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Abstract

In recent literature, the description and understanding of traffic
conditions in urban networks on an aggregated level has been popu-
larized. A promising framework is the macro fundamental diagram
(MFD), relating average flow and average density in a more or less
homogeneous urban network. The application of the MFD in traffic
management and control are manifold. It has been shown that it
can be used for an efficient perimeter control at city entries or for an
evaluation of traffic policies at an aggregated level. However, its im-
plementation requires an accurate estimation with the data sources
available.
Especially loop detectors data (LDD) and floating car data (FCD),
were examined separately in respect to their accuracy estimating the
MFD. One important factor is the network coverage of the source
considered. Only certain streets have loop detectors installed and
only certain vehicles (or drivers) are equipped with devices sending
information about their whereabouts. Having less data of that one
source decreases the accuracy of the MFD.
This master’s thesis proposes to estimate the MFD based on both
data sources simultaneously. Thereby successful fusion methods
were developed, where the LDD and the FCD are fused in respect
to their accuracy and their network coverage. The most promising
fusion always reduces the estimation error significantly, also if the
network coverage of the FCD needs to be estimated with LDD. It
separates the urban network into two sub-network, one with loop
detectors and one without. The information from the LDD and the
FCD is then weighted according to the sub-networks and the square
root of the network coverage of the FCD.

Keywords MFD estimation; Simulation; Loop detectors; Float-
ing Car Data (FCD); Fusion; Probe penetration estimation
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1 Introduction
In a study commissioned by the Swiss Federal Office for Spatial Development
(ARE), it was found that 91% of the congested vehicle-hours in the Canton of
Zurich are counted in urban areas (Keller and Wuethrich, 2012). Another pub-
lication by the Swiss Federal Road Office (ASTRA) showed that 85% of conges-
tion is “recurring” (ASTRA, 2014), meaning due to capacity issues. Moreover,
a recent study investigated the cost of congestion to be around 80 - 140 million
Swiss Francs - only for the Canton of Zurich (Ernst Basler+Partner, 2008).

In other words, the overwhelming majority of congestion takes place in ur-
ban areas, is caused by capacity issues, and is responsible for yearly costs of up
to 100 Swiss Francs to each inhabitant of the Canton of Zurich. Without having
touched upon the topic of congestion externalities, such as noise, green house
gas emissions, etc., it is obvious that strategies relieving urban networks from
congestion are in need.

Infrastructure projects are expensive and in urban areas space is scarce -
especially in European cities. Therefore, strategies were developed that do not
involve big infrastructure projects, such as parking strategies, mobility pricing,
perimeter control, etc. (Ernst Basler+Partner, 2008). However, in order to
develop strategies that limit congestion network-wide, meaningful macroscopic
parameters of networks must be found first. A promising framework developed
by Daganzo (2007) is the Macro Fundamental Diagram (MFD). The MFD re-
lates average flow (e.g. how many vehicles per hour) and density (e.g. how many
vehicles per km) of an urban network. Different sensors can be used to estimate
the aforementioned parameters. Most widely used is data from loop detectors
as well as floating car data. Loop detectors are static sensors, which evaluate
the traffic condition, whereas floating car data is collected from vehicles driving
in the network (Leclercq et al., 2014). Both are collected in real-time.

In reality, not all links in a network have loop detectors installed, nor are
all vehicles (or drivers) equipped with devices that regularly send positioning
data. Rather, there is a certain network coverage, e.g 10% of the links have
a loop detector installed, and 15% of the vehicles have a GPS installed. Not
surprisingly, the accuracy of an MFD estimated with a low network coverage is
lower than one with a higher network coverage. However, since both types of
data sources usually co-exist, it is of interest, if combining the results from each
source can improve the overall estimation of the MFD.

It is the aim of this thesis to investigate if data acquired from different sources
in a simulated network with incomplete coverage can ameliorate the estimation
of an MFD by using simple fusion methods. Thereby, this thesis is structured
as follows: Section 2 gives an overview of the literature regarding the MFD
with an emphasis on recent findings on the estimation of the MFD with loop
detectors or floating car data. In section 3, the simulation setup is explained
and fusion methods are proposed. Results of the fusion methods are presented
in section 4. In section 5, an analysis and comparison of the aforementioned
results are presented. Finally, section 6 gives a conclusion and fields of further
analysis are given.
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2 Literature Review

This section gives an overview of the state-of-the-art regarding an estimation
of the MFD with only limited amount of data: Methodologies on how loop
detectors or floating car data can be used to estimate an MFD, in most cases,
for a simulated network are presented. And, different definitions regarding the
accuracy of an estimated MFD are introduced, based on either relative errors
or on ratios incorporating the critical density.

2.1 Early Macroscopic Models

Different approaches were proposed in the past to model and understand urban
traffic on an aggregated level. Ranging from models about the number of ve-
hicles entering central area of a city (Smeed, 1968), to the modeling of central
London using a linear speed-flow model (Thomson, 1967). However, a drawback
to these concepts, was that they were only considering free flow conditions of
traffic or slight congestion. It is then Godfrey (1969) who mentions the idea
of the existence of a macroscopic relationship between the mean speed and the
accumulation of vehicles in a network. The idea was later refined with the intro-
duction of the idea to model traffic by two fluids, one representing the stopped
vehicles - due to traffic light, congestion, etc. - while the other represented the
moving vehicles (Herman and Prigogine, 1979). With this, the foundations for
the existence of a macro fundamental diagram were laid.

2.2 Macroscopic Fundamental Diagram

Originally Geroliminis and Daganzo (2007) related the number of vehicles in a
network (accumulation) and the number of vehicles reaching their destination
(output or production) in the so-called macro fundamental diagram (MFD).
This relationship can be translated into the more commonly used diagram where
the average flows and average densities are represented on a macro level - on a
network level. It can be seen as an analogy to the fundamental diagram (FD)
which was originally proposed by Greenshields et al. (1935). The fundamental
diagram gives the relation between the vehicle density and the vehicle flow of
one link. A distinct curve (usually approximated in triangular shape) describes
the link with a maximum flow at a critical density. Similarly, this relation can be
observed for homogeneous urban networks: More and more vehicles can enter a
network until it reaches its maximum capacity, any additional vehicles from this
point on will then start inducing congestion. Note that, analogue to the FD,
the slope in the MFD represents the average speed of the vehicles in the system
(cf. fig. 1). Therefore, looking at speed, the network will exhibit the same speed
until it reaches its maximum capacity (which corresponds to the flow at critical
density); from then on, additional vehicles will start decreasing the mean speed
in the network. (Daganzo, 2007)

In 2007 computer simulations of downtown San Francisco indicating the
existence MFD were successfully conducted (Geroliminis and Daganzo, 2007).
Afterwards, Geroliminis and Daganzo (2008) proved the existence of the MFD
with real data, by using GPS data of taxis in a 10 km2 network within the
city of Yokohama, Japan. Thereby the following definition is given for weighted
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Figure 1: Typical MFD; (Gayah and Dixit, 2013).

averages: qw =
∑
i qili/

∑
i li and kw =

∑
i kili/

∑
i li. qi and ki denote the

flow and density on link i with length li.

Geroliminis and Daganzo (2007) showed that the MFD is a suitable instru-
ment for a perimeter control strategy. Thereby, the network should always
operate at or below the critical density (cf. fig. 1), in order to fully utilize the
maximum capacity of the system. A perimeter is set up around the network
preventing new vehicles to enter the system (e.g. longer red phases).

The analytic framework for MFDs was introduced using variational theory:
Daganzo and Geroliminis (2008) proposed certain sufficient conditions for the
existence of a theoretical MFD in a specific network, the so called regularity
conditions: a distributed and slow-varying demand, a network where multiple
route choices are possible including most links, and a network which is more or
less homogeneous. Furthermore, the authors point out that obtaining a “well de-
fined” MFD, meaning an MFD which shows low scatter, depends on the type of
network and on the type of urban area. Freeway networks and polycentric urban
areas are expected to display higher scatter than homogeneous, small networks.
In other words, an MFD measured with real data for a certain network, may
fall far from the well defined MFD that could be calculated analytically using
variational theory for the identical network. The analytic MFD is therefore an
upper bound for an MFD measured in reality.
Summarized, the MFD should be dependent solely on the network and not on
the demand: A well-defined MFD has a maximum invariant to changes in time,
demand or origin-destination table across days and congestion spreads more or
less homogeneously (Mazloumian et al., 2010).

Later, Buisson and Ladier (2009) constructed MFDs using real data from
3 different days of the city of Toulouse, France, with the purpose of further
investigating the aforementioned notion of homogeneity stated by Daganzo and
Geroliminis (2008). The authors divided the sample in order to take the network
properties into account. The data recovered by loop detectors was clustered ac-
cording to the distance of the loop to the intersection, according to the road
type (highway or urban road) and according to the roads location (peripheral
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or center). The analysis showed that the distance between the loop detector
and the traffic light has a strong impact on the shape of the MFD. If the loop
detector is placed close to a traffic light, the periodic queue in front of the traffic
light leads to an overestimation of the density in the network.
This is an important result which is confirmed by Courbon and Leclercq (2011):
Densities measured by loop detectors should only be used with caution, their
spatial dependency is a shortfall. However, if loop detectors are well distributed
within the links of the network, then the average density estimate needed for
an MFD is representative. Loop detectors on all links together need to be
distributed in a way that they cover different traffic states (up-stream, down-
stream, etc.). In other words, in one link the loop detector is placed close to
the intersection, in another link it is placed further upstream, etc.

Buisson and Ladier (2009) confirmed that the homogeneity of the zone, the
loading and unloading of congestion and how the data was collected were of
importance for a low scatter MFD. Therefore, it is concluded that splitting the
data into different sets of data according to the geographic location and its type
of road is a prerequisite for obtaining a well defined MFD.
Geroliminis and Sun (2011) further investigated the properties of a well defined
MFD by again using data from Yokohama. As a result the authors conclude that
if two traffic states from two different time intervals have the same spatial dis-
tribution of link density, then the two time intervals have the same average flow.
Thereby, the aforementioned assumption that congestion is evenly distributed
across the network made by Daganzo and Geroliminis (2008)) is relaxed.

2.3 Recent Developments in MFD Estimation

Recently, MFD estimation methods were developed that incorporate the use of
mobile probe data (a form of floating car data). Mobile probe data originates
directly from vehicles traveling in the network itself. The type of data recovered
depends on the device installed in the vehicle. Usually they include the current
location, speed and acceleration. (Gayah and Dixit, 2013)

Gayah and Dixit (2013) explored the possibilities of using mobile probe data
within a micro simulation of downtown Orlando. The authors of the study ran-
domly assigned a fraction of vehicles in the network to serve as mobile probes.
The so called mobile probe penetration rate ranged between 0.025 up to 0.5. In
other words having a penetration rate of e.g., 0.3, means that 30% of the vehicles
in the network supply information to the traffic controller. It is expected that
the higher the penetration rate and the longer the observation period, the higher
the accuracy of the information will be. That is to say, for a penetration rate
of 0.3 we expect to see a higher accuracy than with 0.1. Moreover, observing
the network for 300 s is expected to be more accurate than 100 s of observation.
Using the average speed of the mobile probes, the average flow and density were
estimated based on a known MFD (cf. fig. 1). A drawback mentioned in the pa-
per is that when taking the average speed in order to estimate density and flow
in an MFD, the accuracy is smaller in free-flow conditions. Gayah and Dixit
(2013) used k̂/k as a proxy for the accuracy, where k̂ stands for the estimated
density and k stands for the real density (calculated with full network coverage;
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in this case simulated). The results confirm the expectation about the probe
penetration rate and the observation duration, stated above. However, even in
the unlikely case where the penetration rate is 0.5, the estimates for the density
varied between 0.8 and 1.3 of the real density for an observation period of 300
s. For lower, more realistic penetration rates, the proposed method did not
prove to be sufficiently reliable. However an alternative method is proposed:
Instead of estimating density and flow, the estimated values of the density were
used to evaluate if the system was congested or not. This methodology has the
advantage of comparing only two values - the estimated density and the critical
density (indicated by the maximum flow). Whenever the estimated density was
higher than the critical density, the state was assessed to be congested. If the
system was then congested in reality, the prediction would be labeled as “cor-
rect”, otherwise “missed”. Taking this methodology, the authors of the study
were able to accurately identify the traffic states (congested/uncongested) with
a mobile probe penetration rate as small as 7.5% and an observation period of
300s. The reliance on an MFD known a-priori is a limitation to this study.

Ortigosa et al. (2014) studied the influence of the location and number of
measurement points for an MFD perimeter control. Unlike discussed by Buisson
and Ladier (2009) the placement of the loop detector within the link was not in
question. In fact, Ortigosa et al. (2014) placed loop detectors optimally within
a link - queues upstream of a traffic light do not distort the density measure-
ments. They employed a VISSIM micro simulation of downtown Zurich, created
an MFD with only a subset of all the links (partial MFD) and calculated the
accuracy thereof compared to a real MFD (measured with all links). Different
strategies were defined for choosing the subset of links (random, distance to the
center, street hierarchy and existence of traffic light downstream) and tested
at different levels of coverage (e.g. 5% of the links used in the subset). Fur-
thermore a quasi-optimal selection strategy was introduced. The accuracy of a
partial MFD is defined differently than previous scholars have proposed: The
authors introduce a density ratio between the density and the critical density
for each time slice. According to Ortigosa et al. (2014), an MFD is 100% ac-
curate if the density ratios of the partial MFD are exactly the same as in the
complete MFD for every time step. Furthermore, the paper investigates a sys-
tem employed by the city of Zurich, ZuriTraffic. It is concluded that the level of
coverage is the decisive parameter for the accuracy and not so much the strategy
used to create the partial MFD. A link coverage of 25% ensures an error of less
than 15 percentage points between the density ratio of the partial MFD and
the real MFD. The authors mention that the limitations of their study can be
found in the nontransferability of the result, as they might be specific to Zurich
and that the results are not independent of demand changes.

Nagle and Gayah (2014) followed up on the idea of using mobile probes in
estimating traffic states. The MFD is not known a-priori. The paper first sets
up some traffic metrics based on the Edie’s generalized traffic definitions1 to
be estimated with mobile probes and goes on to postulate the variance thereof
depending on the penetration rate. The penetration rate is estimated, by taking

1Edie’s generalized traffic definitions are fundamental for the understanding of traffic flow
and can be looked up in almost any book treating traffic flow, such as (Hall, 2012).
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the ratio of the number of probes and the number of total vehicles in the system.
The number of mobile probes could be evaluated with the help of loop detectors
by tracking the mobile probes (e.g. GPS) when passing at loops. The authors
thereby assume that enough loop detectors are detecting mobile probes over a
long enough observation period to estimate the penetration rate accurately. A
micro simulation of a grid with one-way streets is carried out in order to verify
the variance of the traffic metrics based on different penetration rates. MFDs
are estimated at different penetration levels, and their accuracy is evaluated
with the use of a root mean squared errors. The results are in accordance with
the previous study (Gayah and Dixit, 2013): Increasing the penetration level
of mobile probes, increases the accuracy. Concluding, the authors of the study
remark that a penetration rate of 0.2 leads to estimates of flow and density
within 10% of the true value.

Leclercq et al. (2014) presented a cross-comparison of link data and probe
data. Among its contribution is a correction method for densities of links, im-
properly measured by loop detectors - which is the aforementioned deficit of loop
detectors, treated by Buisson and Ladier (2009) and by Courbon and Leclercq
(2011) (cf. section 2.2). The authors show with traffic flow theory a significant
improvement that can be provided for an urban corridor. However, the method
still needs further development for an urban network. It is suggested to use
speed estimates from floating car data and use flows from loop detectors to esti-
mate the MFD is introduced. However, since the basic procedure to estimation
an MFD is the same as Gayah and Dixit (2013) used, the same limitations are
valid: A well-defined MFD must be known and the accuracy achieved is insuf-
ficient.

Nagle and Gayah (2015) compared the use of data coming from fixed detec-
tors and mobile probe data for perimeter control. In a micro simulation of a
grid with one-way streets with a simple perimeter control, the MFD is estimated
based on link and probe data according to the methods proposed by Geroliminis
and Daganzo (2008) and Gayah and Dixit (2013), respectively. In a first experi-
ment without any perimeter control, the estimated density from fixed detectors
was consistently higher than from probe data for the same time step. The loop
detectors were placed in the middle of each link, thereby overestimating density
(cf. (Buisson and Ladier, 2009)). The second experiment was carried out with
perimeter control, but without accounting for any uncertainty due to a small
subset of links or due to a low level of penetration rate. A perimeter control was
activated if the estimated density was higher than the critical density. Delay
savings are taken as a proxy for how well the perimeter control operates. When
comparing different subsets of links (loop detectors) or different penetration
levels (mobile probes) the average delay savings do not significantly differ from
the average delay savings obtained with 100% of the links or a penetration rate
of 1, respectively. In other words, even if 5% of the links make up the subset
of links monitored, the average delay savings is approximately the same as if
100% of the links were monitored. Finally, the third experiment incorporated
an uncertainty due to a small subset of links or due to a low level of penetration
rate. The authors conclude that informing the perimeter control using only a
subset of links or vehicle is feasible. As limitation to the study, the uniform
demand assumption was noted.
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3 Methodology
As pointed out in chapter 2, a study of the literature about the macroscopic
fundamental diagram (MFD) reveals that the two main traffic data sources, loop
detectors and floating car data have been analyzed separately, and compared
with each other, also in respect to the network coverage. However, in most
cities, loop detectors and floating car data (for example from cell phones or
from GPS devices) co-exist. The novelty of the methodology introduced in this
section lies in the approach to simultaneously use the two data sources, by the
means of a data fusion. The advantage of such an approach is that with a
fusion the MFD is possibly more accurate than if only one data source were
used. In order to investigate possible benefits of a fusion the experimental setup
described in the following sections was used.
The following gives a brief outline of the experimental setup:

1. Perform a micro simulation of traffic in a grid network. Thereby all vehi-
cles in the network are tracked. See section 3.1.

2. Use the traffic micro simulation output to simulate floating car and loop
detector data with different levels of network coverage (for example, 10%
of the vehicles serve as mobile probes and 20% of links have loop detectors
installed). See section 3.2.

3. Propose fusion methods and assess the MFD estimation thereof. See sec-
tions 3.3, 3.4 and 3.5.

3.1 Traffic Simulation
Network Layout A grid network is used, and constructed in VISSIM, a
product of the German PTV group. The network consists of a one-way network
constructed by Ortigosa et al. (2015). The network is a 10 by 10 grid with
180 main links, each 120 m long and each having two lanes, (cf. fig. 2). The
direction of travel for the one-way link is opposite to the neighboring, parallel
links. In other words, every other, parallel link has the same direction of travel.
1524 smaller links and connectors were also in the network, their use, however,
was only to “connect” the main links. Thus, they were excluded from further
analysis.

Simulation Period, Resolution and Randomness All simulations were
run for 1 hour simulation time during which, the demand was constant. The
simulation resolution was set to 2Hz, e.g. every half second, the simulation
recorded the values mentioned in the following. Five different random seeds
were used (random seed 42-46).

Vehicle Composition Traffic in the simulations consisted of cars with default
VISSIM behavior only (cf. (PTV, 2014)).

Traffic Demand In the middle of each of the 180 main link, a “demand node”
is placed, which was used to produce and attract cars in the network - it acts
as an origin and destination node. The demand nodes are constructed with the
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Figure 2: Snapshot of the network layout used in VISSIM.

help of parking lots serving as zone connectors - no delays are induced when
vehicles enter the network to other vehicles in the network. (PTV, 2014)
A uniform demand throughout the network is ensured by having all demand
nodes producing and attracting cars with the same probability. In other words,
for a standardized case: all links have a demand node, which produces 1 vehicle
for each of the remaining 179 links to attract during a period of 1 hour - in this
case, a total of 32’220 vehicles (179x180) would theoretically reach their desti-
nation. In order to have a full coverage of the MFD, demands were chosen to
range from 0.3 to 0.6 times the standardized case, resulting in a demand range
of 9’666 to 22’554 trips an hour.
A more realistic loading of the network could have been achieved by loading the
demands one after the other in an interval of 1 hour and let the simulation run
for 4 hours. However, the large amount of data that would have been created
that way (all vehicles tracked at 2Hz), made it impossible to carry out the more
realistic loading of the network.

Traffic Assignment The routes are assigned dynamically, according to the
built-in dynamic traffic assignment (DTA) module in VISSIM, which follows
roughly a user equilibrium principle. In order to converge to a stable solution
the module implements an iterative process, where the utilities of the different
routes are calculated and the new routes are found by using a altered form of
the method successive averages (MSA). For the simulations, a moderate Kirchoff
parameter of 5 was chosen. It indicates how sensitive people are to a route not
being the shortest (Ortigosa et al., 2015). The route choice is updated every half
hour (according to the recommendation by PTV (2014)). A convergence criteria
was set to 5%, i.e. when the individual travel time on the routes do not differ
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more than 5% from previous iterations. In average around 15-20 iterations were
needed to find convergence. Further details can be found in (Ortigosa et al.,
2015) and (PTV, 2014).

Traffic Operations At each intersection, a traffic light was set to a 60 seconds
cycle length, with 27 seconds of green for turning and through traffic and 3
seconds lost time, at the change of each phase. There was no phase shift between
up- or downstream traffic lights.

Output The output of the simulation is VISSIM’s “vehicle record”, which
records the cumulative time and cumulative distance traveled in the system of
each vehicle, as well as the link’s identification number on which it is travel-
ing. Additionally, the simulation time and the car’s identification number are
recorded. This builds the foundation of the mobile probe data set. The amount
of data collected for the vehicle record can easily reach some 30 millions of rows
in data, since all of the mentioned variables are tracked on a 2Hz resolution.

3.2 Building the MFD
This section gives an overview of the methodology used to create MFDs from
VISSIM’s output described in subsection 3.1.

In order to calculate the points of the MFD, the weighted flow and density
averages across all links in the network are used. A point in the MFD is defined
by an average weighted flow, and an average weighted density (cf. section 2.2).
These average flows qt,MFD, and average densities, kt,MFD, are obtained for
every time slice t, e.g. every 5 minutes. qit and kit correspond to the flow and
density of link i for time slice t, and li corresponds to the length of link i
(multiplied with the number of lanes).

qt,MFD =

∑
i q
i
tl
i∑

i l
i

kt,MFD =

∑
i k
i
tl
i∑

i l
i

(1)

Since in the presented network all links have the same length, eq. 1 can be
simplified to the following.

qt,MFD = q̄t kt,MFD = k̄t (2)

where q̄ and k̄ are the average volume and density in the network. When dealing
with FCD the approach by Nagle and Gayah (2014) can be applied directly to
calculate the average flow and density based on Eddie’s generalized definitions
(cf. (Hall, 2012))..

qt,MFD = q̄t =
dtot,t
LT

kt,MFD = k̄t =
ttot,t
LT

(3)

where q and k are the the flow and density measured in the network, respec-
tively. dtot and ttot are the total distance and the total time traveled in the
system. L and T are the length of the examined network or sub-network and
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the time of observation (e.g. 5min).

The following explains how floating car data and loop detectors are simu-
lated at different levels of network coverage, based on the output of the micro
simulation.

Floating Car Data With the output of VISSIM, all vehicles are tracked on
all links. This makes creating floating car data simple. Some cars are flagged as
mobile probe vehicles - they send their time and distance spent in the network
and based on Edie’s generalized definitions, it is then possible to calculate flow
and density, two variables needed for an MFD (cf. eq. 3).

Loop detectors Creating loop detector data is more complicated. Loop de-
tectors usually measure flow and occupancy, where latter can be converted to
density. However, this density depends on the placement of the loop within
the link (cf. section 2.3), making an accurate mimicking with VISSIM’s output
difficult. This effect can be neglected, under the assumption that loop detectors
are well distributed within the links (i.e. in one link the loop detector is placed
close to the intersection, in another link it is placed further upstream, etc.). The
aggregated measurements will be close to the average real value, which would
be measured by a “perfect” loop detectors (Courbon and Leclercq, 2011). This
consideration applies to the MFD since it is a macroscopic (i.e. aggregated)
method. In other words, for this simulation, loop detectors are able to measure
correctly flow and density for the whole link (analogue to Ortigosa et al. (2014)).
Therefore, analogue to the floating car data it is possible to mimic “perfect” loop
detectors: A loop detector on a specific link is created by using the time and
distance spent of all vehicles on this specific link to calculate flow and density
based on Edie’s generalized definitions.

Network coverage It is of interest how well the MFD can be estimated with
only limited information. Therefore a setup is created that keeps only infor-
mation of certain vehicles and links. Let’s say an exemplary network has 100
links with 500 cars circulating on them. The idea is to investigate how well
the network can be described with relying on only 3 loop detectors installed
in 3 links and getting GPS information of 50 cars traveling in the network. In
other words, the network has a link surveillance rate of 3%2 and a mobile probe
penetration rate of 10%. There are many different possibilities on how to chose
3 links out of network with 100 links3. In order to increase statistical represen-
tativeness, 1000 combinations for each link surveillance rate are tested. Applied
on the example, different combinations of 3 links are chosen 1000 times, over
and over again. The procedure is analogue for the mobile probes.

Implementation The following shows how the MFD calculations are imple-
mented. The programming language R is used to perform the calculations.

2If links are not equidistant, the length of the link should also be taken into account.
3There are 161’700 possibilities.
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1. Aggregation: Aggregate vehicle record data in 300s time intervals, in
respect to distance and time traveled. This is performed for each vehicle
(data used for mobile probes) and for each link (data used for loop detec-
tors). The first 300s of a simulation were considered as warm-up and thus
excluded from analysis.

2. Create subsets: A total of 30 probe penetration rates and link surveil-
lance rates were chosen from the same set, {1/30, 2/30, . . . , 1}. As there
are 180 links in the network, 30th quantiles ensure integer number of links
being chosen.

- Set a probe penetration rate, by randomly assigning vehicles as mo-
bile probes (subset). The method allows using one simulation from
VISSIM to set different levels of probe penetration rates without
actually having to run a simulation with a certain level of mobile
probes. 1000 different random seeds were employed to create the
subsets. The probe penetration rate is defined as ρ =

Np

Ntot
, where

Np is the number of probes and Ntot is the number of total vehicle
in the network. The probe penetration rate is set over a duration of
3300s4. Further details in section 3.3.

- Set a link surveillance rate by keeping only observations that pass
over a certain subset of links, independent of them being mobile
probes or not. Again, 1000 different random seeds were employed to
create the subsets.

3. Calculation: Calculate the average flow and density in the network with
Edie’s generalized definition taken from (Nagle and Gayah, 2014), for loop
detectors and for mobile probes. Further details in section 3.5.

4. Fusion: Fusing the results from loop detectors and from probe data.
Further details in section 3.5.

5. Comparison: Analyze the accuracy of the estimated MFD compared to
the real MFD. Further details in section 3.4.

3.3 Estimation of Probe Penetration Rate

In reality the mobile probe penetration rate is usually not known. In the two fol-
lowing subsections, the estimation of the probe penetration rate in the network
is explained.

3.3.1 Probe Penetration Rate Known a-priori

When all links in a network are used to estimate the probe penetration rate,
then: ρ̂ =

Np

Ntot
= ρ, where ρ̂ is the estimated penetration rate and ρ is the

probe penetration rate. If Np and Ntot are known, then the probe penetration
rate is known a-priori. Strictly spoken, when the exact probe penetration rate
is known a-priori, no estimation of the probe penetration rate takes place.
In some cases, the probe penetration rate might be known in reality. For exam-
ple, if the mobile probe data is generated by mobile phones of one carrier, then

43600s - 300s warm-up
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the market share of that carrier could serve as probe penetration rate, assuming
that its phone users are distributed homogeneously in traffic.

3.3.2 Probe Penetration Rate not Known a-priori

When the probe penetration rate is not known a-priori, a combination of vehi-
cle trajectories and loop detectors are used to estimate the probe penetration
rate. Loop detectors recognize all vehicles, independent of them being a probe
or not. Probe vehicles register their link trajectory. Therefore, the probe pene-
tration rate can be estimated by dividing the number of probe vehicle passing
on a certain link by the count of all vehicles that pass over that certain link
with an installed loop detector. In short, ρ̂ =

Np,lsr

Ntot,lsr
with Np,lsr, Ntot,lsr being

the number of probes and total number of vehicles counted on the specified
subset of links. The index lsr indicates that only a certain subset of links in
the network are used to count the number of probes and the total number of cars.

The same links that are incorporated to estimate the MFD parameters by
loop detectors are incorporated to estimate the probe penetration rate. That is
to say, if the network has a link surveillance of 10%, then these 10% links will
be used to estimate the probe penetration rate. This estimation method follows
the outline by Nagle and Gayah (2015).
As seen in section 3.2, the probe penetration rate is set over the length of one
VISSIM simulation, 3300s. However, the probe penetration is estimated every
300s.

For further discussion and analysis, the following definitions are introduced:

• The set probe penetration rate (sppr), the probe penetration rate that is
set over a period of 3300s. It is used if the probe penetration rate is known
a-priori.

• The true probe penetration rate (tppr), which stands for the real probe
penetration rate during the 300s period. It can be calculated, if all links
in the network are taken into account (i.e. a link surveillance rate of 100%).

• The estimated probe penetration (eppr), the probe penetration rate that
is estimated over a period of 300s by using the method mentioned above.
However, only a subset of links is used (i.e. a link surveillance rate smaller
than 100%).

The estimated and the true probe penetration rate do not have to be identical
- the true probe penetration rate tends to vary somewhat around the set probe
penetration rate. An example sums up: Let’s say, the set penetration rate is 0.2.
During a period of 300s, 10% of the links equipped with loop detectors calculate
the estimated probe penetration rate to be 0.25. But if all links were equipped
with loops and were taken into account to measure the probe penetration rate,
we would get 0.22, which is the true probe penetration rate.
It is of interest, how well a certain level of link surveillance can estimate the
true probe penetration rate. Therefore, the following methodology based on the
relative errors is introduced.

relative error =
|eppr − tppr|

tppr
(4)
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An experimental setup estimating the probe penetration with different probe
penetration and link surveillance rates was carried out. Thereby the subsets for
different probe penetration and link surveillance rates were randomly chosen
1000 times (for more details, see section 3.2).

3.4 Accuracy of an Estimated MFD
When an MFD is estimated with incomplete information (e.g. only 10% of the
vehicles are equipped with GPS), different approaches can be taken to evaluate
its accuracy. Let MFD stand for the real MFD, which can be calculated with
full network coverage, and eMFD for the estimated MFD, which is calculated
when the network has incomplete coverage (e.g. only 10% of the vehicles are
equipped with GPS). Two approaches are formulated:

• The sum of the relative errors of the density and the volume estimates.
This is an alternation of the method proposed by Nagle and Gayah (2014),
where each error was shown on its own.

∆St(MFD, eMFD) =
∆qt
qreal,t

+
∆kt
kreal,t

(5)

∆S =
1

mt

∑
t

∆St(MFD, eMFD) (6)

where ∆ is the absolute difference between the estimate and the real value
for a time slice t. And, mt is the total number of time slices considered,
which is identical for the eMFD and the MFD. This leads to the average
sum of the relative errors, ∆S, which has the units percentage points
(ppts).

• The approach of Ortigosa et al. (2014) where the error is in respect
to the critical density. Thereby it is differentiated between the congested
and the uncongested branch of the MFD.

∆Rt(MFD, eMFD) =


kt−kcr
kcr

− k′t−k
′
cr

k′cr
if kt < kcr

kt−kcr
kj−kcr −

k′t−k
′
cr

k′j−k′cr
if kt > kcr

(7)

∆R(MFD, eMFD) =
1

mt

∑
t

|∆Rt(MFD, eMFD)| (8)

where k′t and kt stand for a density point in the eMFD and MFD, respec-
tively, for a time slice t, k′cr and kcr stand for the critical density for the
eMFD and MFD, respectively, and k′j and kj stand for the jam density for
the eMFD and MFD, respectively. The critical density is approximated
by taking the average density of the top 3 values of flow. The jam density
is approximated by taking the average of the top 3 values of density. This
slight alteration compared with (Ortigosa et al., 2014), where the top 1%
flow values are averaged, is due to the fact that an MFD for 1 random
seed is composed of 44 points (cf. section 4.2).
The average over time is ∆R calculated with mt, which is the total num-
ber of time slices considered, which is identical for the eMFD and the
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MFD. The units of ∆R are percentage points (ppts). This method has
the advantages, 1) that it does account for the triangular shaped form of
the MFD by taking the relative errors with respect to the critical density
(unlike the aforementioned error which takes the y-axis as a reference line
for the errors in density), and 2) that it is a more efficient way of deter-
mining, how well an estimated MFD can be used for a perimeter control
solution (see sections 2.2 and 2.3 for perimeter control). Contrary to the
sum of the relative errors, it does not take volume measurements into ac-
count (except for the calculations of the top flow).

3.5 Fusion Methods

The complexity of a possibly beneficial fusion for the MFD lies in the non-linear
way, how traffic congestion distributes in a network. A fusion needs to be ca-
pable to bring benefits to a network estimation when congestion is non-existent
(uncongested branch of the MFD) and also when congestion is heavy and (ex-
tremely) heterogeneously distributed (congested branch of the MFD).
Furthermore, the data coming from mobile probes and from the loop detectors
are “competitive”, i.e. they measure the same parameters of the identical net-
work (Mitchell, 2007): Having 100% of the loop detector data, will lead to a
state of perfect information, where the MFD can be fully estimated. Adding
data from mobile probes with a probe penetration rate throughout the network
of, say, 40% will worsen our estimation of the traffic state, since we would fuse
complete data with incomplete data. Thus, more data does not automatically
lead to better estimations. The floating car data and the loop detector data
represent the identical network with the identical set of vehicles, so taking more
data does in some cases not lead to better estimations.

In the following subsections, 6 different methods are presented, on how to
estimate the MFD based on loop detectors and mobile probe data.
As described in section 3.2 there are 30 levels of link surveillance and 30 levels
of probe penetration rates implemented. To evaluate the benefits of a fusion the
30 levels of link surveillance are cross joined with 30 levels of probe penetration
rates, resulting in 900 combinations of network coverage5. In order to increase
statistical relevance, each combination of network coverage was created 1000
times with different subsets. An example for 1 network coverage combination
to clarify: A given network with 100 links and 500 cars circulating on it is in-
vestigated. Analogue to the example in 3.2, 3 links have a loop detector and 50
vehicles can be tracked. It is now of interest, how well this specific combination
can estimate the MFD. For the statistical representativeness, different combina-
tions of 3 links and different combinations of 50 vehicles are chosen 1000 times -
creating 1000 eMFDs with the same network coverage combination. Therefore,
a total of 900’0006 different eMFDs are compared to 1 real MFD .
Furthermore the proposed fusion methods are investigated for two cases: 1)
Knowing the probe penetration rate a-priori, 2) not knowing the probe pene-
tration rate a-priori (cf. section 3.3). When the probe penetration rate is not

5Method 0 builds an exception since it does not fuse any data.
630 link surveillance rate x 30 probe penetration rate x 1000
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Table 1: Proposed fusion methods in an overview.

Method Methodology
0 No fusion.
1 Fuse according to network coverage and accuracy of each source.
2 Fuse according to the network coverage of the loop detectors.
3 Fuse according to the network coverage of the loop detectors and

the accuracy of floating car data.
4 Fuse according to the number of observations contributed by each

source.
5 Estimate flow values from loop detectors only; estimate density

values from mobile probes only.

known it is estimated with the loop detectors in the network. In this case, an
MFD estimation based solely on mobile probes is impossible: If no loop detec-
tor is available to estimate the probe penetration rate, then the mobile probes
cannot estimate an MFD with any of the proposed methods.

Table 1 gives an overview of the fusion methods, which are discussed in the
following.

3.5.1 Method 0

The simplest method to create an eMFD is taking data from each source sepa-
rately, e.g. calculating the density and flow values only based on mobile probes
or only based on loop detectors. This method follows the schemes introduced
by Nagle and Gayah (2014) and Nagle and Gayah (2015). No fusion of the data
is performed. In this case, the probe penetration rate is not estimated - it has
to be known a-priori.

q̂ =

{
Dp

ρLT for probes
q̄loops = Dl

φLT for loops
k̂ =

{
Tp

ρLT for probes
k̄loops ≈ Tl

φLT for loops
(9)

where Dp, Dl and Tp, Tl stand for the total distance and the total time traveled
by the mobile probes (subscript p) or the total distance and total time traveled
by all vehicles on the selected subset of links (subscript l), respectively, ρ stands
for the probe penetration rate known a-priori and φ for the link surveillance
rate. L and T stand for the total length of the network and observation time,
respectively.
For mobile probes the eq. 9 follows the approach of taking all mobile probes in
the network and calculating the density and the flow thereof. For loop detectors,
the findings of Courbon and Leclercq (2011) are used. In other words, the
average density measurement of loop detectors well distributed within the links
is approximately accurate, meaning it corresponds to the density calculated with
Edie’s generalized formula (cf. section 3.2). Flow is measured accurately by loop
detectors.
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3.5.2 Method 1

According to method 0, the network’s parameters can be estimated by using
only link data or only mobile probes. An intuitive approach is a proportional
weighting relative to the levels of information of the two sources, loop detectors
and mobile probes. Meaning, if the link surveillance is 20% and the probe pen-
etration rate is 10%, then the results of the loop detectors would be weighted
twice and the results from the probes once. The drawback of such a weighting
method: Taking data from a link surveillance rate of 100% and a probe penetra-
tion rate of 50%, would also lead to having the results from the loop detectors
weighted twice and the results from the probes once. This would mean that
we worsen a state of perfect information (100% of link surveillance) by adding
imperfect information (50% probe penetration).
Thus, the “accuracy” of a certain link surveillance or probe penetration should
be taken into account. This alters the aforementioned weighting by multiplying
it with 1

1−ρ (factor for loops is analogue with φ instead of ρ). Thereby it takes
into account that data from a probe penetration of for example 90% are more
reliable than data from a probe penetration of 1%.

q̃ =



1

1− ρ
ρq̂p +

1

1− φ
φq̂l

1

1− ρ
ρ+

1

1− φ
φ

if ρ < 1 ∧ φ < 1

q̂p if ρ = 1

q̂l if φ = 1

(10)

k̃ =



1

1− ρ
ρk̂p +

1

1− φ
φk̂l

1

1− ρ
ρ+

1

1− φ
φ

if ρ < 1 ∧ φ < 1

k̂p if ρ = 1

k̂l if φ = 1

(11)

where q̃ and k̃ refer to the estimated network flow and network density based
on the data fusion. All other variables are defined in eq. 9. The denominator
ensures that the weight ranges between 0 and 1. A probe penetration rate of
nearly 100% leads to a weight of 1 for the data coming from probes, and makes
the link data oblivious with a weight of 0. Vice versa holds true in the case
of a link surveillance rate of 100%. If the link surveillance rate or the probe
penetration rate is 0 (φ = 0 or ρ = 0), no fusion takes place. In that case the
density and the flow is estimated with the other source only.
If the probe penetration rate needs to be estimated, ρ becomes ρ̂ (also for eq.
9).

3.5.3 Method 2

A drawback of method 1 is that it does not take into account that a loop detector
on one link uses information from all cars on this specific link, contrary to mobile
probes over that link. When looking at link level, it can be postulated: For all
links with a loop detector, adding data from mobile probes cannot improve the
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accuracy.
Knowing that all links in the grid network have the same length, the proposed
method is as follows.

1. For each link: If loop detectors exists, use only loop detector data, if no
loop detectors, use mobile probe data.

2. Calculate the average volume and density for the two subsets in the net-
work (sub-network with loop detectors and sub-network without loop de-
tectors).

3. Weight the two averages with φ and 1 − φ respectively, with φ being the
link surveillance rate.

In short:

q̃ =

{
φq̂l + (1− φ)q̂p−l if ρ > 0

q̂l if ρ = 0
k̃ =

{
φk̂l + (1− φ)k̂p−l if ρ > 0

k̂l if ρ = 0
(12)

with an alteration to eq. 9:

q̂l =
Dl

φLT
for subnetwork with loop detectors

q̂p−l =
Dp

ρ(1− φ)LT
for subnetwork without loop detectors

k̂l = k̄loops ≈
Tl
φLT

for subnetwork with loop detectors

k̂p−l =
Tp

ρ(1− φ)LT
for subnetwork without loop detectors

(13)

q̂l and k̂l are now the average volume and density measured on links with loop
detectors, respectively (same as in eq. 9). q̂p−l and k̂p−l stand for the average
volume and density measured from mobile probe data according to the above
equations, on links with no loop detectors. φL stands for the length of the sub-
network with loop detectors on links and (1− φ)L stands for the length of the
sub-network without loop detectors. If the link surveillance rate or the probe
penetration rate is 0 (φ = 0 or ρ = 0), no fusion can take place. In that case
the density and the flow is estimated with the other source only.
If the probe penetration rate needs to be estimated, ρ becomes ρ̂.

3.5.4 Method 3

A drawback of method 3 is that it does not take the mobile probe penetration
rate into account. In other words, if 20% of the links are surveyed by a loop
detectors (φ = 0.2), then the 80% rest of the network that are covered with
mobile probes are weighted with 0.8, independently if the probe penetration is
99% or 1%. Thus, it makes sense to discount the weight of the data coming
from mobile probe as a function of their accuracy. If the probe penetration rate
is low, the accuracy is low as well (cf. section 2.3).
This leads to the following weighting based on method 2 (especially, eq. 13).
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q̃ =
φq̂l +

√
ρ(1− φ)q̂p−l

φ+
√
ρ(1− φ)

k̃ =
φk̂l +

√
ρ(1− φ)k̂p−l

φ+
√
ρ(1− φ)

(14)

Multiplying the weight of the mobile probe data with square root of ρ en-
sures that lower probe penetration rates with high inaccuracy are not taken too
strongly into account. For illustration, take the above example with a φ = 0.2
ρ = 0.01, the weight of the mobile probe data changes from 0.8 (method 2) to

0.8·
√
0.01

0.2+
√
0.01·0.8 = 0.29 < 0.8. If the link surveillance rate or the probe penetration

rate is 0, no fusion takes place. In that case the density and the flow is estimated
with the other source only.
If the probe penetration rate needs to be estimated, ρ becomes ρ̂.

3.5.5 Method 4

Method 4 uses the same data collection setup as method 2 and 3, where probe
data is only taken into consideration when there are no loop detectors. In
contrary to the aforementioned methods 2 and 3, this method incorporates
absolute numbers. The averages of the sub-networks from eq. 13 are weighted
according to their number of observations. In short:

q̃ =
Nlq̂l +Npq̂p−l
Nl +Np

(15)

k̃ =
Nlk̂l +Npk̂p−l

Nl +Np
(16)

where Nl is the number of observations over links with static surveillance and
Np is the number of observations registered on links with no loop detectors. If
the link surveillance rate or the probe penetration rate is 0 (Nl = 0 or Np = 0),
no fusion takes place. In that case the density and the flow is estimated with
the other source only.

3.5.6 Method 5

A method implied by Leclercq et al. (2014) is to use loop detectors to estimate
the flow of the network and use the mobile probes to estimate the density of
the network. The density estimated by loop detectors is possibly inaccurate (cf.
section 2.3). It might therefore be reasonable to use only the density estimates
of the mobile probe data. As in method 1, mobile probe data is used throughout
the whole network (cf. 9).
In short:

q̃ =

{
q̂l if φ > 0

q̂p if φ = 0
k̃ =

{
k̂p if ρ > 0

k̂l if ρ = 0
(17)

where the q̂l and k̂l are defined in method 0. If the link surveillance rate or the
probe penetration rate is 0, no fusion can take place. In that case the density
and the flow is estimated with the other source only.
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4 Results

4.1 Probe Penetration Rate

Fig. 3 shows, a contour plot of the 95th quantile relative error depending on the
link surveillance and the probe penetration rate. It can be observed that, low
levels of probe penetration benefit most from an increase in link surveillance,
and vice versa. This is not astonishing, having only a few loop detectors makes
the estimation more difficult. Having only a few cars being mobile probes makes
it less likely that a loop detector detects a mobile probe, which in turn, makes
the estimation more difficult.

Fig. 4 shows the variance of the true probe penetration rate (tppr) for certain
set probe penetration rates. As noted in (Nagle and Gayah, 2014) the variance
follows a quadratic function: When setting the probe penetration over a period
of 3300s and estimating it over a period of 300s, the estimates follow a bino-
mial distribution, every vehicle has the same chance of being a probe vehicle.
The variance of a binomial distribution is proportional to p(1 − p), where p is
the probability (here: the probability of being a probe vehicle), explaining the
quadratic curve. This indicates that the method creating subsets and estimat-
ing the probe penetration rate presented in sections 3.2 and 3.3 indeed follow
the outlines presented by (Nagle and Gayah, 2015).
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4.2 Real MFD

Assuming that every link can be surveyed or that every vehicle’s trajectory can
be recorded, a real MFD can be calculated according to section 2.2 and eq. 3.
This MFD is called real since it represents the MFD that can be observed with
full information. As already mentioned multiple times, this MFD is practically
impossible to observe in reality. In fact, in reality only certain links have loop
detectors, and only a certain (time-variable) portion of vehicles are capable of
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serving as mobile probes.

Fig. 5 shows the MFD for the network explained in section 3.1, split in
demands (0.3-0.6 of the standardized case) and random seed (42-46). The typ-
ical triangular form can be observed along with higher scatter in the congested
branch of the MFD. Unsurprisingly, higher demand leads to more congestion.
However, this MFD has a drawback leading to even more noise: It does not
perfectly represent a continuous loading of the network, since each demand is
run on its own, i.e. without any transition from 0.3 to 0.4 to 0.5 and to 0.6 (cf.
section 3.1).
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Figure 5: MFD with full network coverage.

4.3 Fusion Results

Almost all results shown in the next subsections show an “average 95th quantile
error”. This is an average value for the 5 different random seeds were used when
simulating the network on VISSIM. In other words, for each combination of
network coverage, the 95th quantile error is calculated out of the 1000 eMFDs
created. Doing this for each of the 5 random seed of the VISSIM simulations
gives 5 95th quantile errors. In the light of the amount of data processed, anal-
ysis shows that the 95th quantile error are all almost identical, which justifies
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this simplification (cf. Annex). In other words, when interpreting a diagram,
one can read: “For 95% of the investigated cases, the error is smaller than the
one reported in the diagram.”

4.3.1 Method 0

In fig. 6 the average 95th quantile of the errors of both methods are plotted
against the network coverage. In other words, for 95% of the investigated cases,
the error is smaller than the one reported in the diagram.
It can be observed that with increasing coverage of the network - by either
increasing link surveillance rate or increasing probe penetration rate - the er-
ror decreases. For low network coverage, a sharp, almost parabolic, decline in
errors can be registered when increasing low network coverage. Whereas in-
creasing higher network coverage (>20%) does not decrease the errors by much.
The marginal benefit (measured in a decrease of error) of adding network cov-
erage decreases with increasing network coverage. Furthermore, both errors
roughly follow the same trend, but the errors from Ortigosa et al. are always
smaller than the error based on the relative error sum. The latter incorporates
the volume’s relative error as well. As can be seen in fig. 6, the errors for the
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Figure 6: Average 95th error for mobile probes and loop detectors.

same network coverage is smaller when mobile probes are used. So, covering
a network with mobile probes seems to be more effective than covering it with
loop detectors.

It is of interest, how well mobile probes compared to loop detectors measure
the state of the network. In order to compare both means of covering a network,
the median error7 per surveyed vehicle was calculated. A surveyed vehicle is a
vehicle that either is a mobile probe or passed over a link with loop detectors.
In fig. 7 the median errors of mobile probes per surveyed vehicle and of loop

7relative error sum
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detectors per surveyed vehicle are taken as a ratio for each level of coverage and
split up in demands (for VISSIM random seed 46)8. So, the median error per
surveyed vehicle of the loop detectors at a 6% surveillance rate is divided by the
median error per vehicle of the mobile probes at a penetration rate of 6%.
It can be observed that the higher the demand, the better the mobile probes
measure in comparison to the loop detectors. As mentioned in chapter 2, the
higher the demand, the higher the heterogeneity in the network. In other words,
higher demands lead to a heterogeneous loading of the network, which is repre-
sented on the right branch of the MFD: Some links are heavily congested, others
not. Mobile probes that are more or less evenly distributed in the network are
better able to catch this high volatility, than trying to estimate the network
with a limited amount of links surveyed. In fig. 7, a linear regression is added
for each demand. Interestingly, the ratio of errors stays more or less the same.
The advantage that mobile probes have over loop detectors are constant - even
at 90% network coverage. Same holds true for comparing the two means of
covering a network with the error after Ortigosa et al. (not shown).
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Figure 7: Ratio of the error measured by loops and the error measured by
probes.

A comparison with median errors only - not weighted by surveyed vehicle -
leads to the almost identical results as shown in fig. 7 (cf. annex).

4.3.2 Method 1

The results are shown in form of a contour plot: The x-axis corresponds to the
probe penetration rate and the y-axis to the link surveillance rate. And the
contour lines show the iso-error line, in other words, it connects all points with
the same average 95th quantile error, based on the chosen fusion method. The
darker lines indicate labeled intervals of 0.19 whereas the lighter ones indicate

8For the error calculations by demand, eq. 5 was used and not eq. 6.
9And also 0.05 is a darker line.
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unlabeled intervals of 0.01.
In fig. 8 the contour plots for the fusion method 1 is shown, when probe pene-
tration rates are known a-priori. Both error definitions are used (Ortigosa et al.
and the sum of the relative errors). The errors shown for a probe penetration
rate of 0 or a link surveillance rate of 0, represent the errors that would be
measured if the data source were on its own.
Fusing data in this setup is only favorable, when levels of link surveillance are
larger than probe penetration rates. If the link surveillance rate is smaller than
than the probe penetration rate, a fusion of link data with probe data is not
recommended, since the error increases at first. This is shown by a the leftward
curve in the lower quarter of the diagrams. For the error after Ortigosa et al.
this effect is even intensified. Generally, this is due to the lower level of accuracy
coming from the loop detectors seen in method 0.
The higher the network coverage by either mobile probes or loop detectors,
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Figure 8: Contour plot of the average 95th quantile error for method 1 (sppr).

the less data fusion is beneficial. This can be attributed to: 1) the results of
method 0, the errors of each source decrease quickly to remain low for higher
levels of network coverage, thus it will not benefit from fusion so much; 2) the
proposed fusion does not aim at fusing high levels of probe penetration with low
levels of link surveillance and vice versa - the weight of data coming from 3% of
the links is practically 0 (≈ 0.003) when the probe penetration rate is 90%.
In fig. 9 the contour plot is shown for a network where the probe penetration
rate needs to be estimated, according to section 3.3. The difference lies also
in the y-axis, which now stands for the estimated probe penetration rate.10 In
comparison to fig. 8, these results mostly differ for low levels of link surveillance

10In order to find the 95th quantile error, all estimated probe penetrations (eppr) were
grouped in discrete 3% bins. This is necessary, because the estimated probe penetration
rate is a continuous variable, unlike the set probe penetration (sppr). Discretization of the
estimated probe penetration rate in intervals of 3% ensures that enough data is available
to find a reliable 95th quantile. This was applied for all contour plots, where the probe
penetration rate is estimated, in methods 1-5.
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rates (smaller than 25%), because these cannot ensure an accurate estimation
of probe penetration rate. In this (probably) more realistic setup, the fusion
method is favorable for most combinations. Again, it is more favorable for com-
binations in the lower left quarter of the plot (φ and ρ < 0.5).
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Figure 9: Contour plot of the average 95th quantile error for method 1 (eppr).

4.3.3 Method 2

The results are shown in the same form as for method 1 (for details, cf. 4.3.2).
In fig. 10 the contour plots for fusion method 2 is shown, when probe penetration
rates are known a-priori for both methods of error. The errors shown for a probe
penetration rate or a link surveillance rate of 0, represent the errors that would
be measured if the data source were on its own. In general, fusion based on this
method is favorable. In most cases, fusing data with the other source, decreases
the error. This holds true for low levels of link surveillance rates combined with
any level of probe penetration rate (>25% of link surveillance rate). However, a
tendency can be observed in which for low levels of probe penetration, a fusion
is not recommended, since errors increase for low probe penetrations compared
to no fusion at all. As mentioned earlier, the probe penetration levels are set
at discrete values, the lowest being 1/30. However connecting the errors of
a probe penetration rate of 1/30 and of 0 is not completely accurate: It is
intuitive that, for probe penetrations even smaller than 1/30, the error would
increase and to indicate this, the connecting iso-error lines are only dashed.
The fact that no fusion for low rates of probe penetrations results in better
results can be attributed to the weighting method: 1) According to equations
12f., a low link surveillance rate leads to a higher weight of the sub-network
with no loop detectors (1− φ). And, low levels of probe penetration levels lead
to inaccurate estimations. Together, too much weight is given to inaccurate
estimations based on mobile probes. 2) the weighting method is discontinuous
(with a case distinction). Both errors (Ortigosa et al. and sum of the relative
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errors) differ almost only in magnitude.
In fig. 11 the contour plot11 is shown for a network where the probe penetration
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Figure 10: Contour plot of the average 95th quantile error for method 2 (sppr).

rate needs to be estimated, according to section 3.3. Compared to fig. 10, it
differs mostly for low levels of link surveillance rates (smaller than 25%), because
these cannot ensure an accurate estimation of probe penetration rate.
As a rule of thumb: Fusion method 2 can improve the estimation of the MFD,
if the (estimated) probe penetration rate is higher than 10%.

0.3
0.2
0.1

0.05

0.3

0.2

0.1

0.05

Ortigosa et al. sum rel error

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

estimated probe penetration rate (eppr)

lin
k
su
rv
ei
lla

nc
e
ra
te

Figure 11: Contour plot of the average 95th quantile error for method 2 (eppr).

11See footnote 10

29



4.3.4 Method 3

The results are shown in the same form as for method 1 (for details, cf. 4.3.2).
In fig. 12 the contour plots for the aforementioned fusion method is shown,
when probe penetration rates are known a-priori. The errors shown for a probe
penetration rate of 0 or a link surveillance rate of 0, represent the errors that
would be measured if the data source were on its own. The plot shows that
fusion with method 3 is always of advantage for the investigated combinations
of network coverages. Discounting the weight of estimates based on mobile
probes with the square root function proofs to be a suitable way of fusion. Both
errors (Ortigosa et al. and sum of the relative errors) differ almost only in
magnitude.
In fig. 13 the contour plot12 is shown for a network where the probe penetration
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Figure 12: Contour plot of the average 95th quantile error for method 3 (sppr).

rate needs to be estimated, according to section 3.3. Compared to fig. 12, it
differs mostly for low levels of link surveillance rates (smaller than 25%), because
these cannot ensure an accurate level of probe penetration rate. Again, a fusion
is always beneficial.

12See footnote 10
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Figure 13: Contour plot of the average 95th quantile error for method 3 (eppr).

4.3.5 Method 4

The results are shown in the same form as for method 1 (for details, cf. 4.3.2).
In fig. 14 the contour plots for the fusion method 4 is shown, when probe pene-
tration rates are known a-priori. The errors shown for a probe penetration rate
of 0 or a link surveillance rate of 0, represent the errors that would be measured
if the data source were on its own. The advantage of this method is that it does
not rely on relative numbers, but on absolute observations. The plot shows
that fusion method 4 is mostly of advantage for the investigated combinations
of network coverages. Both error methods (Ortigosa et al. and sum of the rela-
tive errors) differ not only in magnitude. The error after Ortigosa et al. shows
similar to method 1 that for the lowest levels of link surveillance, the fusion is
not of advantage.

In fig. 15 the contour plot13 is shown for a network where the probe pene-
tration rate needs to be estimated, according to section 3.3. Compared to fig.
14, it differs mostly for low levels of link surveillance rates (smaller than 25%),
because these cannot ensure an accurate level of probe penetration rate. How-
ever, it is now always advantageous to fuse the two data sources with method
4.

13See footnote 10
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Figure 14: Contour plot of the average 95th quantile error for method 4 (sppr).
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Figure 15: Contour plot of the average 95th quantile error for method 4 (eppr).
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4.3.6 Method 5

The results are shown in the same form as for method 1 (for details, cf. 4.3.2).
In fig. 16 the contour plots for the fusion method 5 is shown, when probe pene-
tration rates are known a-priori. This somewhat more chaotic plot needs some
explanation: As in method 2, some iso error lines are dashed. The probe pen-
etration levels are set at discrete values, the lowest being 1/30. However con-
necting the errors of a probe penetration rate of 1/30 and of 0 is not completely
accurate: It is intuitive from the plot that, for probe penetrations even smaller
than 1/30, the error would increase and to indicate this, the connecting iso-error
lines are only dashed. This is more obvious for the sum of the relative error
method, where the iso-error line with 0.2 shows a sharp downward turn for a
probe penetration rate of 1/30. Similar, but less obvious, the same phenomenon
can be observed for very low levels of link surveillance rates (for rel. sum error)
and for very low levels of probe penetration (for Ortigosa et al.).

When taking a closer look, the errors not only differ in magnitude:
For the error after Ortigosa et al., the fusion method brings no benefits: For
a fixed level of probe penetration, an increase in link surveillance has no error
decreasing effect. Rather, the error stays at the same level. The explanation is
simple: The error after Ortigosa et al. takes only density values into account
and the method 5 estimates the network’s density only from mobile probes. So,
changes in link surveillance do not change the density estimates, thereby not
influencing the error after Ortigosa et al.
For a fixed level of link surveillance, an increase in probe penetration rate in-
creases the error at first, to decrease again afterwards (for link surveillance rates
> 0.25). This can be seen for a fixed link surveillance rate of 0.75: It starts out
with a low error (<0.05), then increases to 0.05 (dark dashed line), and further
increases to 0.06 (first solid line in lightgray), and starts decreasing again to
0.05 (dark solid line). This shows that for link surveillance rates higher than
0.25, this method is even counterproductive - it increases the error when fusing.
The explanation here, is that for low probe penetrations the fusion relies only
on inaccurate density estimates from only little probe vehicles. In the light of
the error after Ortigosa et al., fusion method 5 is at best as good as mobile
probes on their own, but it can sometimes even worsen the error, than if the
sources were to be used not fused.

For the relative sum of the error, similar issues can be observed. For a
fixed link surveillance rate of 0.3, it is even clearer than before, with increasing
probe penetration rate, the error first increases and decreases afterwards again.
However, contrary to the error after Ortigosa et al., this method also takes
flow into the error value. For a fixed probe penetration rate, an increasing link
surveillance rate, the error increases at first as well. For example for a probe
penetration rate of 0.25, the error is 0.1 when the data is not fused. Fusion
according to method 5 leads first to higher errors, it crosses the error line of 0.2,
and is only at 0.1 again at a link surveillance level of 0.55. So, if the network
had 25% probes penetration rate, it would only be able to decrease the error
by a fusion with data from at least 55% of the links. In the light of the sum of
the relative errors, method 5 is not able to decrease the error compared to the
sources on their own for low penetration rate and low link surveillance rates.
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Figure 16: Contour plot of the average 95th quantile error for method 5 (sppr).

In fig. 17 the contour plot14 is shown for a network where the probe pene-
tration rate needs to be estimated, according to section 3.3. Compared to fig.
16, it differs mostly for the error after Ortigosa et al. where, the lower the link
surveillance rate the less accurate is the estimation of the probe penetration
rate, and in turn, any estimation from mobile probes. However, as a conserva-
tive rule of thumb, it can now be stated that if the estimated probe penetration
rate is higher than 10%, a fusion is beneficial, compared to each source on their
own.
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Figure 17: Contour plot of the average 95th quantile error for method 5 (eppr).

14See footnote 10
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5 Analysis of Results

This section aims at comparing the different fusion method presented in section
3. Firstly, a reference fusion method is introduced, which is based on linear re-
gression and needs perfect information about the MFD. Secondly, a preliminary
comparison is made with methods 1-5. And thirdly, based on the aforementioned
comparison, a more detailed analysis of the most promising fusion method is
given. Furthermore, a comparison in respect to the robustness of specific meth-
ods is made.
It has been in explained in sections 2.3 and 3.4 that a for the use of the MFD
in a perimeter control system, the errors after Ortigosa et al. are better suited.
Therefore, only errors after Ortigosa et al. will be presented in the following.
As in section 4.3, the average 95th error of the 5 VISSIM simulations are shown.

Table 2 gives an overview over the results of the fusion methods and the
comparison thereof, which are discussed in the following. It is differentiated by
the probe penetration rate (ppr) - known and estimated. An efficient method
is as a fusion that is always better than no fusion. Most of the proposed fusion
method are beneficial for some network coverages. However, most fusion meth-
ods also have some network coverage combinations for which they increase the
investigated errors and are thus not always beneficial (they are inefficient).

Table 2: Analysis of fusion methods in an overview.

Method ppr Results
known Inefficient fusion, especially for low link surveillance

rates.1 estimated Mostly efficient fusion, especially for very low probe
penetration rates.

known Inefficient fusion, especially for low probe penetration
rates.2 estimated Same as above.

known Best overall fusion method. Efficient fusion for all in-
vestigated network coverages. Robust for measurement
errors, not robust for high errors on density values from
loop detectors.3 estimated Same as above.

known Inefficient fusion, especially for low link surveillance
rates.4 estimated Efficient fusion. Performs well for low network cover-
ages.

known Inefficient fusion, especially for low probe penetration
rates.5 estimated Inefficient fusion, except for high errors on density val-
ues from loop detectors (very robust).
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5.1 Reference Method
In the following, a simple reference method is proposed, which is based on linear
regression. As discussed in the methodological part of method 3 in section
3.5.4, it makes sense to split the network in two parts, one with loop detectors
and one without. In accordance with section 3.5.4, let k̂l,t denotes the density
measured on the sub-network with loop detectors for time slice t, and k̂p−l,t
denotes the volume measured by mobile probes on the sub-network without
static link surveillance for time slice t. kreal,t stands for the real density in the
network during time slice t (cf. section 4.2).
For a network perimeter control, the density and the critical density are the
decisive variables (cf. sections 2.2 and 3.4). A simple approach is therefore to
perform a linear regression with the densities only, by regressing the real density
on the density values of loop detectors and probes for each random seed of the
VISSIM simulations.
For each combination of link surveillance and probe penetration rate:

kreal,t = αk̂p−l,t + βk̂l,t + ε (18)

This reference method may not be optimal, since depending on what error is
used, different regressions need to be applied. For example, for the error after
Ortigosa et al., a more complicated quadratic optimization would possibly bring
better results. However, the proposed reference method is simple and can be
applied with reasonable amount of calculations.

5.2 Comparison of Methods 1-5
5.2.1 Cross-Comparison

In fig. 18 methods 1 - 5 and the reference method are shown in the same plot for
probe penetration rates that are known a-priori. For clarity only the iso-error
lines for the average 95th quantile with the level of 0.01 (left) and of 0.05 (right;
zoom!) were plotted, respectively and the different methods are differentiated
with different line types, the reference method is marked in red. When compar-
ing iso-error lines of the same level, a line closer to the origin can be interpreted
as a better fusion method: For the same combination of link surveillance rate
and probe penetration rate, a lower error can be achieved.
For both iso-error levels it can be observed that methods 1, 4 and 5 do not per-
form well compared to method 2 and 3. This is not astonishing, since method
1 unnecessarily fuses mobile probe data for links that have already full infor-
mation based on loop detectors. Method 4 is always outperformed by method
3. And method 5 does not prove to be an efficient fusion method. Method 2
on the other hand shows a good performance for high levels of probe penetra-
tion, but for lower ones it gives too much weight to inaccurate values from low
probe penetration rates - as already mentioned in section 3.2. For the iso-error
line 0.01, method 2 slightly outperforms method 3 for probe penetration levels
higher than 0.15. For the iso-error line 0.05, method 3 is clearly outperforming
method 2.
Method 3 is for both iso-errors almost as good as the reference method. Thus,
for realistically low probe penetration and low link surveillance, method 3 fuses
the two sources more efficiently than all other methods investigated.
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Figure 18: Cross comparison of the average 95th error, iso-error lines 0.01 left,
iso-error lines 0.05 right.

In fig. 19 methods 1 - 5 and the reference method (red) are shown in the
same plot for probe penetration rates that are not known a-priori. Again, for
clarity only the iso-error lines with the level of 0.03 (zoom!) and of 0.1 (zoom!)
were plotted, respectively and the different methods are differentiated with dif-
ferent line types.
For the iso-error curve 0.03, method 3 outperforms all others. It follows al-
most exactly the iso-error line achieved with the reference method. For the
iso-curve 0.1, which is interesting for lower levels of network coverage, method
1 and method 4 slightly outperform method 3 and clearly outperform 2 and 1.
Compared with the reference method, method 1 and 4 slightly outperform the
reference method. This shows that the reference method chosen does indeed
not show the optimal fusion, as mentioned in section 5.1.

From the results presented, method 3 is an efficient overall fusion method,
as it differs much from the reference method: It is capable of achieving similar
fusion results as the reference method. It is only surpassed for unrealistically
small probe penetration rates such as 3%. Moreover, method 3 only needs lit-
tle information (probe penetration and link surveillance rate) compared to the
reference method, which needs the real values for the fusion by linear regres-
sion. Indeed, a comparison of the weights given to the values of density and flow
for the fusion by method 3 and the reference method shows only little difference.
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Figure 19: Cross-comparison of the average 95th error, iso-error lines 0.03 left,
iso-error lines 0.1 right.

5.2.2 Method 3 and Reference Method

It is possible to further investigate method 3, by splitting the results by the
traffic demand. Fig. 20 and 21 show the iso-error plot for a-priori known and
estimated probe penetrations, respectively. The iso-error is only labeled for the
curves of method 3 and are in intervals of 0.0515. The figures show clearly that
the demand has two influences. Firstly it shifts the iso-error line (especially
for demand 0.3 vs. 0.4-0.6), and secondly, it influences the performance of the
fusion.
For fig. 20, method 3 is more or less following the reference method, with

demand 0.4 showing the best match of the two. For demand 0.3, the method 3
leads to an inefficient fusion, for the lowest levels of probe penetrations.
For fig. 21, method 3 is again more or less following the the reference method,
with the largest inefficiencies for demand 0.3 and 0.6. Both demands in turn
show the largest difference between reference method and method 3 for small
probe penetration levels with simultaneous small link surveillance. This is ex-
pected, since demands 0.3 and 0.6 have lower (average) flows than the other
two demands, which leads to a smaller absolute number of probe vehicles in the
network making the estimation of the probe penetration rate even more diffi-
cult. Low accuracy of the probe penetration rate leads to lower accuracy of the
estimated MFD.
In both figures, a clear distinction can be made between the demand 0.3 and
the rest of the demands ranging from 0.4 to 0.6. The explanation for this phe-
nomenon lies in the higher congestion heterogeneity that can be assumed with
higher demand, making it harder to correctly estimate the MFD, which in turn
increases the errors.

15For fig. 21: demand 0.3 shows only iso-error lines 0.05 and 0.1 for the reference method.
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Figure 20: Average 95th error after Ortigosa et al. split up by demand (sppr).
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Figure 21: Average 95th error after Ortigosa et al. split up by demand (eppr).

39



5.3 Robustness of Methods 3 and 5
In reality mobile probe data and loop detectors can be seriously flawed - due
to either measurement errors and due to the position of the detector within the
link. This section aims at comparing the robustness of method 3 and method
5. Method 3 was chosen, since it has a good overall performance. And, method
5 was chosen because it does incorporate an approach possibly more related to
practice, taking the flow from loop detectors and taking the density from the
mobile probes. Loop detectors are only capable of measuring density accurately
under certain conditions explained in section 2.3 and 3.5.

5.3.1 Measurement Errors

In the following, synthetic measurement errors assumed to be normally dis-
tributed are introduced. For every probe vehicle an error following α · value
is introduced on its distance and time spent in the network, where α follows
N (1, 0.1). And, also for each density and flow value measured by a loop de-
tector, an error is multiplied, β · value, where β follows a normal distribution
N (1, 0.1). Since the MFD aggregates the density and the flow on the network,
by taking the average time and distance spent of probes or by averaging the
density and flow values measured by loop detectors, a closer look at the error
propagation needs to be taken.
Given a sample of n independent random variables X1, X2, . . . , Xn. Each vari-
able is a randomly drawn observation with the distribution of the popula-
tion, with mean µ and standard deviation σ. Then the sample mean is x̄ =
n−1

∑n
i=1Xi and the sample standard deviation is σsample = n−1/2σ (compare

for example (Barlow, 2013)).
Under the assumption that the loop detector errors are independent, it is pos-
sible to state the following equations for network averages:

for probes: qerr,p = αq̂p with α following N

(
1,

0.1√
Np

)
(19)

for loops: qerr,l = βq̂l with β following N
(

1,
0.1√
180φ

)
(20)

where q̂l and qerr,l are the average estimated network flow measured by loop
detectors with and without including a synthetic measurement error, respec-
tively. φ is the link surveillance rate and 180 is the total number of links in the
network. The standard deviation of the average flow is inversely proportional
to the square root of the number of links used to estimate the average flow.
This is analogue for mobile probes, where the standard deviation is inversely
proportional to the square root of the number of mobile probes, Np. Identical
considerations are made for the density measures.

Fig. 22 shows method 3 and method 516 in cross-comparison, when the probe
penetration rate is known (left), and when the probe penetration rate needs to
be estimated (right). It can be observed that both fusion methods exhibit almost

16For clarity, method 5 is shown without the iso-error curves for a probe penetration rate
at 0. If necessary, they can be seen in section 4.3.
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Figure 22: Average 95th error of methods 3 and 5 when inducing a measurement
error.

no change in their average 95th quantile errors compared to without synthetic
errors. With the synthetic error, method 3 is still performing much better than
method 5. Method 3 is robust against the assumed measurement errors. The
reason is that the standard deviation is inversely proportional to the number of
observations making up the average. For example, for a probe penetration of
0.1, there are around 500 probe vehicles in the network (for one time slice), and
the standard deviation is around 0.004 for the distribution introduced above.

5.3.2 Loop Density Errors

In the following, a synthetic error is induced only to the density values of the
loop detectors, simulating thereby the variation in density due to the position of
the detector within the link. For this experiment, the assumptions from section
3.1 stating that loop detectors are well distributed within the links is relaxed.
For example, if most loop detectors are positioned close to an intersection, the
accuracy of the density measurement is overestimated. Courbon and Leclercq
(2011) showed that, averages from loop detectors may overestimate up to 100%
of the real value, depending on flow.
For further analysis a benchmark of 50% overestimation is defined. For each
density, measured by a loop detector, an error is multiplied, γ · k̂l, where γ
follows a normal distribution N (1.5, 0.1). This alters eq. 20 to:

for loops: kerr,l = γk̂l with γ following N
(

1.5,
0.5√
180φ

)
(21)

(22)

Fig. 23 shows method 3 and method 5 in cross-comparison, when the probe
penetration rate is known (left), and when the probe penetration rate needs
to be estimated (right). In any case method 5 is better than method 3. As
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mentioned earlier, the closer to the origin, the better the fusion. Method 3 is
always further away from the origin, thus, it is less efficient than method 5. As
assumed in section 3.5, method 5 is robust against distortions of the density
measurement due to the placement of the loop detectors within the links, since
densities are estimated by mobile probes only. One interesting observation is
that compared to section 3.5, it is not a disadvantage anymore to fuse data with
method 5. This is due to the high error on loop detectors.
Method 3 should not be used for fusion. Except for low link surveillance rates
and estimated probe penetration rates lower than 50% if the probe penetration
rate is estimated: The fact that the probe penetration rate needs to be estimated
makes the iso-error curve turn, making it possible for method 5 to be beneficial
for this small portion of the network coverage. However as a concluding remark,
method 3 is not robust for large density errors induced by the position of the
loop detector. Method 5 proves to be a very robust method.

0.050.10.2
0.050.10.20.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

probe penetration rate (sppr) estimated probe penetration rate (eppr)

lin
k
su
rv
ei
lla

nc
e
ra
te

method

3

5

Figure 23: Average 95th error of methods 3 and 5 when inducing an error on
density values from loop detectors.
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6 Conclusions
Congestion in the Canton of Zurich alone produces costs to each inhabitant of
around CHF 100 a year. With recent research developments such as the macro-
scopic fundamental diagram (MFD), cities have a simple and easy-to-use tool
to not only monitor but also manage traffic. The MFD is compact and gives an
aggregated view of traffic conditions within a city which can feed well known
traffic management systems, such as a perimeter control. However, the MFD is
dependent on accurate data.
In recent literature, the estimation of the MFD with only limited network cover-
age has gained interest. Different sources of data were examined separately, with
loop detectors and floating car data being the two most prominent ones. Each
of them was analyzed in respect to the network coverage and possible methods
of estimating the MFD accurately. However, in reality the aforementioned data
sources are available simultaneously: Some links have loop detectors and some
vehicles or drivers have devices that make it possible to track them.
The novelty of this master’s thesis lies in the proposed fusion methods, where
both loop detectors and floating car data are used simultaneously to estimate
the MFD. The comparison of the fused data with stand-alone data (i.e. loop
detectors or floating car data on their own) shows that data fusion indeed leads
to an estimated MFD containing lower errors than if it were estimated solely
based on loop detectors or floating car data. With the results presented in this
master’s thesis cities will now be capable of much better leveraging the different
information generated by loop detectors and floating car data. With the pre-
sented fusion methods, cities can not only estimate the MFD more accurately,
but also cost efficiently, by knowing exactly how many loop detectors and how
much floating car data are needed for which accuracy level.

6.1 Main Findings
The following gives a more detailed overview of the main findings:

i When estimating the probe penetration rate:

- How well the probe penetration rate (what fraction of vehicles can
be tracked) can be estimated depends on the link surveillance rate
(what fraction of links have a loop detector installed) and also on the
probe penetration itself.

- The higher the link surveillance rate and the higher the probe pene-
tration rate, the lower the error of the estimation will be.

ii When estimating the MFD based on one source only:

- For the same level of network coverage, the MFD based solely on
mobile probes shows lower errors than the MFD based solely on loop
detectors.

- It is found the higher the demand in the network is, the even more
superior the estimation based on mobile probes is, compared to a
loop detector based estimation. For the same network coverage, mo-
bile probes are consistently superior registering the heterogeneity in

43



congestion. This can be attributed to the better spatial distribution
of mobile probes.

iii When estimating the MFD based on loop detectors and mobile probes
simultaneously:

- In general, the MFD estimation based on the fusion of the two data
sources is often better than the estimation based solely on one data
source. This applies in particular if probe penetration rates need to
be estimated.

- Fusion method 3 always leads to a better estimation of the MFD,
compared with an estimation based solely on one data source (for
the investigated network coverage). It fuses according to the net-
work coverage of the loop detectors and the square root of the probe
penetration rate. It is also almost as good as a simple reference
method based on linear regression, which would require knowledge of
the real MFD.

- Fusion method 1, 2, 4 and 5 sometimes lead to an MFD estima-
tion which is better, identical or worse than an estimation based on
only one data source, depending on the chosen error, on the a-priori
knowledge of the probe penetration rate and on the network coverage.

iv When inducing synthetic errors:

- Method 3 is robust against small synthetic measurement errors.

- When inducing large synthetic errors to the density estimated by loop
detectors, fusion method 3 cannot be considered robust. Rather, it
is fusion method 5 that leads to consistent and robust results.

Summa summarum:

If loop detectors are well distributed within the links, already a simple
fusion following the schemes of method 3, improves the estimated MFD
significantly.

6.2 Future Research
The presented methods and results can be seen as a first approach to use both,
loop detectors and floating car data simultaneously to estimate the MFD. Fur-
ther developments are necessary, which can be categorized in two fields: Exper-
imental setup and fusion method.

Although, the proposed experimental setup is based on a realistic grid net-
work, it has to be shown that the results presented are completely transferable to
a real one. As stated multiple times, the loop detectors in this setup are assumed
to be well distributed within the links. It should be envisaged to distribute loop
detectors in specific manners (all loop detectors close to the intersection, etc.).
The mobile probe vehicles were homogeneously distributed. Further analysis
about the impact of such an assumption are needed.
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This research can be seen as a preliminary approach fusing data to obtain
a more accurate MFD. It remains to be shown that estimating the MFD with
density and flow, based on mobile probes of unknown penetration rate, is more
efficient than using the information of mobile probes for the estimation of av-
erage speed in the network and the loop detectors for the estimation of average
flow. The very low accuracy of the latter method has been discussed in section
2.3, but it was not compared to the method implemented in this master’s thesis.
Also, a better understanding of the relation between the accuracy of the esti-
mation of probe penetration rates and the accuracy of the MFD could possibly
reveal a superior fusion method.
More efficient fusion methods might be found, when more parameters are taken
into account. Most promising examples are time dependent (extended) Kalman
filters or different fusing methods for different traffic states. However, the draw-
backs of such, much more complex methods, are usually that more input vari-
ables are needed, which sometimes in reality do not exist. Another option would
be to apply two different fusion methods, one for the congested branch and one
for the uncongested branch of the MFD. Furthermore, an approach could be
taken that optimizes the perimeter control scheme. Thereby, other accuracy in-
dicators could be used, such as the network delay (cf. section 2.3). In any case,
it is important to understand that the quality of the fusion method depends
significantly on the goal of it.
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Figure 24: Average median error ratio, Ortigosa et al.
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Figure 25: Average median error ratio (not per surveyed vehicle!).
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Figure 26: 95th error different VISSIM random seeds for fusion method 1 (sppr).
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Figure 27: 95th error different VISSIM random seeds for fusion method 1 (eppr).
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Figure 28: 95th error different VISSIM random seeds for fusion method 2 (sppr).
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Figure 29: 95th error different VISSIM random seeds for fusion method 2 (eppr).
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Figure 30: 95th error different VISSIM random seeds for fusion method 3 (sppr).

Ortigosa et al. sum rel error

0.00

0.25

0.50

0.75

1.00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

estimated probe penetration rate (eppr)

lin
k
su
rv
ei
lla

nc
e
ra
te

VISSIM RS

42

43

44

45

46

Figure 31: 95th error different VISSIM random seeds for fusion method 3 (eppr).
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Figure 32: 95th error different VISSIM random seeds for fusion method 4 (sppr).
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Figure 33: 95th error different VISSIM random seeds for fusion method 4 (eppr).
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Figure 34: 95th error different VISSIM random seeds for fusion method 5 (sppr).
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Figure 35: 95th error different VISSIM random seeds for fusion method 5 (eppr).
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