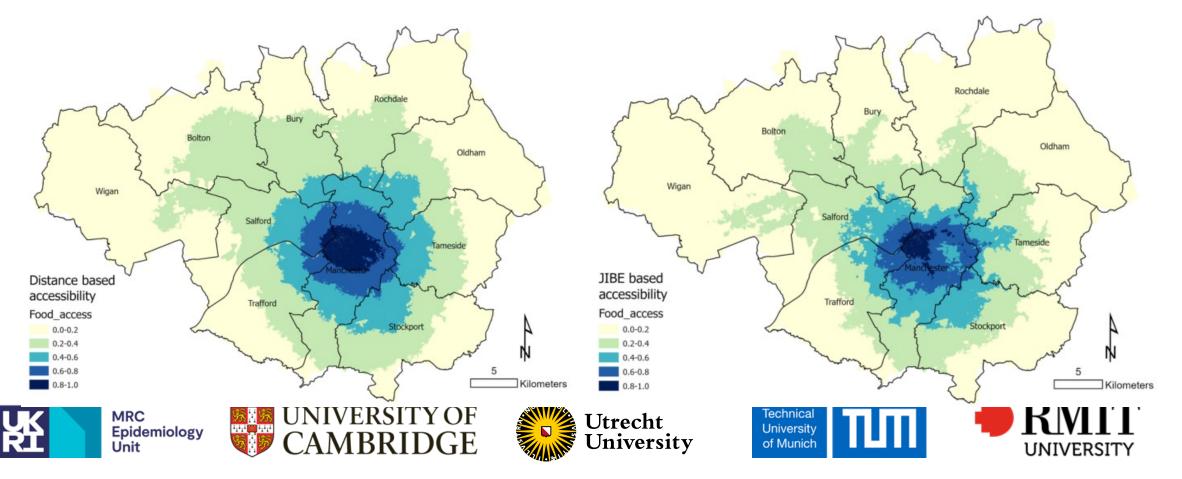
Analysis units: Households Destinations: Food stores Impedance: Distance only Decay: Cumulative Gaussian

$$egin{aligned} \mathsf{A}_{i} &= \sum\limits_{j} \mathsf{O}_{j} \delta_{ij}, & ext{ for } \mathsf{C}_{ij} \leq a \ & \mathsf{A}_{i} &= \sum\limits_{j} \mathsf{O}_{j} \mathrm{e}^{-rac{(\mathcal{C}_{ij}-a)^{2}}{v}} & ext{ for } \mathsf{C}_{ij} > a \end{aligned}$$

with a = 200, v = 57700

(decay function specification from Vale and Pereira, 2017)

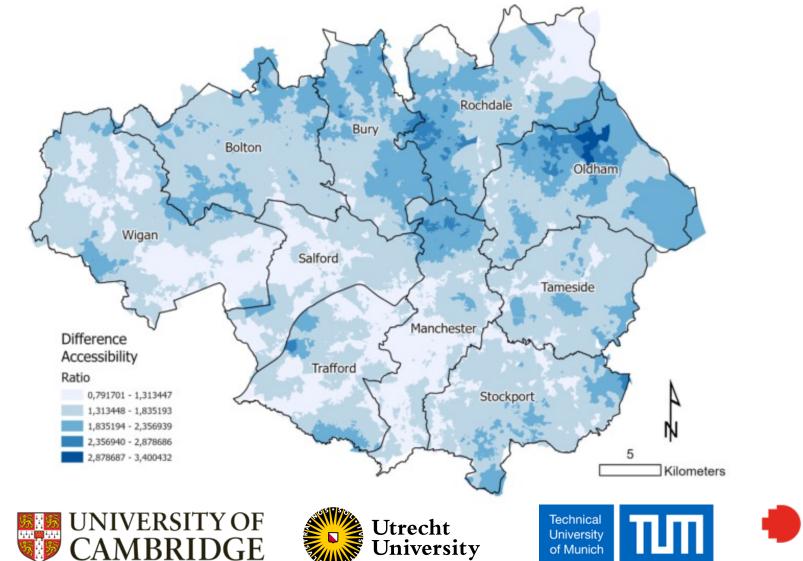

MRC Epidemiology Unit



Example: Cycling accessibility to foodstores

Analysis units: Hexagonal Grid cells (50m radius)Destinations: Food storesDecay function: Exponential (α parameter based on observed trips)Impedance:Distance onlyComposite (incorport

Composite (incorporating ambience/stress)


Ratio: Composite vs. Distance-based Accessibility

MRC

Unit

Epidemiology

Řì

Capabilities

- Forward/active and backward/passive accessibility (or a combination)
- Variation in fine-grained zones/polygons
- Destinations with Multiple access points
- Non-contiguous polygons
- Any impedance (cost) function
- Any decay function
- Can specify cutoff distances/times to improve runtime
- Open source: https://github.com/jibeproject/matsim-jibe/tree/master/src/main/java/accessibility

Summary

- Evaluating impacts of the built environment on walkability and cyclability is a research focus across geographic, urban, social, transport, and health sciences
- Simple, one-dimensional indicators dominate, despite their theoretical and behavioral limitations
- Tools and frameworks developed for MATSim facilitate computationally feasible high-resolution evaluation of walkability and cyclability which incorporates the built environment, network, and land use

"Joining Impact Models of Transport with Spatial Measures of the Built Environment"

Professor James Woodcock University of Cambridge https://jibeproject.com

Dr Belen Zapata-Diomedi RMIT University

UNIVERSITY OF CAMBRIDGE

This project has received funding from the European Research Council (ERC) under the Horizon 2020 research and innovation programme (grant agreement No 817754).

This material reflects only the author's views and the Commission is not liable for any use that may be made of the information contained therein.