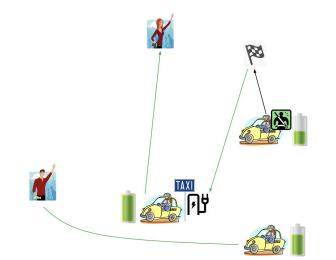
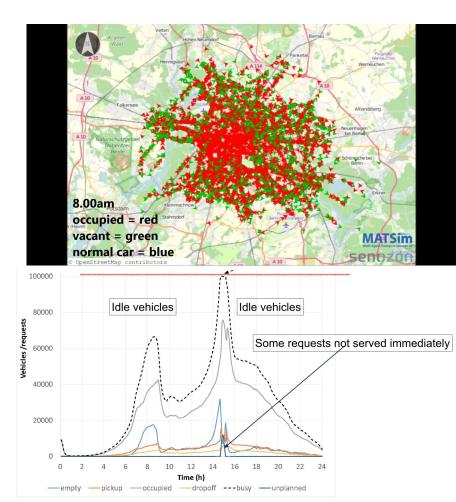
Full Decarbonization of Berlin's Traffic: Simulation Studies and **Political Reality** Kai Nagel, TU Berlin

How it started (for us)




2014/15(!): Electric taxis not more expensive than fossil

Build pickup/delivery model that generates realistic daily vehicle trajectories

- 1. Create plausible synthetic demand.
- 2. Have synthetic vehicle fleet serve this demand.
- Include charging. There is enough time.
 "Sufficient" number of chargers at taxi ranks.
- 4. Compute costs (next slide).

Operating cost el. taxis

Table 5.2: Energy consumption under different scenarios

				<i>k</i>				And the second
Scenario	Standard	Summer	Hot	Winter	Cold	Cold	Cold	Cold
			Summer		Winter	Winter	Winter	Winter
Busy day	—	-	—	-	—	+	-	+
Fossil heating	_	-	-	1111	25 	1000 C	+	+
Driving							L	
Drivetrain [kWh]	33.75	33.75	33.75	33.75	33.75	45.00	33.75	45.00
Auxiliary [kWh]	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Heating [h]	-	_	-	7.50	16.00	16.00	_	—
Heating [kWh]		_	_	15.00	48.00	48.00	-	_
Cooling [h]	—	7.50	14.00	_	—	—	-	—
Cooling [kWh]	-	7.50	14.00	-	_	—	-	-
Total [kWh]	41.75	49.25	55.75	56.75	89.75	101.00	41.75	53.00
Charging								
Speed [kW]	50.00	50.00	50.00	25.00	25.00	25.00	25.00	25.00
Vehicle charging time	0:32	0:40	0:48	1:38	2:57	3:24	1:02	1:29
[h:mm]								NANGH TEA HUNG MAN CH
Chargers			00-0-00-00-00-00-00-00-00-00-00-00-00-0			and a planta succession	and the second	
Daily charging time	5:09	6:39	7:57	16:18	29:30*	34:00*	10:18	14:48
per charger [h:mm]					(
Utilisation ratio [%]	21.5	28.0	33.0	68.0	123.0^{*}	142.0^{*}	42.9	61.7
Dispensed energy per	257.5	332.5	397.5	407.5	-	-	257.5	370.0
charger [kWh/day]					Landard and support and	mean margaret		
Charging costs								
Infrastructure								
per kWh [€]	0.07	0.05	0.04	0.04	1.5-2.0		0.07	0.05
per min [€]	0.06	0.04	0.04	0.02	_		0.03	0.02
Electricity								2
per kWh [€]				0.20 (al	l scenarios) 🗕	·?? But fue	el also \uparrow .	
User costs							1	
per kWh [€]	0.27	0.25	0.24	0.24	0.50	-	0.27	0.25
per min [€]	0.22	0.21	0.20	0.10	_	—	0.11	0.10

* infeasible charging time

Annual operating costs battery-electric vs hybrid-electric vehicles

Table 3 Annual operating cost comparison of BEV and HEV

	BEV	HEV
Annual mileage [km]		75,000
Energy cost [€]	4,620	6390
Battery cost [€]	2,500	
Engine maintenance [€]	150	1,000
Overall operating costs [€]	7,270	7,390

Important: Battery is driven "to the end" \rightarrow Can thus be allocated to km.

(Often: 400km range, 1000 charging cycles \rightarrow battery lasts 400'000km!?!?)

Bischoff, J. and Maciejewski, M. (2015) 'Electric Taxis in Berlin – Analysis of the Feasibility of a Large-Scale Transition', in *Tools of Transport Telematics*. Springer International Publishing, pp. 343–351. Available at: https://doi.org/10.1007/978-3-319-24577-5_34.

Electric trash collection (only?) 20% more expensive than fossil

Build pickup/delivery model that generates realistic daily vehicle trajectories

- 1. Create plausible synthetic demand.
- 2. Have synthetic vehicle fleet serve this demand.

90000 80000

70000

50000

40000

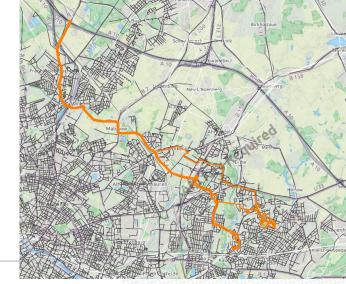
- 3. Include charging. Surprise: Overnight depot charging is sufficient. Vergleic
- 4. Compute costs.

Vehicle twice as expensive as fossil.

But fossil veh only 20% of overall cost.

80+20 → 80+40 = 120%.

Ewert, R. *et al.* (2021) 'Electrification of Urban Waste Collection: Introducing a Simulation-Based Methodology for Technical Feasibility, Impact and Cost Analysis', *World Electric Vehicle Journal*, 12(3), p. 122. Available at: https://doi.org/10.3390/wevj12030122.


E-Force

Variable

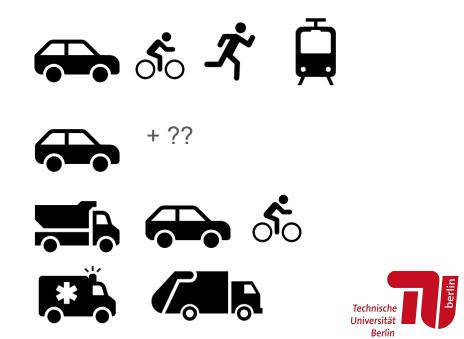
Fixkosten Fahrzeug

MB Econic Diesel

Fixkosten Personal

The ZeroC(U)TS project

Zero Carbon (Urban) Transport Systems


ZeroCUTS DFG project

With Dietmar Göhlich, Methods of product development — Vehicle specifications

Göhlich, D. *et al.* (2021) 'Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic', *Sustainability: Science Practice and Policy*, 13(2), p. 839. Available at: https://doi.org/10.3390/su13020839.

Segments of urban traffic:

- Private person traffic
- Commercial person traffic
- Goods traffic
- Other traffic (emergency vehicles, city cleaning, ...)

Non-fossil energy solutions for vehicles

	Comments	Disadvantages						
Electric batteries	Technology available	 depends on electricity mix (now? 2030?) limited production capabilities (currently 1% of fleet per year) infrastructure (charing) 						
E-Fuels	Infrastructure + vehicles already there	 4x more sustainable electricity necessary political dependence more importantly needed for decarbonization elsewhere (e.g. high-temperature industrial processes, long distance flights) emissions (besides CO2) same as fossil 						
Hydrogen		see e-fuels, plus:additional infrastructure						
Fuel cells	Drop-in replacement for electric batteries	see hydrogen						

To me, looks like "electric", but following material also works for other non-fossil drives.

berlin

Berlin

Decarbonization solutions for "other traffic", "freight traffic", commercial person traffic

"Other" traffic: Emergency services eFuels or hydrogen or fuel cell, everything else battery-electric (~ 20% more expensive, see above).

Goods traffic: Collection, distribution: battery-electric. Main haul: Road: battery-electric, maybe overhead lines. Fuel cells? eFuels/hydrogen?? Rail ... ~ 20 to 25% (in Germany)

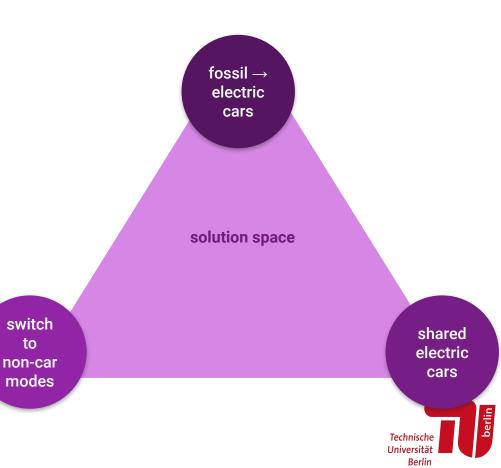
Commercial person traffic: Mostly electric ...

Not very controversial in citizen council.

Not very controversial with lobbyists. They demand:

- credible very fast build-up of charging infrastructure
- regulation such that fossil competition not cheaper

Procure test vehicles, then decide. Eg. BVG Berlin public transit provider ...

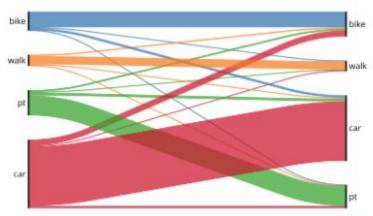


Person traffic (private, commercial)

Three corner case solutions:

- fossil car \rightarrow electric car
- switch to non-car modes
- individually owned → shared (electric) car
- Presumably need mix of these. Presumably different for each location.

So far, decarbonization of (urban) traffic looks like a solvable problem.



There is a dream ... (= Sounding board project)

There is a dream ...

... in Germany that improving bicycle infra and public transport will "solve" both the decarbonization and the "car" problem.

<u>However</u>, our simulations show that, even if well executed, each of them never reduces car by more than 10%. (E.g. $30\% \rightarrow 27\%$.)

Need additional "push" measures, e.g. toll agains (fossil) vehicles, parking fees against (fossil) vehicles, zero emissions zone, ...

Kaddoura, I. *et al.* (2020) 'Verkehrsmodellierung für das Ruhrgebiet', in H. Proff (ed.) *Neue Dimensionen der Mobilität: Technische und betriebswirtschaftliche Aspekte*. Wiesbaden: Springer Fachmedien Wiesbaden, pp. 361–386. Available at: https://doi.org/10.1007/978-3-658-29746-6_31.

Citizen council(s) and dashboard(s) to discuss https://vsp.berlin/sounding-board

Staatliche Einnahmen: welche die jeweiligen Maßnahmen pro Jahr, pro Jahr und Kopf sowie pro Jahr und erwachsene Person einbringen. Falls negativ, dann sind hiermit staatliche Ausgaben/Kosten gemeint.

Fahrender A 100 % 100% 80% 60% 40% 20% 0%		5 5 5 6 6	Autoverkehr		Parkende Autos 100 % 100% 80% 60% 40% 0%		Staatl. Einnahmen pro Jahr 0 € Staatl. Einnahmen pro Kopf und Jahr 0 € Staatl. Einn. pro Erw. und Jahr 0 €					
XPERIMENT CONDIT	IONS											
ÖPNV	Kiezblöcke	öcke Fahrrad Parkraum					fahrender Autoverkehr					
base dekarbonisiert stark	base ganze Stadt	base stark	base Besucher_teue	r_Anwohner_preiswert Be	sucher_teuer_Anwohner_teuer	base	mautFossil	MautFuerAlle	zeroEmissionsZone	zeroEmissionsZonePlusMaut	autofr	

DESCRIPTION

ÖPNV: Öffentlicher Personennahverkehr: hierzu gehören S-Bahn, U-Bahn, Tram und Bus base: Stand heute

Some results from citizen council

> 80% support of:

- General goal of non-fossil traffic.
- Going beyond pure drive transition.
- Compensations to losers.
- ++ of: public transport, bicycle infra, car sharing, demand-responsive transit.
- Long-term plannable goals.
- Internalization of external costs ("Verursacherprinzip")...

... but **no majority for any of the concrete push measures** (e.g. "toll", "parking fees", zero emissions zone).

Wide agreement on overall goals; wide agreement on (costly) "pull" measures; people want fewer cars but no agreement on "push" measures.

Kreuschner, M. *et al.* (2023) 'Dekarbonisierung des Verkehrssektors in Berlin: Bürger:innengutachten zu wissenschaftlich erstellten Szenarien', *Depositonce* [Preprint]. Available at: https://doi.org/10.14279/depositonce-18736.

Berlin

Didn't we know this?

Widespread saying in Germany: "With respect to decarbonization, we do not have a knowledge but an implementation deficit. Everybody (or: The experts) know(s) what needs to be done."

— no! This is not the issue. Rather have more than one path and cannot decide which one to implement (also between experts). Cannot (should not?) expect of politicians to move without a majority.

 \rightarrow Headed towards pure drive transition, but with delayed implementation.

What to do (in Germany)?

- Concentrate on commercial actors. At least $\frac{1}{3}$ of CO2 in surface transport.
- High GER fuel tax will break away because move to electric. Revenue, implicit toll.
 →(?) Replace by some km-based charging. Be prepared, esp. as research.

Universität Berlin

Conclusion

Conclusion

Solutions for carbon-free urban traffic exist.

Less expensive than one may expect.

Decarbonisation of private traffic in Berlin stuck in discussion if

• replace fossil by non-fossil cars ("Antriebswende")

or

• combine with general change of transport system ("Verkehrswende").

Recommend focus on commercial traffic (less controversial).

Starting point

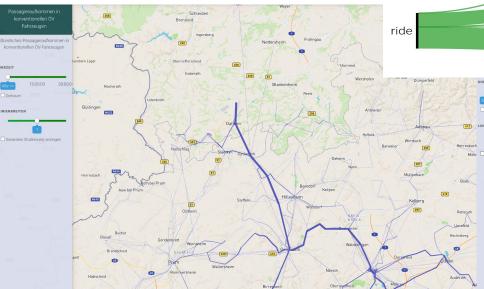
In GER rural public transit cross-subsidized by school traffic.

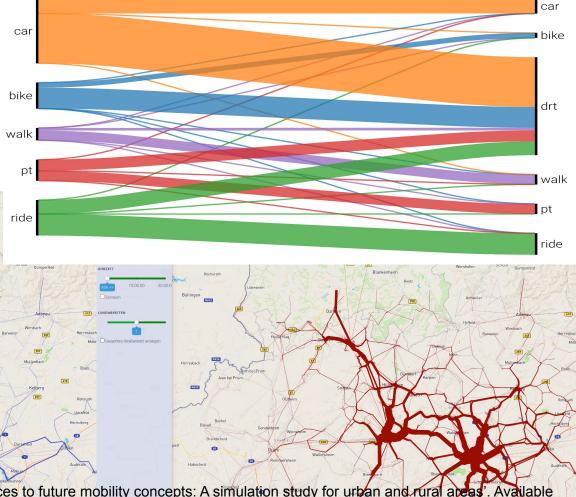
Our simulations: School traffic with electric shuttles (and human drivers) only about 30% more expensive than current system (with buses). ~ 1600Eu/(Person x Jahr)

Remainder of day shuttle system at marginal cost.

Much more attractive than current rural public transit.

Lu, C. *et al.* (2022) 'Demand-Responsive Transport for Students in Rural Areas: A Case Study in Vulkaneifel, Germany'. Available at: <u>https://doi.org/10.2139/ssrn.4181254</u>.


https://www.saechsische.de/teure-buskinder-3503771.html .


https://www.vulkaneifel.de/images/pdf/abtZ/Haushalt_2022.pdf section 2410 page 53: 6.736 Mio Eu. I think that there are 7000 pupils + 1500 "berufsbildende Schulen" (www.vulkaneifel.de/beitraege/abt6/SEP). If 50% of them walk, for the remaining 50% we end up with about 1700Eu/y

Berlin

Shuttles at current PT prices

- Strong mode choice reaction
- Much better "network"

Kaddoura, I. et al. (2021) 'From today's ride-sharing services to future mobility concepts: A simulation study for urban and rural areas'. Available at: https://doi.org/10.14279/depositonce-12055.