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Problems considered

▪ Microscopic railway models, involving uncertainty, and including energy use

▪ The impact of wind on energy-efficient train 

control

A.Trivella, P.Wang, F.Corman

EURO Journal on Transportation and Logistics (2021)

▪ Traintrajectory optimization for improved on-

time arrival under parametric uncertainty

P.Wang, A.Trivella, R.Goverde, F.Corman

Transportation Research Part C (2020)

Train trajectory optimizationRailway traffic flow modeling

▪ Stochastic process in railway traffic flow: 

Models, methods and implications.

F.Corman, A.Trivella, M.Keyvan-Ekbatani 

Transportation Research Part C (2021) + ISTTT

▪ Modeling system dynamics of interacting 

cruising trains to reduce the impact of power 

peaks 

A.Trivella, F.Corman

Expert Systems with Applications (2023)



Railway traffic flow modeling
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Railway traffic

Much effort devoted to model car traffic: Describe traffic characteristics based on individual 

drivers’ behavior (e.g., car-following and lane-changing)…

…but little exchange of ideas filtered to/from the similar problem for track-based transportation

We wanted to develop novel railway traffic flow models based on driver behavior modeling by: 

▪ extending key ideas from car traffic

▪ considering the specific/different aspects of railway, e.g.,

▪ Safety system

▪ Common energy consumption

▪ Technologies like ATO

Goal is to formalize the relation between train driver characteristics, including behavior, vehicle’s 

technology, signaling system, and the aggregate performance of the system
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Problem description

Leader-follower model

Follower is subject 

to speed variations

Yellow signals force the 

follower to decelerate
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Analysis on recorded data from the Swiss network (50 trains)
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Stochastic process models

We define 4 stochastic processes of increasing complexity that model different situations

1. Speed follows an Ornstein-Uhlenbeck process (OU) 

It can represent the process of a human train driver who knows the planned 

speed and continuously controls the train speed to be as close as possible

Mean-reverts to

2. Doubly mean-reverting, doubly bounded process (DMR)

It can model how a computer, aware of precise position of current and ahead vehicle, can 

steer the system towards a desired space headway 



Time-speed trajectories
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OU DMR

We can study the system with two approaches:

1. by adapting theoretical results on stochastic processes 

2. by Monte Carlo simulation of multiple stochastic process trajectories



Time-space trajectories

OU DMR
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Space-speed trajectories
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OU DMR
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System performance (5000 trajectories)

42.0System throughput (vehicles/hour) 39.834.2 34.215.8
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Account for energy consumption

▪ Despite railway is an efficient transport mode, much effort is devoted to reduce its consumption 

to cope with high energy prices and meet the ambitious climate targets

▪ Railway operators are concerned 

with both energy use and peaks 

in power needed: such peaks affect

both grid stability and the energy bill

▪ Goal: Analyze the performance of railway traffic in a corridor in terms of regularity, energy 

use and power peaks, depending on the assumptions on the processes

dt
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Generalization to a string of trains

▪ Dynamics of follower n as a function of follower n-1

▪ Compute energy consumption of each train and of the entire system

where the traction force fulfills
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Analysis of a trigger event (OU process)

Speed fluctuations ±0.5 m/s for all 

trains due to stochastic process model 

(no yellow signal)

The third train triggers a yellow signal 

and decelerates until 20 m/s 

(approach speed given as input)

More downstream trains may have to 

decelerate more (or even stop) in 

order for the headway to be restored
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Analysis of a trigger event (OU process)

▪ The space lost increases the more the 

train is downstream

▪ Deceleration and acceleration phases are 

longer the more the train is downstream 

▪ Space lost w.r.t. a fixed speed benchmark

▪ Small changes in acceleration due to 

stochastic process (shades of orange)
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Energy consumption (1 trajectory)

Individual trains

All trains
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Peak detection in energy profiles

1. Exponential smoothing
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Peak detection in energy profiles

1. Exponential smoothing

2. Select points t such that 
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Peak detection in energy profiles

1. Exponential smoothing

2. Select points t such that 

3. Reconstruct the peak
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Peak detection in energy profiles

1. Exponential smoothing

2. Select points t such that 

3. Reconstruct the peak

4. Separate peaks from non-peaks 

and examine the two regions
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Peak detection in energy profiles

1. Exponential smoothing

2. Select points t such that 

3. Reconstruct the peak

4. Separate peaks from non-peaks 

and examine the two regions

Peaks correspond to multiple trains 

accelerating after a yellow signal



26

Average system performance

Regularity Energy

OU

DMR

Speeds (m/s) : 35.01  35.01  35.01  35.01  35.01  35.01  

Space (km)   : 35  35  35  35  35  35  

Distance (km): 3.2  3.2  3.2  3.2  3.2  

Triggers (%) : 0  0  0  0.2  1.8  5.2  

FTTY (s)     : 2000  2000  2000  2000  1991  1965  

Mean out (kWh) : 42.52  

Mean in (kWh): 63.02  

Max (kWh)     : 76.34  

Extra (kWh)   : 128.25  

Total (kWh)   : 2875.6  

Mean out (kWh) : 42.07  

Mean in (kWh): 56.04  

Max (kWh)     : 63.88  

Extra (kWh)   : 54.38  

Total (kWh)   : 2821.5  

Speeds (m/s) : 35  34.94  34.84  34.71  34.54  34.34  

Space (km)   : 35  35  34.9  34.8  34.7  34.6  

Distance (km): 3.24  3.27  3.28  3.31  3.33  

Triggers (%) : 0  12.4  29.4  42.6  52  57.2  

FTTY (s)     : 2000  1925  1807  1701  1627  1579  
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Smoothing the peaks

Account for 

regenerative energy

Regenerative energy 

+ energy storage

Fixed waiting rules

Impact on dynamicsAssumptions

-
Technology (electrical system)

Energy recovered

Added storage operations

Update dynamics after trigger

Technology (storage system)

-
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Fixed waiting rules

0 seconds
▪ The waiting time 

propagates downstream

▪ Does it improve energy 

KPIs?

▪ Impact on regularity?

10 seconds

20 seconds
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Energy profiles under different strategies

▪ Unclear what strategy performs 

best in general

▪ Trade off between objectives?

Example 1

Example 2
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Trade-off between KPIs (Regularity, Energy, Peak)

R

E

P

R

E

P

R

E

P

R = Regularity / throughput E = Total energy consumption P = Maximum energy profile value
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Trade-off between KPIs (Regularity, Energy, Peak)

▪ No strategy dominates the others in managing all KPIs



32

Conclusion

▪ We assess the impact of different strategies to shave the peaks in consumption

▪ There is a trade-off between traffic regularity (e.g., measured as average train speed) and 

energy performance (e.g., average height of peaks) that need to be accounted for carefully

▪ We quantified the system benefit resulting from automated train operation (ATO) in 

terms of added regularity, reliability, and energy metrics compared to a human driver

▪ We developed a novel railway traffic flow model based on stochastic processes 



Train trajectory optimization
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Train Trajectory Optimization Problem

Goal: Determine energy-efficient trajectories for trains driving between two stations while fulfilling:

Save energy in the range of 5–20% (Hansen and Pachl 2014)

Reduce costs for the operators, no particular investments in infrastructure

Relevant as it allows to:

Scheduled arrival time

Speed limits

Train Path Envelope (TPE): time 

and/or speed windows
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Uncertainty in train control

Parameters differ from the handbook!

And vary within the trip!

Parameters:

Train mass (passengers, goods)

Much of the literature considers static parameters for motion / resistance 
(Howlett 2000, Howlett and Pudney 2012, Ko et al. 2004, Wang and Goverde 2016, 

2017, Haahr et al. 2017, Zhou et al. 2017, De Martinis and Corman 2018)

v
a

lu
e

 o
f 

re
s
is

ta
n

c
e

 p
a

ra
m

e
te

r,
 

n
o

rm
a

liz
e

d
 b

y
 h

a
n

d
b

o
o

k
 v

a
lu

e

Maximum traction force/power (voltage, current)

Maximum braking force (speed, weather, friction)

Train resistance (weather: wind, snow, track wet)
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MDP and DDP formulation

Sum over stages

costs we incur when 

following a policy
Conditional 

expectation

We want to find 

the best “policy” Endogenous 

part of the state

Endogenous 

part of the state

Decision we take at this 

stage and state

Markov 

decision 

process

Best action Immediate cost Continuation function

Stochastic 

dynamic 

program
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Train trajectory optimization as an MDP

Stages: discretized locations

States: train speeds and times at each location

Actions: control decision in {MT, SH, CO, MB}

Cost function: energy incurred from state to next state

Transition: equations determining the train motion

Uncertainty: train resistance, max traction effort, braking effort

(analytic expression is available)
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Approximate dynamic programming (ADP) algorithm

Backward pass:
Update value function 

approx., energy, time

Forward pass:
Take actions based on 

previous (n-1 th) estimates

Iteration n:

Monte Carlo sampling1 2 3

Double-pass algorithm based on Monte Carlo simulation (Mes and Rivera 2017) 

Goal: Learn MDP value functions and time/energy cost functions
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Approximate dynamic programming (ADP) algorithm
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Framework

Offline (ADP or deterministic DP) + online phases

ADP DDP as benchmark

Policy update

O
F

F
-L
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E

O
N

-L
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E

Double-pass algorithm based on:

- Monte Carlo sampling

- Forward pass: actions

- Backward pass: update values

Deterministic dynamic programming:

- Future variability is neglected

- Space-speed network

- Backward DP algorithm

Model to fulfill TPE constraints:

- Estimate EE running time

- Real-time policy adjustments

- Penalty-based rules
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Case study: Instance

Experiments using deterministic detailed data for the Dutch railway network (Utrecht 's-Hertogenbosch)

Infrastructure: 50km, track sections, 

speed signs, gradients, signals

Train: mass, length, traction and 

braking rates, base resistance, speed

Uncertainty: modeled using 

truncated normal random variables
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A few results (more in the paper)

Train under DDP often arrives:
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Energy consumption (normalized)

ADP DDP

Too early Too late

On average ADP saves 1% 

energy compared to DDP

Bad for the operator

More energy Less energy

More Variability

More Energy

ontime

early

late

Normalized energy consumption
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The impact of wind on energy-efficient train control

We computed wind-aware train trajectories that account for wind conditions
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Energy savings in different instances
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Method: Line-search based shortest path algorithm
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