

Optimization of Energy and Transport Systems

Alessio Trivella

Zurich, May 31st, 2024

Background

Bip

Technical University of Denmark

UNIVERSITY OF **ILLINOIS CHICAGO** O NTNU Norwegian University of Science and Technology

2

Research interests

Problem-driven research

Improving energy efficiency in railway traffic and speed profiles under uncertainty

Alessio Trivella

Joint works with Francesco Corman **Example 2004** 2024

Problems considered

▪ **Microscopic** railway models, involving **uncertainty**, and including **energy use**

Railway traffic flow modeling **Train trajectory optimization**

- Stochastic process in railway traffic flow: Models, methods and implications. F.Corman, **A.Trivella**, M.Keyvan-Ekbatani Transportation Research Part C (2021) + ISTTT
- Modeling system dynamics of interacting cruising trains to reduce the impact of power peaks

A.Trivella, F.Corman

Expert Systems with Applications (2023)

- The impact of wind on energy-efficient train control **A.Trivella**, P.Wang, F.Corman *EURO Journal on Transportation and Logistics* (2021)
- Traintrajectory optimization for improved ontime arrival under parametric uncertainty P.Wang, **A.Trivella**, R.Goverde, F.Corman *Transportation Research Part C* (2020)

Railway traffic flow modeling

Railway traffic

Much effort devoted to model **car traffic**: Describe traffic characteristics based on individual drivers' behavior (e.g., car-following and lane-changing)…

…but little exchange of ideas filtered to/from the similar problem for track-based transportation

We wanted to develop novel **railway traffic flow models** based on driver behavior modeling by:

- extending key ideas from car traffic
- considering the specific/different aspects of railway, e.g.,
	- Safety system
	- Common energy consumption
	- **EXECUTE:** Technologies like ATO

Goal is to formalize the relation between train driver characteristics, including behavior, vehicle's technology, signaling system, and the **aggregate performance** of the system

Problem description

Analysis on recorded data from the Swiss network (50 trains)

Stochastic process models

We define **4 stochastic processes** of increasing complexity that model different situations

1. Speed follows an Ornstein-Uhlenbeck process **(OU)**

[OU]: $\begin{cases} dv(t) = \beta(v_{\text{CRUSE}} - v(t))dt + \sigma dW(t) \longrightarrow \end{cases}$ Mean-reverts to v_{CRUSE}
 $ds(t) = v(t)dt$

It can represent the process of a **human train driver** who knows the planned speed and continuously controls the train speed to be as close as possible

2. Doubly mean-reverting, doubly bounded process (**DMR**)

$$
[\mathbf{DMR}]: \quad \begin{cases} \begin{array}{c} dv(t) = [\beta(v_{\text{CRUISE}} - v(t)) + \alpha(v_{\text{CRUISE}} t - s(t))] \, \mathrm{d}t + \widehat{\sigma}(v(t)) \, \mathrm{d}W(t) \\ \, \mathrm{d}s(t) = v(t) \, \mathrm{d}t \end{array} \end{cases}
$$

It can model how a **computer**, aware of precise position of current and ahead vehicle, can steer the system towards a desired space headway

Time-speed trajectories

We can study the system with two approaches:

- 1. by adapting **theoretical results** on stochastic processes
- 2. by **Monte Carlo simulation** of multiple stochastic process trajectories

Time-space trajectories

13

Space-speed trajectories

14

System performance (5000 trajectories)

Table 1: Analysis of aggregate properties from the four stochastic process models (horizon 1 hour).

Account for energy consumption

■ Despite railway is an efficient transport mode, much effort is devoted to reduce its consumption to cope with **high energy prices** and meet the **ambitious climate targets**

■ Railway operators are concerned with both **energy use and peaks** in power needed: such peaks affect both grid stability and the energy bill

▪ Goal: Analyze the performance of railway traffic in a corridor in terms of **regularity**, **energy use** and **power peaks**, depending on the assumptions on the processes

Generalization to a string of trains

▪ Dynamics of follower *n* as a function of follower *n*-1

$$
[\mathbf{DMR}]: \quad \begin{cases} \quad d_{v_n}(t) = \left[\beta_n(v_{\text{cruuse}} - \overline{v_n}(t)) + \alpha_n \left(s_{n-1}(t) - s_n(t)\right)\right] dt + \hat{\sigma}(v_n(t)) \, \mathrm{d}W(t), \\ \quad d_{s_n}(t) = v_n(t) \mathrm{d}t \end{cases}
$$

Compute energy consumption of each train and of the entire system

$$
E_{s_1}^{s_2} = \int_{s_1}^{s_2} \max\{f(s), 0\} ds
$$

where the traction force fulfills $\left\{\n\begin{array}{c}\n\sqrt{2} \\
\sqrt{2}\n\end{array}\n\right\}$

$$
\frac{dv(s)}{ds} = \frac{f(s) - R_{line}(s) - R_{train}(s)}{\rho \cdot m \cdot v(s)}
$$

$$
\frac{dt(s)}{ds} = \frac{1}{v(s)}
$$

Analysis of a trigger event (OU process)

Speed fluctuations ±0.5 m/s for all trains due to stochastic process model (no yellow signal)

The third train triggers a yellow signal and decelerates until 20 m/s (approach speed given as input)

More downstream trains may have to decelerate more (or even stop) in order for the headway to be restored

Analysis of a trigger event (OU process)

- Small changes in acceleration due to stochastic process (shades of orange)
- Deceleration and acceleration phases are longer the more the train is downstream
- Space lost w.r.t. a fixed speed benchmark
- The space lost increases the more the train is downstream

Energy consumption (1 trajectory)

Peak detection in energy profiles

1. Exponential smoothing

Peak detection in energy profiles

- 1. Exponential smoothing
- 2. Select points *t* such that $E_t \geq \alpha \cdot \text{mean}(E) + \beta \cdot \text{std}(E)$

Peak detection in energy profiles

- 1. Exponential smoothing
- 2. Select points *t* such that $E_t \geq \alpha \cdot \text{mean}(E) + \beta \cdot \text{std}(E)$
- 3. Reconstruct the peak

Peak detection in energy profiles

- 1. Exponential smoothing
- 2. Select points *t* such that $E_t \geq \alpha \cdot \text{mean}(E) + \beta \cdot \text{std}(E)$
- 3. Reconstruct the peak
- 4. Separate peaks from non-peaks and examine the two regions

Peak detection in energy profiles

- 1. Exponential smoothing
- 2. Select points *t* such that $E_t \geq \alpha \cdot \text{mean}(E) + \beta \cdot \text{std}(E)$
- 3. Reconstruct the peak
- 4. Separate peaks from non-peaks and examine the two regions

Peaks correspond to multiple trains accelerating after a yellow signal

Average system performance

Smoothing the peaks

Fixed waiting rules

Energy profiles under different strategies

Trade-off between KPIs (Regularity, Energy, Peak)

KPIs of the system under different peak reduction strategies.

 R = Regularity / throughput E = Total energy consumption P = Maximum energy profile value

Trade-off between KPIs (Regularity, Energy, Peak)

■ No strategy dominates the others in managing all KPIs

Conclusion

- We developed a novel railway traffic flow model based on stochastic processes
- We quantified the system benefit resulting from **automated train operation (ATO)** in terms of added regularity, reliability, and energy metrics compared to a **human driver**
- We assess the impact of different strategies **to shave the peaks in consumption**
- **There is a trade-off** between traffic regularity (e.g., measured as average train speed) and energy performance (e.g., average height of peaks) that need to be accounted for carefully

Train trajectory optimization

Train Trajectory Optimization Problem

Goal: Determine energy-efficient trajectories for trains driving between two stations while fulfilling:

Relevant as it allows to:

- Save energy in the range of 5–20% (Hansen and Pachl 2014)
- Reduce costs for the operators, no particular investments in infrastructure

Uncertainty in train control

Much of the literature considers static parameters for motion / resistance

(Howlett 2000, Howlett and Pudney 2012, Ko et al. 2004, Wang and Goverde 2016, 2017, Haahr et al. 2017, Zhou et al. 2017, De Martinis and Corman 2018)

Parameters differ from the handbook!

And vary within the trip!

Parameters:

- Train mass (passengers, goods)
- Maximum traction force/power (voltage, current) \bullet
- Maximum braking force (speed, weather, friction) \bullet
- Train resistance (weather: wind, snow, track wet)

MDP and DDP formulation

Stochastic dynamic program

Markov

decision

process

Train trajectory optimization as an MDP

- **Stages**: discretized locations
- **States**: train speeds and times at each location
- **Uncertainty**: train resistance, max traction effort, braking effort
- **Actions**: control decision in {MT, SH, CO, MB}
- **Transition**: equations determining the train motion

 $\frac{dv(s)}{ds} = \frac{f(s) - R^{\text{train}}(v) - R^{\text{line}}(s)}{\rho \cdot m \cdot v(s)}, \quad \frac{dt(s)}{ds} = \frac{1}{v(s)}$

Cost function: energy incurred from state to next state

 $E = \int_{0}^{s_{d+1}} \max\{f(s), 0\} ds$ (analytic expression is available)

Approximate dynamic programming (ADP) algorithm

Double-pass algorithm based on Monte Carlo simulation (Mes and Rivera 2017) Goal: **Learn** MDP value functions and time/energy cost functions

Approximate dynamic programming (ADP) algorithm

Algorithm 1: DOUBLE-PASS ADP

Inputs: Initial value function approximation $V_d^{x,0}(S_d^x)$, $\forall d \in \mathcal{D}$, $S_d^x \in \mathcal{S}_d$; Initial MDP state S_0^1 ; Number of sampling iterations N .

For iteration $n = 1$ to N do:

Step 1. Generate a sample path of uncertainty w^n .

Step 2. Forward pass:

For $d = 0$ to $D - 1$ do:

(a) Compute decision
$$
X_d^n(S_d^n) = \underset{x_d^n \in \mathcal{X}_d(S_d^n)}{\operatorname{argmin}} \left\{ E_d^{n-1}(S_d^n, x_d^n) + \overline{V}_d^{x,n-1}(S_d^{x,n}) \right\};
$$

(b) Find post-decision state $S_d^{x,n}$ and new pre-decision state S_{d+1}^n with transition functions;

(c) Compute the observed time and energy cost using $\psi(S_d^n, S_{d+1}^n)$ and $\chi(S_d^n, x_d^n, W_{d+1}(w^n))$.

Step 3. Backward pass:

Initialize $\overline{V}_{D}^{x,n}(S_{D}^{x,n})=0, \forall S_{D}^{x,n}\in\mathcal{S}_{D}.$ For $d = D - 1$ to 0 do:

(a) Update approximations of time $t_{d}^{n}(S_{d}^{n},x_{d}^{n})$ and energy $E_{d}^{n}(S_{d}^{n},x_{d}^{n})$ by

$$
t_d^n(S_d^n, x_d^n) = \frac{\sum_0^n \psi(S_d^n, S_{d+1}^n)}{n}, \quad E_d^n(S_d^n, x_d^n) = \frac{\sum_0^n \chi(S_d^n, x_d^n, W_{d+1}(w^n))}{n};
$$

(b) Compute
$$
V_d^n(S_d^n) = E_d^n(S_d^n, X_d^{\pi,n}(S_d^n)) + \overline{V}_d^{x,n}(S_d^{x,n})
$$
;
(c) Compute $\overline{V}_{d-1}^{x,n}(S_{d-1}^{x,n}) = (1 - \delta)\overline{V}_{d-1}^{x,n-1}(S_{d-1}^{x,n}) + \delta V_d^n(S_d^n)$.

Outputs: $\forall d \in \mathcal{D}$ and sampled state $S_d \in \mathcal{S}_d$: Time cost $t_d^N(S_d^N, x_d^N)$, energy cost $E_d^N(S_d^N, x_d^N)$, value function approximation $\overline{V}_d^{x,N}(S_d^{x,N})$, and action $X_d^N(S_d^N)$.

Framework

Offline (ADP or deterministic DP) + online phases

Double-pass algorithm based on:

- Monte Carlo sampling
- Forward pass: actions
- Backward pass: update values

ADP DDP as benchmark

Deterministic dynamic programming:

- Future variability is neglected
- Space-speed network
- Backward DP algorithm

Z
O -LINE

Policy update

Model to fulfill TPE constraints:

- Estimate EE running time
- Real-time policy adjustments
- Penalty-based rules

Case study: Instance

Experiments using deterministic detailed data for the Dutch railway network (Utrecht 's-Hertogenbosch)

A few results (more in the paper)

Normalized energy consumption

The impact of wind on energy-efficient train control

We computed wind-aware train trajectories that account for wind conditions

Energy savings in different instances

Method: Line-search based shortest path algorithm

Algorithm 1: Line search DP for train trajectory optimization

Inputs: Graph G; Wind (w, θ) ; $\eta^{MAX} > 0$ (high value); Maximum iterations I; Arrival time tolerance ϵ .

Initialization: $T(w, \theta) = +\infty$, $E(w, \theta) = +\infty$, $\eta^{\text{MIN}} = 0$.

For iteration $i = 1$ to I do:

- 1. Set $\eta := (\eta^{MAX} + \eta^{MIN})/2$ and $c_b(\eta, w, \theta) := t_b + \eta e_b(w, \theta)$, $\forall b \in \mathcal{A}$, obtaining graph $\mathcal{G} = \mathcal{G}(\eta, w, \theta);$
- 2. Solve shortest path as a DP on $\mathcal{G}(\eta, w, \theta)$, resulting in trajectory X_{η} , travel time T_{η} , and energy E_n ;
- 3. If $|T_{\eta}-T^{\mathbf{S}}| < |T(w,\theta)-T^{\mathbf{S}}|$, update current best solution $X(w,\theta) = X_{\eta}$, $T(w, \theta) = T_{\eta}, E(w, \theta) = E_{\eta};$

4. If
$$
T_{\eta} < T^{\text{S}}
$$
, redefine $\eta^{\text{MIN}} = \eta$, **else**, redefine $\eta^{\text{MAX}} = \eta$;

5. If $|T(w, \theta) - T^S| < \epsilon$, break.

Outputs: Optimized train trajectory $X(w, \theta)$, time $T(w, \theta)$, and energy consumption $E(w, \theta)$ for wind scenario (w, θ) .

Thanks to SNF, DADA, Francesco

Zurich, May 31st, 2024