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Stability of Travel Behavior
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Travel behavior may differ a lot from day to day 

(Raux et al. 2016, Hanson 1988, Huff et al. 1986)

Travel behavior is rather stable from year to year 

(McCarthy 1982, Kitamura 1987, Jones 1988, Cui et 

al. 2014)

To a large degree, travel behavior is driven by 

habitual choices that do not change often (Gärling & 

Axhausen 2003).

Workdays are more stable than non-workdays, travel 

time is more stable than trips (Schlich & Axhausen

2003)

Source: hhagedorn on https://qimby.net/

Stability of travel behavior



Change in travel behavior is typically driven by 

one (or more) of the following:

For most households, such changes are rare.

Change of travel behavior
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Change in levels of 
service (such as 

congestion, transit 
service, bike paths)

Change in activity 
locations (such as a 
new shopping mall)

Policy interventions 
(Verplanken & Wood 

2006)

Demographic change 
(birth of a child, change 
of income, change of 

car ownership, change 
of employment, 

household relocation) 
(Murakami et al. 1992, 
Schneider 2016, Clarke 

et al. 2014)



Study Rationale



• Most transport models recreate travel behavior from scratch each time the model runs. 

• When testing a policy scenario (such as opening a new road), travel choice are created from scratch the 

next time the model runs, ignoring habitual behavior. 

• In land use modeling, we have long overcome recreating populations from scratch every simulation 

period (Waddell 2002). It is time to do the same in transport modeling.

Research rationale



Vision of model evolution
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Panel data and travel behavior change



• The German mobility panel survey 

collected week-long travel diaries 

from 1994 to 2023, where the same 

household was interviewed three 

years in a row

• Almost 2,000 household interviewed 

per year

Panel survey data



1. change in employment status of a 

person

2. change in household size

3. change in household income

4. birth of a new child

5. change in household car ownership

6. household relocation

Live events studies
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Source: Ahmed & Moeckel (2023)



Change in weekly work 

trips due to change in 

employment
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Source: Ahmed & Moeckel (2023)



Change in weekly 

shopping trips due to 

change in employment
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Source: Ahmed & Moeckel (2023)



No explanatory power for number of transit trips
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Source: Ahmed & Moeckel (2023)



Becoming employed or unemployed 

trigger the highest differences on 

mandatory active days and slight 

variations in discretionary active days

Active days are rather stable for 

unemployed (95%), employed (50%) 

and students (60%)

Analysis of life events

15Difference on active days

All acts Discretionary Mandatory

(n=3,030)

(n=779)

(n=2,739)

(n=122)

(n=195)

(n=56)

(n=20)

Other (n=47)



Machine Learning and Travel Behavior Change



Zero-state

Binomial logit

Count-state

Ordered logit

Econometric models
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Active days

Zero One or more

One Two Seven…

P
s
e
u
d
o

R
2Purpose Model Traditional AI-informed

Mandatory
Zero-state 0.508 0.536

Count-state 0.559 0.565

Discretionary
Zero-state 0.472 0.476

Count-state 0.676 0.677



Methodology: machine learning pipeline 
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Data split Feature selection Regression with hyperparameters

1. Training (80%) and 

testing (20%)

2. Stratified random split

3. Strata based on the 

distribution of the target 

variable 

1. Lasso regression

2. Ridge regression

3. Without feature selection

1. Linear regression

2. Lasso regression

3. Ridge regression

4. Neighbors regression (KNN)

5. Support Vector regression (SVR)

6. Random Forests (RFs)

7. Multi-Layer Perceptrons (MLPs)

Purpose Data split Linear Lasso Ridge KNN SVR RFs MLPs

Discretionary
Training 0.462 0.462 0.462 0.429 0.444 0.484 0.479

Testing 0.417 0.417 0.417 0.392 0.405 0.402 0.413

Purpose Data split Linear Lasso Ridge KNN SVR RFs MLPs

Mandatory
Training 0.743 0.756 0.756 0.740 0.740 0.843 0.751

Testing 0.767 0.769 0.769 0.754 0.757 0.776 0.775



• Stability on active days is confirmed for both mandatory and discretionary acts

• Individuals who remain employed or studying tend to have more active days with mandatory activities

• Similar conclusions are obtained in the traditionaleconometric model

AI-interpretability: SHapley Additive exPlanations (SHAP) 
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Active days with 

mandatory activities



Mobile Phone Data and Travel Behavior Stability



• Since Summer 2022, the team of Dr. Klaus Bogenberger (TUM) is collecting 

mobile phone data with                            App

• 3,080 participants in Munich metropolitan area

• Process for detection of legs and stops required:

Data
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Raw data records Processed data



Research idea
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Major strength of data: 
Individuals can be traced over 

multiple days

Analyses:

• How many trips are made by a 
participant day after day

• Does the participant repeatedly visit 
the same destination? Several 
times per day, per week, per month?

• What time of day are repeated 
destinations visited? 



Repeated destinations

23
Source: Mobidrive survey, Schönfelder & Axhausen (2001)



Outlook



Model concept
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Persons (t) Persons (t+1) Persons (t+2)

Travel demand t Travel demand t+1 Travel demand t+2

Transport model Transport model Transport model

Demographic 

upate: t → t+1

Demographic 

upate: t+1 → t+2

Synthetic Population Synthetic Population Synthetic Population



• Day-to-day travel behavior variability cannot be explained by 

currently observed data.

• Travel behavior over weeks is very stable and should not be 

reinvented every time the transport model runs.

• Much behavior is driven by habits that should not be modeled with 

tabula-rasa methods.

• It is time for transport modeling to catch up with land use 

modeling and adjust travel behavior incrementally, rather than 

reinventing it from scratch every time the model runs.

Conclusions
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