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Problem-driven research
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Improving energy efficiency in railway traffic
and speed profiles under uncertainty
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Problems considered

= Microscopic railway models, involving uncertainty, and including energy use

Railway traffic flow modeling Train trajectory optimization

=  Stochastic process in railway traffic flow: = The impact of wind on energy-efficient train
Models, methods and implications. control
F.Corman, A.Trivella, M.Keyvan-Ekbatani A.Trivella, P.Wang, F.Corman
iranspoitationResearchiFariCH202T) SIS EURO Journal on Transportation and Logistics (2021)
" Modeling system dynamics of interacting = Traintrajectory optimization for improved on-
cruising trains to reduce the impact of power time arrival under parametric uncertainty
k .
pea.s P.Wang, A.Trivella, R.Goverde, F.Corman
A-Trivella, F.Corman Transportation Research Part C (2020)

Expert Systems with Applications (2023)
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Railway traffic flow modeling
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Railway traffic

Much effort devoted to model car traffic: Describe traffic characteristics based on individual
drivers’ behavior (e.g., car-following and lane-changing)...

...but little exchange of ideas filtered to/from the similar problem for track-based transportation

We wanted to develop novel railway traffic flow models based on driver behavior modeling by:
= extending key ideas from car traffic

= considering the specific/different aspects of railway, e.g.,
= Safety system
= Common energy consumption
= Technologies like ATO

Goal is to formalize the relation between train driver characteristics, including behavior, vehicle’'s
technology, signaling system, and the aggregate performance of the system
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Problem description
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Analysis on recorded data from the Swiss network (50 trains)
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Stochastic process models

We define 4 stochastic processes of increasing complexity that model different situations

1. Speed follows an Ornstein-Uhlenbeck process (OU)

'ou]: dv(t) = B(veruse — v(t))dt + odW () > Mean-reverts t0 Vcruse
) ds(t) = v(t)dt

It can represent the process of a human train driver who knows the planned
speed and continuously controls the train speed to be as close as possible

2. Doubly mean-reverting, doubly bounded process (DMR)

. dv(t) = [B(veruse — V(1)) + @ (Veruse t — $())] dt + o (v(t)) AW (1)
[DMR]: { ds(t) = v(t)dt

It can model how a computer, aware of precise position of current and ahead vehicle, can
steer the system towards a desired space headway

11
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Time-speed trajectories

We can study the system with two approaches:
1. by adapting theoretical results on stochastic processes
2. by Monte Carlo simulation of multiple stochastic process trajectories
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Time-space trajectories
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Space-speed trajectories
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System performance (5000 trajectories)

Table 1: Analysis of aggregate properties from the four stochastic process models (horizon 1 hour).

Performance indicator Unit BM ouU CIR DMR DET, DET.
Trajectories with at least one yellow signal %] 70.4 65.2 65.9 0.0 0.0 100.0
Yellow signals per 1000 seconds -] 0.20 0.19 0.19 0.00 0.00 2.50
- average S 1474|1962 | 1041 |=3600 | >3600 105
Time to first yellow  50th percentile s] 536 1627 1563  |>3600 | >3600 105
5th percentile B 104 214 230 |>3600 | >3600 105
- average km] 2025 | 366 | 366 | 320 320 333
Space headway 50th percentile km] 15.14 3.62 3.62 3.20 3.20 3.33
95th percentile km] 55.24 4.41 4.43 3.28 3.20 3.64
- average m/s) 2424|3481 | 3481 | 3500 | 3500 3488
Speed follower 50th percentile m/s| 2419 | 34.94 | 35.00 35.03 35.00 37.00
95th percentile m/s]  37.08 |36.60 | 36.51 36.59 35.00 37.00
System throughput (vehicles/hour) 2 15.8 34.2 .




UNIVERSITY OF TWENTE.

Account for energy consumption

Despite railway is an efficient transport mode, much effort is devoted to reduce its consumption
to cope with high energy prices and meet the ambitious climate targets

Railway operators are concerned
with both energy use and peaks
In power needed: such peaks affect — N

both grid stability and the energy bill

dt

Goal: Analyze the performance of railway traffic in a corridor in terms of regularity, energy
use and power peaks, depending on the assumptions on the processes

16
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Generalization to a string of trains

= Dynamics of follower n as a function of follower n-1

_ dw,[t) = [Bn(Veruise —|Ud(t)) + an (Sn—1(t) — s (t))] dt + T (v, () dW (1),
[IDMR]: { dls|(t) = vn (£)dt | )

= Compute energy consumption of each train and of the entire system

EZ = /31 max{ f(s),0}ds [ dvu(s) _ f(8) = Riine(s) — Rirain(S)
ds p-m-v(s)

where the traction force fulfills <

17
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Analysis of a trigger event (OU process)

Speed fluctuations +0.5 m/s for all
trains due to stochastic process model
(no yellow signal)

v

0 200 400 600 800 1000 1200 1400 The third train triggers a yellow signal

and decelerates until 20 m/s
(approach speed given as input)

More downstream trains may have to
decelerate more (or even stop) in
order for the headway to be restored
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Analysis of a trigger event (OU process)
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= Small changes in acceleration due to
stochastic process (shades of orange)

= Deceleration and acceleration phases are
longer the more the train is downstream

= Space lost w.r.t. a fixed speed benchmark

= The space lost increases the more the
train is downstream
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Energy consumption (1 trajectory)
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> Individual trains

\

> All trains
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Peak detection in energy profiles

1. Exponential smoothing
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Peak detection in energy profiles

1. Exponential smoothing
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Peak detection in energy profiles
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Peak detection in energy profiles

1. Exponential smoothing

2. Select points t such that
E; > a-mean(F) + 6 - std(F)
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Peak detection in energy profiles

1. Exponential smoothing
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Average system performance

Regularity Energy

Mean out (kWh) : 42.52

Speeds (m/s) : 35 34.94 34.84 34.71 34.54 34.34 Mean in (KWh): 63.02

Space (km) :35 35 34.9 34.8 34.7 34.6 )
ouU Distance (km): 3.24 327 328 331 3.33 S LS SRS
: N Extra (KWh) :128.25
Triggers (%) : 0 12.4 29.4 42.6 52 57.2 Total (kWh) - 2875.6
FTTY (s) 2000 1925 1807 1701 1627 1579 ' '

Mean out (kWh) : 42.07
Mean in (kWh): 56.04
Max (kwh) :63.88
Extra (kWh) :54.38
Total (kWh) :2821.5

Speeds (m/s) : 35.01 35.01 35.01 35.01 35.01 35.01
Space (km) :35 35 35 35 35 35
DMR Distance (km): 3.2 32 32 32 32
Triggers (%) :0 0 0 0.2 1.8 5.2
S ; 965
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Smoothing the peaks

Assumptions Impact on dynamics
Account for Technology (electrical system)
regenerative energy Energy recovered
Regenerative energy Technology (storage system) Added storage operations

+ energy storage

Fixed waiting rules - Update dynamics after trigger

27
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Fixed waiting rules

= The waiting time
propagates downstream

0 seconds

Speed (m/s)

=713 - =T \ }

= Does it improve energy

10 seconds KPIs?
= Impact on regularity?

Speed (m/s)

20 seconds

Speed (m/s)

O I I \ 1 !
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Time (s)

1900 2000
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Energy profiles under different strategies
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% meme Reg—l_Stor '/' Ve ,:: ...'hg.\~\~.
~ 4o I ==-Fixed, 0 =15 o il
§ - -Fixed, § = 30 nemT= -
A e e i e
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~4 20 Reg - =Fixed, § = 30 o
«==» Reg+Stor = Trade off between objectives?
O | I |
400 600 800 1000 1200

Time (s) #



UNIVERSITY OF TWENTE.

Trade-off between KPIs (Regularity, Energy, Peak)

KPIs of the system under different peak reduction strategies.

Technology KPI Fixed waiting time o (s)
0 10 20 30 40 50 60

R 35.4 34.0 33.0 317 30.6 30.1 29.3
- E 2876 2877 2870 2864 2856 2845 2837
P 64.7 63.6 62.2 61.6 60.6 59.7 59.2
R 35.4 34.0 33.0 31.7 30.6 30:1 29.3
Reg E 2781 2773 2768 2761 2797 2753 2748
P 64.4 63.3 62.0 61.4 60.5 59.6 299.2
Reg+Stor R 35.4 34.0 33.0 3L.7 30.6 30.1 29.3
(p=1) E 2795 2788 2780 277D 2769 2765 2763
P

59.3 99.5 99.1 58.6 58.1 7.7 S57.4

R = Regularity / throughput E = Total energy consumption P = Maximum energy profile value

30
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Trade-off between KPIs (Regularity, Energy, Peak)

65 :_%00 65 PE.= §=04 0.6 0.6 chi e _(;Z.IOO
2} B O T £ ! —~ - - To=0"
s | »#Ti=06] S A Wi £05 S 0.5] =00 = 0.6

2 - — ’ 7
~ 60! A;QQm‘ ~— 60! (3,—60 w g S 560 499
§ =60 § - =60 0 0.4 S 0.4 ,/',
: 7 % ceenss
i & Taray, i 0=60 e o ° /
N —A "'--.,. ~— .0‘ 5 5 4
g 55 | 0=60 '~..,0' pl § 551 ] \c;/ 0.3 ; 0.3 // 5=0
NP il S Tk e
=022 0 <02 2 02| WHego
30 32 34 36 2750 2800 2850 AR — T TR
K3 (trains/hour) K4 (kWh) K5 (kWh / 30s) K3 (trains/hour)

—Reg+Stor = =Fixed ==-Fixed+Reg = Fixed+Reg+Stor

= No strategy dominates the others in managing all KPIs
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Conclusion

= We developed a novel railway traffic flow model based on stochastic processes

= We gquantified the system benefit resulting from automated train operation (ATO) in
terms of added regularity, reliability, and energy metrics compared to a human driver

= \We assess the impact of different strategies to shave the peaks in consumption

= There is a trade-off between traffic regularity (e.g., measured as average train speed) and
energy performance (e.g., average height of peaks) that need to be accounted for carefully

32
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Train trajectory optimization
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Train Trajectory Optimization Problem

Goal: Determine energy-efficient trajectories for trains driving between two stations while fulfilling:

Scheduled arrival time 100 - L
><
//ﬁ
Speed limits £ ‘0
2
<8}
& 40  +
Train Path Envelope.(TPE): time _
and/or Speed WIndOWS —— path: t=900.1s, 5.9kWh
speed limits
0 | | | [ [ [ | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

distance (m) %104
Relevant as it allows to:
® Save energy in the range of 5-20%

® Reduce costs for the operators, no particular investments in infrastructure

34
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Uncertainty in train control

Much of the literature considers static parameters for motion / resistance

Parameters differ from the handbook!

And vary within the trip!

Parameters:

e Train mass (passengers, goods)

value of resistance parameter
normalized by handbook value

e Maximum traction force/power (voltage, current)

e Maximum braking force (speed, weather, friction) 0 1 M 30 4 %@ 70 @ % 10 10

Number of observations

e Train resistance (weather: wind, snow, track wet)

35
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MDP and DDP formulation

costs we incur when

N Sum over stages following a policy
Conditional
expectation \ l /
Markov | ,
decision min & Z 0" ci(wf, wi, Z7 (7, wi)) + 6" cr(2], wr) | (2o, wo)
process / el / \\
We want to find Decision we take at this

the best “policy” Endogenous Endogenous

stage and state
part of the state  part of the state

Stochastic
dynamiC Vz(ﬂ%;wz) { 0K [Vi_|_1 (f?;(xi,wi,ai),wiﬂ) ‘wi

(z,wi,wiKE XX, xW;

program

Best action Immediate cost Continuation function
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Train trajectory optimization as an MDP

e Stages: discretized locations

e States: train speeds and times at each location

e Uncertainty: train resistance, max traction effort, braking effort
e Actions: control decision in {MT, SH, CO, MB}

e Transition: equations determining the train motion
dv(s)  f(s) — R™(v) — Ri™(s)  di(s) 1

ds p-m-v(s) © ds v(s)

e Cost function: energy incurred from state to next state

Sd41
E = / max{ f(s),0} ds (analytic expression is available)

37
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Approximate dynamic programming (ADP) algorithm

Double-pass algorithm based on Monte Carlo simulation
Goal: Learn MDP value functions and time/energy cost functions

150

A
r\;

Speed (km/h
n
o

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance (m) x10%
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Approximate dynamic programming (ADP) algorithm

Algorithm 1: DouBLE-pAss ADP

Inputs: Initial value function approximation LEF‘D(SS{]: ¥d e D, ST € Sy; Initial MDP state SJ;
Number of sampling iterations V.
For iteration n =1 to N do:
Step 1. Generate a sample path of uncertainty w".
Step 2. Forward pass:
For d=0to D —1 do:

. . - N . 1 \ —r.n—1 , & 5.
(a) Compute decision X}(S}) = argmin {E;f Lsn zn) + VvV, (S5 n)};
ZhEXy(ST)

(b) Find post-decision state Sx'n and new pre-decision state S7, ; with transition functions;
(c) Compute the observed time and energy cost using ¥(S7, ‘5’:;_,_1] and x(S7,z7, Warq (w™)).
Step 3. Backward pass:
Initialize V5 (S5") =0,V S5™ € Sp.
For d=D —1 to 0 do:
T

(a) Update approximations of time 77 (S7.z") and energy E7 (S7.x7) by

n Qg ¥ oy} r y
noon _ny 0 E“(‘SES;—H) E oo ZE) X ba’ ‘ld ]'-I:ff‘f‘l('wn)) .
td ('- dsTd) = n 3 ( Tq ] n 3

(b) Compute V,*(S5) = EF (S5, X" (S] )) + Vj; " (ST
(c) Compute V7, (S%") = (1 — VTS ) + oV (ST).
Outputs: ¥Vd € D and del]'J]Ld state £ 8, Time cost t\ (5'(‘5 ,.r&'_), energy cost Eé"— [Sd\'rc}) value

function approximation V g (5;“\ ) and action XY (SY).
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Framework

Offline (ADP or deterministic DP) + online phases

m ADP DDP as benchmark

p Double-pass algorithm based on: Deterministic dynamic programming:
— - Monte Carlo sampling - Future variability is neglected

& - Forward pass: actions - Space-speed network

O - Backward pass: update values - Backward DP algorithm

Policy update
Model to fulfill TPE constraints:
- Estimate EE running time

ON-LINE

- Real-time policy adjustments

- Penalty-based rules
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Case study: Instance

Experiments using deterministic detailed data for the Dutch railway network (Utrecht 's-Hertogenbosch)

Ut Utl Htn Htnc Cl Gdm Zbm Ht
A 7 | —

150

e Infrastructure: 50km, track sections,
speed signs, gradients, signals gmr B
:gj, 50 -
e Train: mass, length, traction and O | e A
braking rates, base resistance, speed 05 1 15 2 25 3 35 4 45

Distance (m) 10*

F™(s) ~ TN (g, 07, a5,b5) = N(pg,07) | lay, by]
Pmax(s) ~ TN(Mpaaﬁaapabp) = N(up,ai) | [ap, by)
R (s) ~ TN (pir, 07, a0, by) = N, 07) | [ar, by

e Uncertainty: modeled using
truncated normal random variables
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A few results (more in the paper)

ADP DDP _ _
Train under DDP often arrives:

late / \
oNtime e e
More Variability
g \ 4 \ 4
£
More Energy
| early

Normalized energy consumption
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The impact of wind on energy-efficient train control

We computed wind-aware train trajectories that account for wind conditions

120

100

80

60

— No-wind trajectory
--- Wind-aware - scenario 1 ;
20 -~ Wind-aware - scenario 2
—— Speed limits ;
() | | | | | i | | | |
0 2 4 6 8 10 12 14 16 18 20

distance (km)

speed (km/h)
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Energy savings in different instances

12
10 H : ; !
= O **
20 : ’
E train : 0O . *
5 6 °
0] Y Y
2 4_ ; 4 0 2 % w . 2
o > B
2| — st s e bbb R s VY
: abﬁﬁa H v X b 4 p X X X X x X
Oﬂ—ﬁa—g—g—v—g—e—é}’\>0$ééé¢0<>o® 65T H 606
2 4 6 X 0 T -

Wind speed (m/s)
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Method: Line-search based shortest path algorithm

Algorithm 1: Line search DP for train trajectory optimization

Inputs: Graph G; Wind (w, #); n™** > 0 (high value); Maximum iterations I; Arrival time
tolerance e.

Initialization: T(w,0) = +w, E(w,0) = +oo, MY = 0.
For iteration 7z = 1 to I do:

1. Set n:= (pMA* + M) /2 and ¢p(n, w, Q) := tp + nep(w, ), Vb € A, obtaining graph

G =G(n,w,0);

o

Solve shortest path as a DP on G(7n,w, ), resulting in trajectory X,, travel time 7}, and
energy Fy;

3. If (T, TS| < |T(w,0) — TS|, update current best solution X (w, ) = Xy,
I'(w,0) =1y, E(w,0) = Ey;

4. If T, < T®, redefine ™M™ = n, else, redefine nM** = ;

5. If |T(w,0) — TS| < ¢, break.

Outputs: Optimized train trajectory X (w,#), time T'(w, ), and energy consumption E(w,#)
for wind scenario (w,6).
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&0

kWh
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