
pruning Train Path DAGs
construction

enumerate
solution candidates, 

create
path-based model

MIP model solve
MIP feasible? allocate

train paths

analyse
infeasibility

Train Path Slot 
Catalogue

(Partial) Train 
Path Allocation

Train Path 
Applications

Statistical 
Information

Train Path Allocation Problem

retry?

create 
arc-node model

feasible or 
ignore? yes

no

yes no

no

y

pb

an

Algorithmic Decision Support for
Train Path Allocation

Christian Eichenberger

Diploma Thesis DAS

Institute for Transport Planning and Systems 2016



      

Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope and Limitations of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Declaration of the Data Basis and of the Transparency of the Results . . . . . . 2
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background of the Train Path Allocation Problem 3
2.1 The Train Path Allocation Problem in the Railway Planning Process . . . . . . 3
2.2 Political and Organisational Background of the Train Path Allocation Problem . 6
2.3 The Train Path Allocation Problem in Timetabling . . . . . . . . . . . . . . . . 9

3 Modelling the Train Path Allocation Problem 14
3.1 Macroscopic Topology and Routes . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Time Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Train Path Slots and Train Paths . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Train Path Allocation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 MIP formulations of the Train Path Allocation Problem 27
4.1 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Multicommodity Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Arc-Node Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Path-Based or Column-Generation Formulation . . . . . . . . . . . . . . . . . 34
4.5 Theoretical and Computational Comparison of the Arc-Node and the Path-Based

Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 A Worfklow for the Train Path Allocation Problem 40
5.1 A Semi-Automatic Workflow for the Train Path Allocation Problem . . . . . . 40
5.2 Identifying the Source of Infeasibility of a Train Path Allocation Problem . . . 42

6 Conclusion 45
6.1 Short Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 References 47

Acknowledgement 49

A Used Technologies 49





      

B Command Line Interface 51

C Train Path DAG Expansion 51

D Periodical Train Path Allocation with Periodicity 51

List of Figures

1 Activities and their Planning Horizon in the Railway Planning Process . . . . . 4
2 Make-to-Order Train Path Construction . . . . . . . . . . . . . . . . . . . . . 7
3 Process Industrialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Train Path Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Timetabling Activities with Separation of Train Path Construction and Train

Path Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Train Path Allocation Activity Diagram . . . . . . . . . . . . . . . . . . . . . 14
7 System Nodes as Interfaces between Condensation Corridors and Compensation

Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8 Microscopic and Macroscopic Topology . . . . . . . . . . . . . . . . . . . . . 17
9 Synthetic Examples of Macroscopic Topologies . . . . . . . . . . . . . . . . . 18
10 Periodical Train Path Allocation: with and without Periodicity . . . . . . . . . 18
11 Time Frame for Periodical Train Path Allocation . . . . . . . . . . . . . . . . . 20
12 Idealised Space-Time Diagrams for the Examples of Sample Topology II . . . . 25
13 Train Path DAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14 Example of a Simple Multicommodity Flow Problem . . . . . . . . . . . . . . 37
15 Graphical Representation of the Computational Results . . . . . . . . . . . . . 39
16 A Semi-Automatic Workflow for the Train Path Allocation Problem . . . . . . 41
17 IIS Analysis Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
18 Illustration of Train Path DAG Expansion . . . . . . . . . . . . . . . . . . . . 53
19 Example of an Expanded Train Path DAG . . . . . . . . . . . . . . . . . . . . 53

List of Tables

1 Differences in Timetabling for Passenger and Freight Services . . . . . . . . . 12
2 Pro Memoria: Notation Train Path Allocation Problem . . . . . . . . . . . . . 22
3 Pro Memoria: Notation Pruned Train Path Allocation Problem . . . . . . . . . 29
4 Theoretical Characteristics of the two MIP formulations . . . . . . . . . . . . . 37





      

5 Computational Results of the two MIP formulations . . . . . . . . . . . . . . . 38
6 Used Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7 Used 3rd-Party Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8 Command Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52





      

Diploma Thesis DAS

Algorithmic Decision Support for Train Path Allocation

Christian Eichenberger
Münstergasse 55
CH-3011 Bern

phone: +41 26 321 13 16

https://github.com/tuabache/TrainPathAllocation

2016

Abstract

Traditionally, train paths for freight trains are constructed by an infrastructure manager (IM)
on a make-to-order basis. If train path slots are pre-fabricated in a train path catalogue, the
available infrastructure can be exploited to higher degree since the train paths can be constructed
in a standardised and harmonised way. This leads to an assemble-to-order process:
railway undertakings (RUs) apply for train paths and infrastructure managers allocate train
paths to the different possibly conflicting applications. The problem of allocating train paths
to applications is a mathematical optimisation problem: for instance in a simple linear cost
model, the sum of all trip directions and deviations from the requested departure and arrival
times should be minimised. In this diploma thesis, a timetable planning workflow is suggested
that shows the interface between domain experts and operations research experts, the train
path allocation problem of periodical (typically weekly) allocation over a planning horizon is
formalised in a mathematical model; a graph representation of the (pruned) solution space and
two Mixed-Integer Programming (MIP) formulations are derived; and the algorithms are verified
against synthetic and real-world data.
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Zusammenfassung

Herkömmlicherweise werden Trassen für Güterzüge durch eine Infrastrukturbetreiberin auf
Bestellung hin konstruiert (make-to-order). Indem Trassen standardisiert und harmonisiert
vorfabriziert werden und in einem Trassenkatalog angeboten werden, kann die vorhandene
Infrastrukturkapazität potentiell besser ausgenützt und ausgewiesen werden: Trassen werden
auf Bestellung durch ein Eisenbahnverkehrsunternehmen hin nur noch vergeben (allo-
ziert) in einem Assemble-to-Order-Prozess. Die Trassenvergabe wird zu einem mathematischen
Optimierungsproblem, in dem z.B. mit einem linearen Kostenmodell die vergebenen Trassen
mit ingesamt minimaler Reisezeit und minimaler Abweichung von gewünschter Abfahrts- und
Ankunftszeit gewählt werden sollen. In dieser Diplomarbeit wird ein Workflow für die Fahrplan-
planung vorgeschlagen mit Schnittstellen zwischen Fachspezialisten der Fahrplanplanung und
Operations-Research-Spezialisten; das Trassenvergabeproblem von periodischen (typischerweise
wöchentlich) zu vergebenen Trassen wird mathematisch formuliert; eine Graphendarstellung des
(beschnittenen) Lösungsraums und zwei ganzzahlige lineare Problemformulierungen werden
abgeleitet; und die Algorithmen werden mit synthetischen und reellen Datensätzen validiert.

Schlüsselwörter
Trassenzuweisung, Trassenkatalog, Trassenantrag, MIP, make-to-order, assemble-to-order, ganz-
zahlige lineare Optimierung, gerichtete azyklische Graphen, Spaltenerzeugung, Pruning, Mehr-
güterflussproblem
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1 Introduction

1.1 Motivation

Traditionally, train paths for freight trains are constructed upon individual requests on a make-to-
order basis: a timetable planner introduces a train path into a timetable at different planning
stages (from strategic to operational planning). In passenger transportation, the demand is very
sensitive to connections and to regular intervals of services. In train freight transportation, the
demand is usually end-to-end, not at a regular interval within a day, and connections to other
trains or other means of transportation are typically only required at a non-variable time both at
the departure and arrival locations. This situation is summarised by Opitz (2009) as follows:

Im Vorfeld der Tassenvergabe ist es bereits möglich, Systemtrassen für den [Güter-
verkehr (im Original abgekürzt: GV)] zu gestalten. Dabei wird zunächst der
vertaktete [Personenverkehr (im Original abgekürzt: PV)] für eine Strecke ermittelt
und anschliessend die übrige Streckenkapazität mit Systemtrassen ausgefüllt, deren
Fahrdynamik durch den typisch verkehrenden [Güterverkehrs]-Zug bestimmt ist.
Die Belegung der Systemtrassen durch reelle Trassen erfolgt [in; im Original nach]
der Trassenvergabe [...] Dabei muss davon ausgegangen werden, dass bei diesem
Verfahren nur der [Personenverkehr (im Original abgekürzt: PV)] vertaktet verkehrt,
da bei einer Vertaktung beider keine Bevorzugung des [Personenverkehrs] vor dem
[Güterverkehr (im Original abgekürzt: GV)] stattfinden darf [...] Die wesentliche
Eigenschaft der Systemtrasse liegt in der Tatsache, dass einzelne Trassen nicht für
einen bestimmten Zug reserviert sind [...]

Such placeholders could be pre-fabricated in a systematic way and then allocated to a set of
concurrent applications. This problem is called train path allocation problem. To the
author’s knowledge, there is no commercial tool nor published work on the train path allocation
problem, and it can be assumed that the problem is tackled in practice by applying a path search
heuristic application by application.

1.2 Scope and Limitations of this Thesis

This is a first approach to the train path allocation problem; the main focus of this thesis is

• to provide a mathematical formalisation of the train path allocation problem;





      

• to provide an implementation of a tool, which helps to solve train path allocation problems
and to analyse and visualise the reason of infeasibility;

• to verify the algorithm against a real-world data set and to make a general statement on the
effectiveness of the algorithm.

It is not the scope of this thesis

• to make a political or commercial statement on the interest of pre-fabricated train path slot
catalogues;

• to provide a performance-tuned commercial product;
• to provide a business-ready monetary pricing model;
• to make a detailed mathematical complexity analysis of the solution algorithm;
• to be a user’s nor programmer’s guide to the implemented tool.

See also Section 6.2 for a more detailed list of further research.

1.3 Declaration of the Data Basis and of the Transparency of the
Results

The topic of this thesis has been devised by SMA and Partners Ltd. (2015) and has also been
supervised by them. Real-world data was provided by a major European Infrastructure Manager
(IM) through SMA and Partners Ltd. (2015) under the following conditions:

• the IM is not named explicitly;
• no results are published that could allow to infer on the data provided;
• the results of this thesis are provided to them and may be used by them.

Therefore, the provided data was only used

• to develop the algorithms;
• to derive synthetic data sets of appropriate size and structure;
• for performance analysis.

The author has not been paid by the data providing unnamed IM nor by SMA and Partners Ltd.
(2015) and has not provided any consulting to either of them apart from making this thesis
and the source code available. The source code is licensed under the Apache 2.0 License and
available under

https://github.com/tuabache/TrainPathAllocation.
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1.4 Thesis Outline

The thesis has the following structure:
Background: in Section 2, the train path allocation problem is put into the context of the railway
planning process and the political decisions which lead to the enforced separation of traditional
integrated railway companies into infrastructure managers and railway undertakings; a workflow
is suggested that integrates the train path allocation problem into the timetable planning process
and existing organisations;
Modelling: in Section 3, the train path allocation problem is formulated as a mathematical
problem;
MIP: in Section 4, the train path allocation problem is shown to be a multicommodity flow
problem, and two mixed-integer problem (MIP) formulations are derived, which allow the
problem to be solved by a commercial MIP solver;
Workflow: in Section 5, the activities involved in solving the train path allocation problem are
presented, from the input data to different strategies of dealing with infeasibility;
Conclusion: in the final Section 6, the main results of the thesis and open issues for future
research are discussed.

2 Background of the Train Path Allocation Problem

Section Outline

In this section, train path allocation will be motivated in an informal way from its political and
organisational context and historical background.

2.1 The Train Path Allocation Problem in the Railway Planning
Process

Caimi (2009) (following Bussieck et al. (1997)) identifies six activities in railway planning, as
shown in Figure 1:

demand estimation “[Demand estimation is] an estimation of the number of people wishing
to travel from an origin to a destination over a certain period of time during the day, or the
amount of goods to be transported. This can be conductedwith passenger counts, interviews





      

Figure 1: Activities and their Planning Horizon in the Railway Planning Process: “During
strategic planning, all steps are considered and the infrastructure changes are decided.
In tactical planning, the line plan is fixed for the yearly basic plan. The timetabling,
rolling stock, and crew planning stages are taken into account continuously until the
online operation.” (Caimi, 2009)
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with current or potential customers, and through sales analysis. The results enable the
creation of time-dependent origin-destination matrices [...] or of more aggregated data.”
(Caimi, 2009)

infrastructure planning “This is a crucial step in the planning procedure because of the long
life and the very high investment costs of the railway infrastructure. [...] This [activity] is
the responsibility of the infrastructure manager companies, in close collaboration with the
public authorities. Ideally, decisions regarding the infrastructure should also be supported
by generating a simplified timetable fulfilling the demand, and the infrastructure is then
planned for supporting this generated timetable.” (Caimi, 2009)

line planning Based on a demand estimation a passenger line plan or freight corridors are
defined: “[r]equirements and interests of the different [RUs; in the source: train operating
company] are combined together to form a so-called train service intention, which describes
the intended train services that the [RUs] plan to offer to their customers. Therefore, the
train service intention is a description of the commercial requirements that have to be
fulfilled by the train schedule.” (Caimi, 2009)

timetabling Based on a formalised or implicit service intention, train runs are scheduled from
strategic planning to just-in-time rescheduling: “Once a line plan has been specified and
a train service intention is formalised, a timetable has to be constructed which fulfils
the requirements defined in the service intention and describes each individual train trip
offered to the customers in detail. This is the last step that is published, whereas the next
steps are only meant for company-internal planning and are not relevant for the customers.”
(Caimi, 2009)

rolling stock planning “It consists of defining a set of trips operated in sequence by the same
rolling stock unit, usually on a cyclic basis, over a certain period. However, the same unit
could then be assigned to a different set of trips in the next period [...]” (Caimi, 2009)

crew scheduling “It usually takes place in two stages: crew scheduling and crew rostering.
Crew scheduling is the generation of a set of general work duties (also called shifts)
covering all activities in the operations that require a certain type of personnel, such as
train drivers or conductors. Crew rostering is then the assignment of personnel to the
duties for a certain time horizon (weeks or months), taking into account holidays, crew
member characteristics, (such as knowledge of the lines for train drivers) as well as laws
and labor agreements. The rostering can be cyclic or non-cyclic.” (Caimi, 2009)

Railway planning is a complex process: although these 6 activities form a hierarchy in the sense
that each activity depends on the previous upper one, decisions in subordinate activities may
trigger changes in superordinated activities, as discussed by Caimi (2009):

The [activities] are however not independent of each other and cannot be considered
in a purely sequential way. Everything is mutually influenced by everything else:





      

for instance, a timetable which is more attractive to customers may need additional
rolling stock because of an inefficient vehicle turnaround. On the other hand, a
slightly worse timetable in terms of customer attractiveness could improve the
rolling stock circulation and therefore the cost-effectiveness of the railway offer.
Introduction of feedback loops or the integration of several steps are possible ways
to overcome these difficulties, but this increases the complexity of the problem that
needs to be solved.

The introduction of train path allocation is supposed to introduce a narrow but general interface
that may help to divide-and-conquer the complexity.

2.2 Political and Organisational Background of the Train Path
Allocation Problem

Traditionally, railway companies were owner of the railway infrastructure and stock and provided
train services on their infrastructure. Intending to increase competition and thereby, hopefully,
efficiency, the European Union aims at allowing for non-discriminatory access to network
infrastructures such as electricity, telecommunications, railway etc. by enforcing independence
of infrastructure management and service companies. In the case of railways, the Council of the
European Communities (1991, 2001) postulated the separation of

infrastructure manager (IM) “Owner and operator of infrastructure facilities for rail trans-
port (public railway network)” (Federal Office of Transport FOT, 2016)

railway undertaking (RU) “Companies that operate passenger and/or freight transport on
their own or third-party infrastructure.” (Federal Office of Transport FOT, 2016)

both on the

• organisational and
• financial (in particular, proscription of cross-financing)

level (Weidmann, 2011). In order to allow for non-discriminatory access to network infrastructure,
key elements are1

train path slot “A train path (comparable to a slot for airlines) is the right to run a train defined
in terms of its weight, length and loading gauge over a particular section of the rail network

1A “train path” may consist of one or more “consecutive segments.” Therefore, in this thesis, it is essential to
differentiate between a “train path” (reflecting the RU’s view) and individual “train path slots” it consists of
(reflecting the IM’s view).





      

Figure 2: Make-to-Order Train Path Construction: Construction and Allocation of Train Paths
upon Request.

requests

Train Planned Run

RU

constructs and allocates

IM

Source: Adapted from (Weiß, 2015)

at a given time.” (Trasse Schweiz AG, 2016)
train path slot catalogue “The inventory of pre-constructed paths for freight traffic [...]”

(Trasse Schweiz AG, 2016)
train path application “ “Train path application” means an application for a train path

submitted by a railway undertaking [...]” (Trasse Schweiz AG, 2016)

How this separation leads to the train path allocation problem, is shown in Figure 2: a RU
traditionally applies for a train run giving

• time and place of departure and arrival,
• operational characteristics such as intermediate stops,
• train characteristics,
• a service level (tolerances),
• days of service;

then, the infrastructure manager constructs, offers, and finally allocates train paths for each
individual application. This make-to-order process (Weiß, 2015) is characterised by the
following features:

• manual construction of train paths for each individual request, expert knowledge is needed
to cope with a variety of regulations;

• software only visualises train paths, enforces and tracks the ordering process and stores
the data; however, there is no decision support in the sense of automatised plausibility
checks or of train path construction;

• lack of transparency in the remaining capacity;
• lack of transparency in the optimality of infrastructure exploitation;





      

Figure 3: Process Industrialisation: from Make-to-Order to Assemble-to-Order

Make-to-Order

Standardisation

Harmonisation

Assemble-to-Order

Train Schedules Analogy: Airplane Seats

Source: Adapted from (Weiß, 2015)

• lack of standardisation and harmonisation of train paths, and thereby loss of capacity;
• due to the manual, custom-made construction and order process, orders cannot be made
just in time;

• lack of differentiability of the product catalogue

(list compiled from (Beck, 2015) and (Bucher, 2014; SBB, 2016, 2009)). The following two
principles can help to achieve a better exploitation of the existing infrastructure (Weiß, 2015):

harmonisation The less driving times vary, the better the infrastructure capacity can be
exploited; if the same infrastructure is used for different train types, capacity is best
exploited if trains of similar driving times are grouped together.

standardisation In order to simplify harmonisation, train paths with the same characteristics
can be constructed reflecting market share segments.

The application of these two principles is depicted in Figure 3: the demand is anticipated and
the offer is constructed by standardising and harmonising the structure of the offer, reducing the
original problem of free train path construction within the remaining capacity to an allocation
problem from a well-defined train path catalogue.





      

Figure 4: Separation of Train Path Construction and Allocation in the Assemble-to-Order Process
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Source: Adapted from (Weiß, 2015)

The pre-fabrication of train paths according to these principles leads leads from a make-to-order
to an assemble-to-order process (Weiß, 2015):

make-to-order manual construction (and allocation) upon request;
assemble-to-order manual or automatised pre-fabrication of standardised and harmonised

train path slots (collected in a train path slot catalogue) and allocation in batches or upon
request.

If train paths are pre-fabricated, they can be be allocated upon request from railway undertakings;
this assemble-to-order Process is depicted in Figure 4

Therefore, at the political level, the European Union decided to institute such train path
catalogues for freight trains on certain Corridors (European Parliament and Council of the
European Communities, 2010) with a one-stop shop controlling non-discriminatory access to
the corridor and coordinating capacity along the corridor.

2.3 The Train Path Allocation Problem in Timetabling

Since railway planning is a complex process as seen in Section 2.1, it is essential to define stable,
but generic interfaces between different activities. One such interface in timetabling could be
the construction of a train path catalogue, separating construction and allocation of train paths,





      

Figure 5: Timetabling Activities with Separation of Train Path Construction and Train Path
Allocation (UML 2.0 Activity Diagram). Refer to Figure 1 for the context of timetabling
within railway planning.
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Source: Own representation, based on ideas from (Caimi, 2009)

as shown in Figure 5:

train path construction based on a service intention, a train path catalogue is constructed
respecting

• safety: headway and non-collision constraints, i.e., train path slots are mutually
non-conflicting by construction,

• connections and time dependencies (for passenger trains);
train path allocation from a train path catalogue, train path slots are allocated to train path

applications;
microscopic scheduling if it is possible to find a feasible allocation at the macroscopic level,

the solution has to be augmented by the microscopic details in the search of a conflict-free
scheduling on this level, in particular in system nodes;

appraisal, relaxation of train service intention if the service intention cannot be satis-
fied, the service intention has to be re-defined: “Here, commercial considerations dominate
technical ones. The importance of each service has to be analysed, e.g., from its economical
point of view, its impact on other services, or its fairness towards all train operating
companies. Based on this, a less restrictive [service intention] has to be generated and the
train scheduling procedure started over again.” (Caimi, 2009)





      

For freight trains, goods are transported from source to destination, and there are typically
no connection and time dependencies; hence, in this case, the separation of construction and
allocation of train paths seems promising.

For passenger trains, connections and time dependencies (and changes to them) are sensitive
issues for a commercially attractive offer and hence play a major role in the construction of
train paths; these additional constraints apply to ensure an integrated operating concept of a
coordinated regular timetable (or clock-face timetable), where there is a common axis (or axes)
of symmetry for all (or at least among the major) lines in the network and where transfers are
scheduled: “Connections between trains also belong to a commercial description, as they permit
the passenger to efficiently change trains to continue their trip. The minimum connection time
depends on the infrastructure of the railway station, in particular on the distances passengers
have to walk. Upper bounds are defined as the acceptable waiting times for the passengers.
Time dependencies between train events are also an important commercial requirement, as
they separate two different train runs in time that are covering the same demand, at least
partially.”(Caimi, 2009) Referring to Figure 5, the train path catalogue passed as input to train
path allocation could only contain slots and applications for freight trains, whereas regular
passenger services are directly allocated in the train path construction activity.

Timetabling typically works on a prototypic slice which is then repeated throughout the planning
horizon, possibly with intermediate aggreations andmodifications: “Timetable planners can work
out problems on an elementary time slice, the basic framework, which equals the period. The
basic framework is then repeated throughout the daily operational range (from, let us say, 6 a.m.
to 10 p.m.).” (Tzieropoulos and Emery, 2009) For passenger trains, the time frame is typically
one hour (or a whole day) and can be modelled by time dependencies between the different runs
and modelled as a Periodic Event Scheduling Problem (PESP), for which various algorithms for
macroscopic timetabling have been developed (Caimi, 2009; Herrigel-Wiedersheim, 2015). For
freight trains, the time frame is typically one week, or, in a hierarchical approach, a prototype
day for repeated services. These diffences are summarised in Table 1.

The focus of this thesis is on freight trains. Therefore, time dependencies and connection
dependencies among different services will not be considered. Here, the following cases are
distinguished:

non-periodical a train path applications asks for a single run, for instance from s to t departing
at 14:00 on April 1st and arriving at 21:00 on the same day;

periodical simple a train path application asks for a periodical run, for instance from s to t

on Mondays, departing at 14:00 and arriving at 21:00;
periodical with periodicity a train path application asks for a periodical run, repeated on





      

Table 1: Differences in Timetabling for Passenger and Freight Services. Different goals lead to
different timetabling constraints and planning processes.

passenger service freight service

periodical mostly mostly, but demand for short-term
location of coordin. at most intermediate stations end-to-end
time coordination minutes hours
regular-interval yes, differentiated no (at most once)

e.g., peak/off-peak/evening
days of service same for groups of services indvidual

(periodicity) e.g., working day timetable
memorisability important unimportant

time frame (hour ) day week (day ) week
 planning horizon  planning horizon

Source: Own representation

several operation days (the periodicity), for instance from s to t on Monday and Friday,
departing at 14:00 and arriving at 21:00.

Notice that the non-periodical case can be reduced to the simple periodical case by restricting
the planning horizon to one period. Furthermore, the simple periodical case is a special case
of the repeated periodical case. In this thesis, the theory for the simple periodical case will be
developed first, and then later a sketch will follow how it can be generalised to the repeated
periodical case (see Appendix D).

Figure 6 shows a workflow for train path allocation with the following three activities:

subproblem choice choose a subset of applications to be allocated; this activity can be either
a planner’s activity in iterative timetabling, or, in an iterative solution process for the train
path allocation problem, an activity performed by an operations research expert or by
software (e.g., if a hierarchical decomposition is applied, where first all-week applications
are allocated and one-day applications only later on);

train path allocation problem try to solve the train path allocation subproblem; this activity
is mainly automatic and is the main topic of this thesis;

appraisal, relaxation remove or add or modify train path applications; again commercial
considerations dominate technical ones; this activity typically involves human negotiations.





      

The suggested workflow has different mutually non-exclusive interpretations:

• organisational: solving the train path allocation problem is a black box to domain-experts,
who specify a subproblem they wish to be decision-supported by operations research
experts, and who get feedback on infeasibility;

• decompositional: iteratively choosing new subproblems helps to allocate train paths,
e.g., all-week applications are dealt with first, then simple applications and finally non-
periodical applications in a narrow planning horizon;

• commercial: unallocated train paths reflect the infrastructure managers remaining capacity
and could be allocated to a train path application from a RU in a just-in-time manner.

The suggested workflow for train path allocation is an iterative, interactive and open (or online
(Wikipedia, 2015)) process:

iterative the train path allocation problem may be infeasible or practically intractable, and
the applications may have to be reconsidered or the train path catalogue may have to be
modified;

interactive human interpretation and action is required if the train path allocation problem
cannot be solved or can be applied for the appraisal of the results;

open/online from one iteration to the next, train path slots and requests can be added or
removed.

Section Synopsis and Discussion

In this section, the train path allocation was put in the context of the railway planning process in
general and of timetabling in particular, based on concepts from (Caimi, 2009). It has become
clear that many activities (such as the catalogue construction or microscopic scheduling) are
beyond the scope of this thesis, which presupposes a train path catalogue and a set of train path
applications as input data. The focus of the thesis is on freight trains without consideration
of time nor connection dependencies between train path applications. It remains a conjecture
whether the construction of a systematic train path catalogue with standardised and harmonised
train paths helps to increase the degree of utilisation of the existing railway infrastructure.





      

Figure 6: Train Path Allocation Activity Diagram (UML 2.0 Activity Diagram). Refer to Figure 5
for the context of train path allocation within timetabling. Solving the train path
allocation problem can be seen as a black-box activity in the view of domain experts
and white-box to research specialists, who develop and run algorithms and interpret
the results.

Train Path Slot 
Catalogue

Train Path 
Applications

Train Path Allocation Problem

(Partial) Train 
Path Allocation

Statistical 
Information

feasible?Subproblem 
Choice

Train Path Allocation

Appraisal, 
relaxation

yes

no

done?

no

yes

Source: Own representation

3 Modelling the Train Path Allocation Problem

In this section, the train path allocation problem will be defined in a formal way in terms of
graph theory. The formulation will reflect the assumptions made in the previous Section 2.3:
in particular, it presupposes a train path catalogue within a given macroscopic topology
(infrastructure and corridor) and produces a feasible allocation for a set of train path allocations.
The model reflects the commercially relevant aspects of train path application: the published
offer, demand and delivery.

Section Outline

The underlying macroscopic railway topology will be defined as an undirected graph of system
nodes and train path sections. An infrastructure manager’s commercial offer will be represented
by a train path slot catalogue with dwell times representing the technical time required at system
nodes. Railway Undertakings may then apply for train paths between two system nodes at
given start and end times and maximum earlier departure and maximum later arrival durations.





      

These notions define the train path allocation problem, which aims at satisfying train path
applications by finding an allocation of train paths from the train path slot catalogue. If the train
path allocation problem has more than one solution satisfying all train path applications, an
optimisation criterion will allow to decide which solution to choose among all feasible train path
allocations, for instance by minimising the sum of all train path durations plus their earliness and
lateness with respect to the application’s requested start and end time.

3.1 Macroscopic Topology and Routes

System nodes are those points where a train path of the commercial offer can start or end, e.g. a
major railway station, a freight terminal or a point for ancillary services. It may be important
to construct a train path catalogue to make best use of the available infrastructure along highly
used corridors of the railway infrastructure (condensation areas (Caimi et al., 2011)) but
not in the rest of the infrastructure (compensation areas (Caimi et al., 2011)). In this view,
system nodes are the points interfacing between condensation corridors and compensation areas.
An example of this interfacing role of system nodes is shown in Figure 7: here, the system
nodes s and t serve as interfaces between the compensation areas (dashed lines and dots) and the
macroscopic topology of train path sections (non-dashed black straight lines) and system nodes
(filled black dots) covered by the train path catalogue.

System nodes abstract from the microscopic topology as shown in Figure 8: for instance, a train
run from s2 to s3 may start at two different main signals within system node s2 at the microscopic
level; at the macroscopic level, it is not defined which one will be taken and feasibility has to
be verified at the microscopic level. Also notice that, although a train run from s4 to s3 via
s2 requires extra time for the change of direction at s2, this is not reflected in the macroscopic
topology; these restrictions will be encoded in the train path catalogue and dwell time restrictions,
as will be seen below.

Definition 3.1 (Macroscopic Topology). A macroscopic topology is a graph T = (S, E),
consisting of

• a finite set S , ∅ of system nodes (also called of nodes (or vertices) of the graph),
• E ⊆ {{s, t} : s , t, s, t ∈ S} of train path sections (also called edges of the graph).

The set of all train path sections involving a system node s is denoted δ(s) = {e ∈ E : s ∈ e}. ♣

Notice that it is not formally required that the macroscopic topology be connected, although this
will be the case in real-world scenarios.





      

Figure 7: System Nodes as Interfaces between Condensation Corridors and Compensation Areas.
Traffic from a point (dashed dot) not covered by the train path catalogue must go
through a system node (black dot).

s

t

Source: Own representation

Example 3.2 (Macroscopic Topology Models). Figure 13 shows three example macroscopic
topologies, which are used throughout this thesis for illustration purposes and verification of the
theory. Size and structure of Topology III are similar to the topology of the real-world data set.♣

Routes capture movements in a macroscopic railway topology over multiple edges.

Definition 3.3 (Routes). Given a macroscopic railway topology T = (S, E), a directed graph
DT = (S, A) can be created by directing each edge {s, t} ∈ E, i.e., A =

⋃
{s,t}∈E {(s, t), (t, s)}. A

path r = (s1, . . . , sn) ∈ Sn in the directed graph DT = (S, A) is called a route from system
node s1 to sn, i.e.,

• (si, si+1) ∈ A, for i = 1, . . . , n − 1, and
• si , s j, (for all i , j, i, j ∈ {1, . . . , n}). ♣

3.2 Time Frame

Train paths are allocated with respect to a planning horizon, during which the same pattern is
repeated n times. Typically the repeated period τ is a week and the planning horizon is the





      

Figure 8: Macroscopic Topology as Imprecise Aggregated View of Microscopic Elements: On
the left-hand side, some elements of the microscopic level such as main signal positions
and switches are depicted (but no release/clearing points after signals and switches of
the interlocking system), and their corresponding aggregated elements of a macroscopic
topology are depicted on the right-hand side. Aggregations are depicted by dashed
boxes for train path sections and ovals for system nodes. The separation suggested here
is at the block’s home signal (coming out of the system node onto the train path section)
and exit signal (going into the system node), which are not at exactly the same position
in both directions and the aggregation is somewhat imprecise on the geographical level;
however, different driving times in the train path section and through system nodes can
be reflected in the train path slot catalogue.

s1

s2

s3

s4

Source: Own representation

timetable period, which is typically one year. This model can of course be applied iteratively to
different planning horizons one after another as long as the train path slots are available during
the whole planning horizon and the application refers to the whole planning period. This is
depicted in Figure 10(a): the planning horizon consists of n of periods of length τ (typically
a week). Train services may also supposed to run repetitively at the same times daily or on a
specific subset of operation days of the week, as shown in Figure 10(b): the same train run
is scheduled on a subset Π ⊆ {1, . . . , N } of subperiods of length T , τ = NT over the whole
planning period nτ (typically T is a day and N = 7, i.e., τ is a week). In this section, the case of
train runs which are supposed to run repetitively at the same times daily or on a specific subset
of operation days of the week, is not considered here. The following approach may be applied to
the repetitive case: “flatten” repetitions into several individual train path slots and train path
applications as shown in Figure 10(c); obviously it is not ensured here that the scheduling is





      

Figure 9: Synthetic Examples of Macroscopic Topologies

(a) Sample Topology I: line-shaped, small: 5 system nodes, 4 train path
sections

(b) Sample Topology II: Bottleneck with claws, small:
6 system nodes, 5 train path sections

(c) Sample Topology III: Bottleneck with claws, large: 26 system nodes, 25 train path sections

Source: Own representation

Figure 10: Periodical Train Path Allocation: with and without Periodicity

(a) Simple Periodical Train Path
Allocation (without Periodic-
ity)

0 ⌧ 2⌧ n⌧· · ·

· · ·

(b) Periodical Train Path Alloca-
tion with Periodicity

0 · · ·

· · ·

2
⌧

=
2N

T

n
⌧

=
n
N

T

⌧
=

N
TT

(c) Flat Train Path Allocation: train path slots
and applications are split into independent
simple ones, periodicity is ignored.

· · ·
· · ·

· · ·

Source: Own representation

the same on all requested days of service Π ; in other words: the conversion to the simple case
happens at the loss of the information on repetitions.





      

In the periodical setting, it is not possible to state that t2 is after t1, but only how much time it
takes from t1 to t2: there is no notion of (symmetric) distance between two moments of time, but
only of (directed) distance from one moment to another (which in general is different from the
distance from the latter to the former moment, as exemplified in Figure 11).

Definition 3.4 (Time Frame). Let τ ∈ IR be a positive real number, called period. Then, the
half-closed interval [0, τ[ is called time frame. In the time frame, time intervals may “wrap
around τ”; formally, for t1, t2 ∈ [0, τ[,

[t1, t2]τ =



t : 0 ≤ t < τ,



t1 ≤ t ≤ t2 if t1 ≤ t2,

t ≤ t2 or t ≥ t1 else






. (1)

Further, for two times t1, t2 ∈ [0, τ[,

t2 	τ t1 = (t2 − t1) mod τ (2)

represents the distance from t1 to t2 or the duration of the interval [t1, t2], and

t1 ⊕τ t2 = (t1 + t2) mod τ (3)

represents the time t2 after t1. Finally,

∆+τ (t, t1, t2) =



0 if t ∈ [t1, t2]τ
t2 	τ t else,

(4)

∆−τ (t, t1, t2) =



0 if t ∈ [t1, t2]τ
t 	τ t1 else,

(5)

represent lateness, i.e., the distance from the interval’s upper bound t2 to t, and earliness,
i.e., the distance from t to the lower bound t1, respectively. ♣

Notice that the times in an interval [t1, t2]τ are completely ordered.





      

Figure 11: Time Frame for Periodical Train Path Allocation: distance t2 	τ t1, where time runs
clock-wise modulo τ.

(a) t2 ≥ t1

0 = (⌧ mod ⌧)

t1

t2

t2  ⌧ t1

(b) t2 < t1

0 = (⌧ mod ⌧)

t1

t2

t2  ⌧ t1

Source: Own representation

3.3 Train Path Slots and Train Paths

A train path slot links a train path section with direction and time. Notice that start and end
times of a train path slot do not represent the time of mutually exclusive blocking of a resource
at the microscopic level; blocking stairways work at the microscopic level and would typically
be used in the construction of train paths slots or in order to check the microscopic feasibility
and robustness of the overall allocation.

Definition 3.5 (Train Path Slot). A train path slot in a macroscopic railway topology T =
(S, E), DT = (S, A), with respect to a time frame [0, τ[, is a quadruple v = (s, t, δ, α) where

• (s, t) ∈ A,
• departure time δ ∈ [0, τ[ and arrival time α ∈ [0, τ[.

For v = (s, t, δ, α), the short-hand notations sv, tv, δv 2 and αv will be used to denote v’s source
and target node and requested departure and arrival times, respectively. ♣

In order for this definition to be consistent with reality, slot durations must be strictly smaller
than τ, i.e., the difference α 	τ δ represents the physical slot duration of a slot v.

A train path catalogue represents the commercial offer of an Infrastructure Manager; dwell
times allow for differentiation among incoming train path slot and next system node; in this
2Caveat: δ(sv ) denotes the set of neighbours of the system node sv in the macroscopic topology, whereas δv
denotes the scheduled departure time of the train path slot v.





      

way, turnaround times can be modelled. However, differentiation in driving behaviour (different
standardised speed levels) cannot be modelled.

Definition 3.6 (Train Path Slot Catalogue). A train path slot catalogue in a macroscopic
railway topology T = (S, E) and with respect to a time frame τ is a pair (V, β), consisting of

• a finite set V of train path slots with respect to τ
• minimum dwell times βv,s for v ∈ V and s ∈ δ(tv), sv , s,

constituting the partial mapping β : (v, s) 7→ βv,s. ♣

Train path slots are the building blocks of train paths along a route.

Definition 3.7 (Train Path). Given a train path catalogue V in a macroscopic railway topology
G = (V, E), a train path is a finite sequence p = (v1, v2, . . . , vn) of n different train path slots
vi = (si, ti, δi, αi), i ∈ {1, . . . , n}, such that

*..
,

n∑
i=1

(αi 	τ δi)︸     ︷︷     ︸
slot time

+

n∑
i=2

(δi 	τ αi−1)︸        ︷︷        ︸
eff. dwell time

+//
-
= (αn 	τ δ1) , (6)

(in words: the sum of slot lengths and (effective) dwell times equals the duration from the
departure of the first slot to the arrival of the last slot modulo τ.) ♣

Equation (6) ensures that train paths are shorter than the period τ. Other formulations without
this limitation are possible (Serafini and Ukovic, 1989).

On the consumer side, railway undertakings deposit requests to travel from one system node to
another at some departure and arrival times.

Definition 3.8 (Train Path Application). A train path application in a macroscopic rail-
way topology T = (S, E) with respect to a time frame τ is a sextuple k = (sk, tk, δk, αk, δ

−
k , α

+
k )

where

• departure time δk ∈ [0, τ[ and arrival time αk ∈ [0, τ[.
• maximum earlier departure δ−k ∈ [0, τ[ and maximum later arrival α+k ∈ [0, τ[

such that δ−k + (αk 	τ δk ) + α+k < τ. ♣

The interpretation is the following: the application k asks for a train path from sk to tk with
requested departure time δk and arrival time αk ; however, the applicant may not have knowledge





      

Table 2: Pro Memoria: Notation Train Path Allocation Problem

s, t ∈ S system nodes
[0, τ[ time frame
u, v,w ∈ V train path slots
βv,s dwell time after v going to s

p = (v1, . . . , vn) train path
k ∈ K train path application
sk, su source system node of a request/train path slot
tk, tu terminal system node of a request/train path slot
δk /δu requested/scheduled departure time
αk /αu requested/scheduled arrival time
δ−k ,α

+
k maximum earlier departure / later arrival

δ̌k = δk 	τ δ
−
k , α̂k = αk ⊕τ α

+
k earliest departure / latest arrival

Source: Own representation

about the available train path catalogue nor on the other applications; therefore, the application has
to allow for some margin, i.e., the application allows for a train path within [δk 	τ δ

−
k , αk ⊕ α

+
k ]τ.

An application that allows for a larger margin takes into account that it may get a costlier and
less attractive train path; for instance, the total cost ck

p of a train path p = (v1, . . . , vn) may be
defined as the sum of its earliness with respect to the requested departure time δk , its duration,
and its lateness with respect to the requested arrival time αk , i.e.,

ck
p = ∆

−
τ (δv1, δk, αk )︸            ︷︷            ︸

earliness

+ (αvn 	τ δv1 )︸         ︷︷         ︸
duration

+ ∆+τ (αvn, δk, αk )︸             ︷︷             ︸
lateness

. (7)

Of course, the applicant desires a train path of minimal cost; other definitions of ck
p are possible,

for instance lateness could be penalised exponentially. Hence, monetary discounts could be
granted based either on the application bounds or the effective cost ck

p of the allocated train
path. Application bounds could also be bundled into service levels with corresponding monetary
discounts. It is beyond the scope of this thesis to work out such a monetary pricing scheme.
As discussed below in Section 4, a large class of cost functions ck

p are possible (where ck
p is

short-hand notation for the cost function c : (p, k) 7→ ck
p).





      

3.4 Train Path Allocation Problem

A set of train path applications and a train path catalogue lead to the problem of allocating train
path slots to these applications.

Definition 3.9 (Train Path Allocation Problem). A structure π = (S, E,V, β, K, c) where

(P1) T = (S, E) is a macroscopic railway topology,
(P2) (V, β) is a train path catalogue,
(P3) K is a finite set of train path applications and
(P4) c : (p, k) 7→ ck

p ∈ IR+ attributes a non-negative cost to train path p for request k

is called a train path allocation problem. A feasible train path or solution candidate
for request k is a train path p = (v1, . . . , vn) such that

(U1) requested departure and arrival locations:

sv1 = sk, tvn = tk (8)

(U2) requested departure and arrival times:

δv1, αvn ∈ [δ̌k, α̂k]τ, (9)

(U3) dwell times:

δvi+1 < [δ̌k, αvi ⊕τ βvi,s]τ, s = tvi+1, for all i ∈ {1, . . . , n − 1} (10)

(in words: the next departure δvi+1 at tvi = svi+1 to tvi+1 must be at least βvi,s after the
arrival at tvi .)

A train path allocation is a mappingM : V → K ∪ {�} such that the set of train path slots

M−1(k) = {v ∈ V :M (v) = k} (11)

constitutes a unique feasible train path

pM (k) = (v1, . . . , v|M−1(k) |) (12)

for all k ∈ K . The train path slotsM−1(�) are unallocated. For a train path allocation problem
π, the set of train path allocations is denoted Sol (π). If, for a train path allocation problem
π, there is no train path allocation f (i.e., if Sol (π) = ∅), then π is called infeasible. An





      

allocationM ∈ Sol (π) is optimal if it achieves the minimal total cost

min
M∈Sol (π)

∑
k∈K

ck
pM (k)). (13)

A request k ∈ K is called (in)feasible if the train path allocation problem πk = (S, E,V, β, {k})
restricted to k is (in)feasible, respectively. ♣

Note that no time for dispatching at the start nor the end node is included in the model; however,
such times can easily be modelled by modifying the applications requested departure and arrival
times. Refer to Table 2 for a list of the notation used.

Example 3.10 (Sample Scenario I (without Earliness) in Sample Topology II). Consider Topol-
ogy II of Example 3.2 with

• 4 train path slots per hour for every train path section (starting at :00, :15, :30, :45) of
duration 20 minutes,

• global minimum dwell time of 5 minutes for every slot and all next system nodes,
• 1 train path application between the pairs {A1, B1} × {C1, D1} = {(A1,C1), (A1, D1),

(B1,C1), (B1, D1)} per hour, all 4 hourly applications requesting to start at :00, to have
duration 90 minutes, maximum later arrival of 60 minutes, but no earlier departure.

Consider now the bottleneck train path sections between system nodes M1, . . . , M10. Trains
can enter the bottleneck at M1 coming from A1 or B1 at :00, :15, :30, and :45. Notice that all
applications are to depart at :00 with no earlier departure permitted. Hence, the feasible train
paths are

• start :00, enter M1 at :30; duration and total cost 80 minutes;
• start :15, enter M1 at :45; duration 80 minutes, lateness 5 minutes, and total cost 85
minutes;

• start :30, enter M1 at :00; duration 80 minutes, lateness 20 minutes, and total cost 100
minutes;

• start :45, enter M1 at :15; duration 80 minutes, lateness 35 minutes, and total cost 115
minutes.

Idealised space-time trajectories of this situation are depicted in Figure 12(a). ♣

Example 3.11 (Sample Scenario II (with Earliness) in Sample Topology II). Consider the same
train path allocation problem with he following modification:

• allow for 60 minutes earlier departure and arrival.





      

Figure 12: Idealised Space-Time Diagrams for the Examples of Sample Topology II. The shaded
areas represent times of earliness and lateness. The trajectories are labelled with their
total cost.

(a) Space-time Diagram for Train
Path Allocation Problems in
Topology II, Scenario I (without
Earliness)

M1 M2

: 00

: 45

: 15

: 30

A1/B1 C1/D1

: 45

: 00

: 15

: 30

: 45

80

85 = 80 + 5

100 = 80 + 20

115 = 80 + 35130 = 80 + 50

(b) Space-time Diagram for Train
Path Allocation Problems in
Topology II, Scenario III (with
Earliness)

M1 M2

: 00

: 45

: 15

: 30

A1/B1 C1/D1

: 45

: 00

: 15

: 30

: 45

95 = 80 + 15

80

85 = 80 + 5

100 = 80 + 20

110 = 80 + 30

125 = 80 + 45

140 = 80 + 60

115 = 80 + 35130 = 80 + 50

Source: Own representation

Then, more train paths are feasible; the best four have a lower average cost:

• start :00, enter M1 at :30; duration and total cost 80 minutes;
• start :15, enter M1 at :45; duration 80 minutes, lateness 5 minutes, and total cost 85
minutes;

• start :45, enter M1 at :15; duration 80 minutes, earliness 15 minutes, and total cost 95
minutes;

• start :30, enter M1 at :00; duration 80 minutes, lateness 20 minutes, and total cost 100
minutes.

Idealised space-time trajectories of this situation are depicted in Figure 12(b). ♣

Example 3.12 (Sample Scenario III (Conflict in Sample Topology II)). Consider the same
train path allocation problem with the following modification

• only 3 train path slots per hour for every train path section (starting at :00, :20, :40) of
duration 20 minutes;

This train path allocation problem is infeasible since there are four train path applications per
hour for entering the bottleneck at M1, but only 3 slots entering the bottleneck at M1 per hour.♣





      

Example 3.13 (Sample Scenario IV (Large) in Sample Topology III). The following scenario
will be used to test the implementation in a large-scale scenario. Consider the sample topology
of Figure 9(c) with

• 4 train path slots per hour for every train path section (starting at :00, :15, :30, :45) of
duration 20 minutes;

• 1 train path application per hour between leaves of the topology, i.e., between the pairs
{A1, B1} × {C1, D1} = {(A1,C1), (A1, D1), (B1,C1), (B1, D1)}, all 4 hourly applications
requesting to start at :00, to arrive 17 · 30 = 8 hours and 30 minutes later, maximum
later arrival of α+ = 60 minutes, but no earlier departure (δ− = 0), minimum dwell time
globally β = 5. ♣

Section Synopsis and Discussion

The notation used in this section follows that of (Bertsimas and Weismantel, 2005; Bertsimas
and Tsitsiklis, 1997).

The model represents the commercial aspects of train path allocation; the key features of the
suggested model are the following:

• the train path slot catalogue contains train path slots that are conflict-free at the macroscopic
level, any set of train path slots can be allocated in principle; as a consequence headway
constraints between different train path slots have to be encoded in the construction of
the train path catalogue and are presupposed; microscopic scheduling and verification are
required to ensure

– node capacities: it has to verified whether a macroscopic allocation is conflict-free in
system nodes; node capacities or train path slot exclusion constraints could be added
to the model;

– robustness: whether a macroscopic allocation is robust is not ensured by the allocation
scheme; robustness has to be either encoded in the train path slot catalogue or verified
by verification at the microscopic level;

• maximum earlier departure and minimum later arrival constraints per request allow for
different service levels;

• minimum dwell times per slot and next node allow to model different durations needed for
system node traversal;

• different speed characteristics in the train path catalogue and train path applications
have not been taken into account; a simple approach could be to partition train path





      

allocation in disjoint subproblems (one per standardised profile) and jointly verified at the
microscopic level (it would still have to be assumed that train path slots are conflict-free at
the macroscopic level);

• the suggested optimisation objective is to minimise the sum of all allocation paths’ duration,
earliness and lateness; the impact of lateness could grow exponentially and not linearly, as
suggested; in the theory developed in the next chapter, such objectives are possible;

• geographical constraints have not been added to the model; however, they will be used in
the next section as a computational feature to keep the solution space tractable;

• monetary pricing of the allocated train paths could be based on the effective costs
proportional to the sum of trip time plus lateness and earliness; other cost schemes could
be introduced, but are beyond the scope of this thesis.

4 MIP formulations of the Train Path Allocation

Problem

The formulation of the train path allocation problem in Section 3 was driven by the commercially
relevant aspects of train path allocation. In order to keep the train path allocation problem
tractable, the solution space may need to be pruned and represented in a mathematical model. In
the literature, similar problems have been analysed as multicommodity flow problems (Barnhart
et al., 2000; Caimi et al., 2011): the objective is to flow a set of commodities through an
underlying network at minimum cost without exceeding capacities. In this terminology, train
path applications are the commodities that have to flow through a network with restricted
capacity. Since a slot must not be used more than once, the train path allocation problem is a
multicommodity flow problem with unit capacity.

Section Outline

First, pruning will be introduced as a measure to reduce the solution space and to keep the
problem tractable. Then, following (Barnhart et al., 2000), the solution space of a (pruned) train
path allocation problem will be represented by a train path DAG, and two different mixed integer
linear programs will be formulated to solve an origin–destination integer multicommodity flow
problem based on a train path DAG. Finally, computational results of these two approaches will
be presented with regard to dealing with large-scale problems.





      

4.1 Pruning

The solution space of a train path allocation problem can get quickly intractable, as will be seen
below in Section 4.5. Therefore, it is essential to be able to prune the problem, i.e., to reduce
its solution space. The search space can be reduced by imposing restrictions on

• dwell times,
• departure time of first slot,
• arrival time of last slot,
• geographically, system nodes to be used;

Pruning is formalised in the following definition; the notation is listed pro memoria in Table 3.

Definition 4.1 (Pruning). Let π = (S, E,V, β, K ) be a train path allocation problem. Then,
(S, E,V, β, K, •) is a pruned train path allocation problem where • is a set of values:

• lower, upper bound for train paths to depart at source system node: •δ̌k, •δ̂k ∈ [0, τ[ such
that [•δ̌k, •δ̂k]τ ⊆ [δ̌k, δ̂k]τ;

• lower, upper bound for train paths to arrive at terminal system node: •α̌k, •α̂k ∈ [0, τ[
such that [•α̌k, •α̂k]τ ⊆ [δ̌k, δ̂k]τ;

• lower, upper bound for next train path slot to start to system node: • β̌v,s, • β̂v,s ∈ [0, τ[
such that [• β̌v,s, • β̂v,s]τ ∩ [αv, αv ⊕τ βv,s]τ = ∅;

• system nodes allowed for application k: •Sk ⊆ S.

A solution candidate p = (v1, . . . , vn) (or feasible train path) for application k ∈ K must then
satisfy

(P1) requested departure and arrival locations:

sv1 = sk, tvn = tk, (14)

(P2) pruned requested departure and arrival times:

δv1 ∈ [•δ̌k, •δ̂k]τ, αvn ∈ [•α̌k, •α̂k]τ, (15)

(P3) pruned dwell times:

δvi+1 ∈ [• β̌vi,s, • β̂vi,s]τ, s = tvi+1, for all i ∈ {1, . . . , n − 1}, (16)





      

Table 3: Pro Memoria: Notation Pruned Train Path Allocation Problem

•δ̌k, •δ̂k ∈ IR lower, upper bound for train paths to depart at source system node
•α̌k, •α̂k ∈ IR lower, upper bound for train paths to arrive at terminal system node
• β̌v,s, • β̂v,s ∈ IR lower, upper bound for next train path slot to start to system node
•Sk system nodes allowed for request k

Source: Own representation

(P4) allowed system nodes:

svi, tvi ∈ Sk, for all i ∈ {1, . . . , n}. (17)
♣

By construction, a solution of a pruned problem is always a solution to the original problem.
Therefore, pruning can be used to keep the solution space tractable. Furthermore, notice that
there is a pruned problem having the same solutions for every original allocation problem by the
following embedding:

• •δ̌k = δ̌k , •δ̂k = α̂k ,
• •α̌k = δ̌k , •α̂k = α̂k ,
• • β̌v,s = β̌v,s, • β̂v,s = τ,
• •Sk = S.

4.2 Multicommodity Flow

Following (Barnhart et al., 2000) and (Caimi et al., 2011), a train path allocation problem can be
modelled as a multicommodity flow problem: train path applications are commodities that have
to flow through a network.

Algorithm 1 constructs a directed acyclic graph (DAG) for an application in a pruned train path
allocation problem; the idea is the following:

• starting at the source system node, possible train path slots are considered;
• the slots that satisfy the departure bounds are added to the graph;
• successor slots are considered along the routes allowed and added to the graph if dwell
time constraints are satisfied; hence, arcs in the directed graph correspond to a slot-slot
connection;





      

• if no successor can be found, the slot is recursively removed from the DAG;
• at the final system node, slots are added to the DAG if the arrival time constraint is
respected and recursively removed if not.

Algorithm 1 Train Path DAG Construction
1: procedure constructDAG(k, T = (S, E), V , β, •) . Construct Train Path DAG
Dk = (Vk, Ak ) for application k, topology T , catalogue V , dwell times β and pruning •.

2: Vk ← {sk, tk }

3: Ak ← ∅

4: initialSlots ← ∅

5: in f easibleSlots ← ∅

6: processedSlots ← ∅

7: for all t ∈ getNextNodes(sk, sk, tk ), v ∈ getTrainPathSlots(sk, t, •δ̌k, •δ̂k ) do
8: Vk ← Vk ∪ {v}

9: Ak ← Ak ∪ {(sk, v)}
10: initialSlots ← initialSlots ∪ {v}

11: end for
12: constructDAGIter(initialSlots)
13: for all v ∈ in f easibleSlots do backtrack(v)
14: end for
15: return (Vk, Ak )
16: procedure getTrainPathSlots(s, t, δ̌, δ̂)) . Get train path slots from s to a system

node t starting between δ̌ and δ̂
17: . . .

18: end procedure
19: procedure getNextNodes(u, s, t)) . Get next nodes at u on a path from s to t using

nodes from •Sk .
20: . . .

21: end procedure
22: . To be continued in Algorithm 2

Definition 4.2. The graph Dk = (Vk, Ak ) constructed by Algorithm 1 is called the train path
DAG for request k ∈ K of the pruned train path allocation problem. ♣

Such a DAG encodes the solution candidates of the pruned train path allocation problem in the
following way:

Theorem 4.3 A train path p = (v1, . . . , vn) in the macroscopic topology T = (S, E) is a solution
candidate of the pruned allocation problem if and only if (sk, v1, . . . , vn, tk ) is a path in the train
path DAG Dk .





      

Algorithm 2 Train Path DAG Construction, continued
23: . Continuation of Algorithm 1
24: procedure constructDAGIter(slots)
25: nextSlots ← ∅

26: for all v ∈ slots \ (in f easibleSlots ∪ processedSlots) do. Slot v may be reached
via different paths, but need not be reprocessed.

27: processedSlots ← processedSlots ∪ {v}

28: if v = tk then
29: if αv ∈ [•α̌k, •α̂k]τ then
30: Vk ← Vk ∪ {v}

31: Ak ← Ak ∪ {(v, tk )}
32: else
33: in f easibleSlots ← in f easibleSlots ∪ {v}

34: end if
35: else if αv < [•δ̌k, •α̂k]τ then
36: in f easibleSlots ← in f easibleSlots ∪ {v}

37: else
38: for all t ∈ getNextNodes(tv, sk, tk ), w ∈

getTrainPathSlots(tv, t, • β̌v,s, • β̂v,s) do
39: Vk ← Vk ∪ {w}

40: Ak ← Ak ∪ {(v,w)}
41: nextSlots ← nextSlots ∪ {w}

42: end for
43: end if
44: end for
45: if nextSlots , ∅ then
46: constructDAGIter(nextSlots)
47: end if
48: end procedure
49: procedure backtrack(v) . If s is a leaf, recursively remove from DAG.
50: if δ+(v) = ∅ then . No outgoing edges, i.e., leaf?
51: for all w ∈ δ−(v) do . Get parent slots in the DAG.
52: Vk ← Vk \ {v}

53: Ak ← Ak \ {(w, v)}
54: backtrack(w)
55: end for
56: end if
57: end procedure
58: end procedure





      

Figure 13: Train Path DAGs for Different Scenarios in Topology II; red arcs are those recursively
removed from the DAG; vertices are grouped by train path section and vertically
alined from earliest to latest from top to bottom. The labels of the intermediate nodes
follow the pattern
<slot source>_<slot target>_<slot dep. hour>_<slot nb
within hour>_<slot day>
and the the dummy nodes the pattern
<appl. source >_<appl. target>_<appl. nb within
day>_<appl. day>_[start|end].

(a) Train Path DAG for Scenario I (without Earlier Departure)

(b) Train Path DAG for Scenario II (with Earlier Ddeparture)

Source: Own representation

In contrast to (Caimi et al., 2011), a train path DAG is not a resource tree, where every vertex has
only one parent; since for a request k, the path leading to a slot v is irrelevant for the continuation
of the train path; computation space and construction time can be saved by using this compact
representation.

Notice that unit capacity in a train path DAG is virtually associated with vertices (which
correspond to train path slots) and not with the arcs as in the standard multicommodity flow
setting (Barnhart et al., 2000; Caimi et al., 2011) (which correspond to connections between two
consecutive train path slots). However, a train path DAG can be expanded to comply with the
original setting of (Barnhart et al., 2000), where capacities are associated with the arcs of the
DAG. The exposition can be found in Appendix C.





      

4.3 Arc-Node Formulation

The choice of a particular feasible path for an application k can be expressed by assigning binary
flow values xk

a to each arc a ∈ Ak in the expanded train path DAG such that each feasible train
path corresponds to a feasible sk − tk unit flow in the DAG Dk = (Vk, Ak ),

xk
a =




1 if k uses a,

0 else.
, ∀k ∈ K, ∀a ∈ Ak, (18)

Then,

min
∑
k∈K

∑
a∈Ak

ck
a xk

a (19)

subject to

∑
k∈K

∑
w∈δ+

k
(v)

xk
(v,w) ≤ 1, ∀v ∈

⋃
k∈K

Vk, (20)

k∑
w∈δ+

k
(v)

xk
(v,w) −

∑
u∈δ−

k
(v)

xk
(u,v) =




1 if v = sk,

−1 if v = tk,

0 else
, ∀k ∈ K, ∀v ∈ Vk, (21)

xk
a ∈ {0, 1} ∀a ∈ Ak, ∀k ∈ K (22)

where δ+k (v) = {w ∈ Vk : (v,w) ∈ Ak } and δ−k (v) = {u ∈ Vk : (u, v) ∈ Ak }, and the weights ck
a

are associated with the arcs of the train path DAG as follows:

• if a = (sk, v): ck
a = (∆−τ (δv, δk, αk )) ⊕τ (αv 	τ δv) (earliness, plus duration of slot v);

• if a = (v,w): ck
a = (δw 	τ αv) ⊕τ (αw 	τ δw) (effective dwell time from v to w, plus

duration of slot w);
• if a = (v, tk ): ck

a = ∆
+
τ (αv, δk, αk ) (lateness).

Equation (20) ensures that unit capacity of each node (i.e., of each train path slot and dummy
node sk ,tk) is respected by all commodities (i.e., by all train path applications), and Equation (21)
ensures that a flow starts at the source, is conserved along a path and ends at the sink for every
commodity. Notice that an equivalent equation could be written for Equation (20) in terms of
the ingoing arcs instead of the outgoing arcs, and, similarly, slot durations could be added to the
costs of the arc leaving the node (instead of the arc leading to the slot).





      

4.4 Path-Based or Column-Generation Formulation

Alternatively, the feasible sk − tk flows may be (partially) enumerated, which leads to a set P(k)
of feasible train paths. Let the set of all paths be denoted

P =
⋃

k∈K,p∈P(k)

V (p),

where V (p) is the set of vertices in the path p in the train path DAG Dk for which p ∈ P(k)
(which is unique since sk (or tk) in the feasible flow uniquely determines the application k). A
simultaneously feasible solution F ⊆ P of the whole train path allocation problem must contain a
solution candidate for each application k, and every slot must not be used more than once, i.e.,

|F ∩ P(k) | = 1, ∀k ∈ K (23)

V (p1) ∩ V (p2) = ∅, ∀p1, p2 ∈ F . (24)

This corresponds to a stable set (also called independent set) of size |K | in the incidence graph
of simultaneously feasible solutions DP = (P, E(P)),

E(P) =


{p1, p2} :




{p1, p2} ⊆ p(k) for some k ∈ {k1, k2}, or,
V (p1) ∩ V (p2) , ∅



, p1, p2 ∈ P



; (25)

(a stable set F ⊆ P is a set such that no two nodes are adjacent, i.e., p1, p2 ∈ F =⇒ {p1, p2} <

E(P)). Therefore, the set of simultaneously feasible solutions are the stable sets

F (DP) ⊆ IRP =


y ∈ IRP :




xv + xw ≤ 1 {v,w} ∈ E(P),
xv ∈ {0, 1}, v ∈ P






⊆ {0, 1}P. (26)

Notice that

• the sets E(P(k)) of unique choice per commodity k ∈ K , and
• the sets E(P(v)) of train paths containing the same node v ∈

⋃
k∈K Vk ,

are cliques (where P(v) = {p : v ∈ V (p)}, v ∈
⋃

k∈K,p∈P(k) V (p)); (a set C ⊆ P is a clique if
{p1, p2} ∈ E(P) for all p1, p2 ∈ P, p1 , p2).





      

This problem can be encoded as a MIP problem as follows: define the variables

yk
p =




1 if k chooses p,

0 else,




∀k ∈ K, ∀p ∈ P(k). (27)

Then,

min
∑
k∈K

∑
p∈P(k)

ck
p · y

k
p (28)

subject to

∑
k∈K

∑
p∈P(k):v∈V (p)

yk
p ≤ 1, ∀v ∈

⋃
k∈K

Vk (29)∑
p∈P(k)

yk
p = 1, ∀k ∈ K, ∀p ∈ P(k), (30)

yk
p ∈ {0, 1} ∀k ∈ K, ∀p ∈ P(k). (31)

Here, the conflict constraints Equation (29) ensures that every node (i.e., train path slot or dummy
node sk , tk) is used at most once by any commodity k (i.e., train path application), and the
choice constraints Equation (30) ensures that exactly one train path per train path application is
chosen.

4.5 Theoretical and Computational Comparison of the Arc-Node
and the Path-Based Formulation

In order to compare the two formulations, consider the following Example 4.4.

Example 4.4 (Multicommodity). Consider Figure 14: The two applications k1 and k2 request
a train path from A to C. The chosen pruning results in both DAGs having the same shape.
The arc-node model contains 2 · 7 = 14 variables according to Equation (18), one for each arc in
the DAGs, whereas the path-based model contains 3+ 3 = 6 variables according to Equation (27)
(as many as train paths).
There are three flows in each DAG. Consider for instance the first DAG Dk1: assume that all
slots along a train path section have the same duration and that the sequence of slots along (A, B)
is v11, v12, v13 and, along (B,C) the sequence is v21, v22, v23 within [δ̌k1, α̂k2]τ; if the train of
application k1 gets v11, then it could go on with v21 or wait at system node B for v22. The two





      

DAGs Dki = (Vki, Aki ), i = 1, 2, share two train path slots {v12, v22} = Vk1 ∩ Vk2 . However, a
train path slot must not be allocated more than once. To ensure this, the two models contains 10
unit capacity constraints according to Equation (20) and 10 conflict constraints according to
Equation (29), respectively, one for each slot in the DAGs and the dummy nodes (obviously, the
constraints that contain only one term such as those for the dummy nodes could be omitted).
Consider the grey-shaded slot v12: In the arc-node model, the unit capacity constraint for this
slot contains a term for each application whose DAG contains the slot, i.e., 2 in this example;
in the path-based model, the conflict constraint for this slot contains a term for each solution
candidate passing through it in any application’s train path DAG Dki, i = 1, 2, i.e., 1 + 2 = 3 in
this example.
In the arc-node model, there is a flow conservation constraint according to Equation (21) for
all nodes of all DAGs; consider again v12 and the the fat arcs in Figure 14: there are two flow
conservation constraints for v12, one for both applications, i.e., 2 · 6 = 12 in the example. Each of
these constraint has as many terms as parent and child nodes, in total two terms arc in all DAGs,
i.e., 2 · 7 = 14 in total in the example. In the path-based model, there is one choice constraint
according to Equation (30) for each application, i.e., 2 in the example. Both these constraints
contain as many terms as solution candidates in the respective DAG, i.e., 2 · 3 = 6 in total in the
example. ♣

Theoretical and computational results on the structure of the MIP formulations are shown in
Table 4 and Table 5, respectively. The theoretical considerations show that the size of the
arc-node formulation is essentially given by the size of the train path DAGs; the number of
constraints is the total number of nodes and the number of variables is the total number of
arcs. In the path-based formulation, the number of variables is the total number of enumerated
solution candidates, and the number of constraints of order the total number of slots plus the
number of train path applications. The computational results show that the naive approach
of enumerating all solution candidates in the pruned train path DAGs leads to a large number
of variables and a huge number of terms. On the other hand, the path-based approach has
considerably fewer constraints. Hence, for even larger problems than the ones considered, it may
be worthwhile to enumerate only a few selected solution candidates and to add more at need
in a branch-and-price-and-cut approach (Barnhart et al., 2000); to develop such an approach
is beyond the scope of this thesis. The numbers of the real-world data set are also illustrated
in Figure 15: the (full-blown) constraints-variables matrix in the arc-node model is almost
quadratic, whereas, in the path-based model, its height is smaller and its width much larger.
Experiments have shown that, if the pruning and the partial enumeration in the path-based model
are not strict enough, the number of terms in the conflict terms can grow very quickly and
exceed the available memory, while the same pruned problem is still tractable using the arc-node
representation.





      

Figure 14: Example of a Simple Multicommodity Flow Problem of two Train Path Applications.
Two train path DAGs for applications k1 and k2 are shown. Train path slots which
appear in both train path DAGs are linked by a dashed line. Horizontal dashed boxes
are drawn around slots along the same directed train path sections (A, B) and (B,C).

v11 v12

sk1

tk1

v12

sk2

v13(A, B)

(B, C) v21 v22 v22

Dk1
Dk2

tk2

v23

Source: Own representation

Table 4: Theoretical Characteristics of the two MIP formulations in Terms of the Train Path
DAG Dk = (Vk, Ak ).

number of arc-node path-based

variables (18)
∑

k∈K |Ak | (27)
∑

k∈K |P(k) |
unit capacity / conflict constraints (20) |

⋃
k∈K Vk | (29) |

⋃
k∈K Vk |

≤
∑

k∈K |Vk | ≤
∑

k∈K |Vk |

flow conservation / choice constraints (21)
∑

k∈K |Vk | (30) |K |

unit capacity / conflict terms
∑

k∈K |Ak |
∑

k∈K
∑

p∈P(k) |V (p) |
flow conservation / choice terms

∑
k∈K |Ak |

∑
k∈K |P(k) |

Source: Own representation





      

Table 5: Computational Results of the two MIP formulations of the Synthetic Sample Scenario
IV of Example 3.13 and the Real-World Data Set. The table shows the size of the initial
pruned model. The global (hard) bounds (in minutes) are

• synthetic data set: δ− = 0, β = 5 and α+ = 60, and
• real-world data: δ− = 60, β = 10 and α+ = 60.

arc-node path-based

Scenario IV in Sample Topology III (bottleneck with claws, large)

Number of feasible applications: 1’344
Number of variables 120’960 6’720
Number of constraints 150’528 34’944
Number of unit capacity / conflict constraints 33’600 33’600
Number of terms 356’160 120’960
Number of terms in unit capacity/ 114’240

conflict constraints 114’240

real-world data set

Number of feasible applications: 4’218
Number of variables 61’895 160’364
Number of constraints 61’036 19’225
Number of unit capacity / conflict constraints 15’007 15’007
Number of terms 171’602 1’780’940
Number of terms in unit capacity/ 47’812

choice constraints 160’364

Source: Own representation

Section Synopsis and Discussion

The construction of train path DAGs allows to represent the solution candidates of a train path
application in a compact way: a solution candidate is any path in the DAG from the unique root
node (i.e., a node without parents) to the unique leaf node (i.e., a node without children). From
this representation, two MIP formulations can be derived:

• an arc-node formulation, which encodes flow conservation constraints and works well for
the size of problems at hand;

• a path-based formulation, which is based on a (partial) enumeration of train paths and
which does not work well in larger problems if the selection of enumerated solution





      

Figure 15: Graphical Representation of the Computational Results of the Real-World Data Set of
Table 5: the numbers of variables and constraints are drawn proportionally against
the number of constraints.

(a) arc-node model

co
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tra
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ts

variables

unit capacity constraints

flow conservation 
constraints

(b) path-based model

conflict constraintsconstraints

variables

Source: Own representation

candidates is not well controlled; however, for even larger problems, it may be worthwhile
to apply a branch-and-price-and-cut approach (Barnhart et al., 2000).

The theory developed in this section easily allows for other cost functions c : (p, k) 7→ ck
p than

the linear one suggested:

• in the arc-node formulation (19), the cost of a feasible train path is summed over costs
associated with arcs in the train path DAG, i.e., with slot–slot, source–slot and sink–slot
connections,

• in the path-based formulation (28), no restriction is imposed at all on the structure of the
cost function c : (p, k) 7→ ck

p .

It is beyond the scope of this thesis to discuss such alternative objective functions.





      

5 A Worfklow for the Train Path Allocation Problem

With the twoMIP formulations of the train path allocation problem at hand, what are the activities
to solve the train path allocation problem? Which activities can readily be implemented in
software and where is human interaction necessary at the present stage of research?

Section Outline

First, a semi-automatic workflow will be presented that will allow an operations research expert
to solve a train path allocation problem. Furthermore, a train path application problem can be
infeasible because individual train path applications are infeasible or because it is not possible
to find an allocation satisfying all applications. Infeasible applications are detected when their
DAG is constructed; an IIS analysis allows to find a set of dead-locked slots and applications.
The reporting of these issues is part of the output of the train path allocation workflow.

5.1 A Semi-Automatic Workflow for the Train Path Allocation
Problem

Figure 16 gives a semi-automatic workflow for the train path allocation problem; a command
line tool has been implemented with the following features:

• input data: the train path catalogue and the train path applications are stored in a
spreadsheet file (whose sheet and column layout can be configured in the tool); the train
path catalogue and the train path applications are periodical referring to the same planning
horizon and have a periodicity over the week; these applications and slots are “flattened”
into simple periodical slots and applications, one per (requested) service day (see above
Figure 10(c));

• hard bounds: the applications’ maximum earlier departure and maximum later arrival and
the catalogue’s dwell times are specified globally; they are not specified in the spreadsheet,
but are given as global parameter via a command line option; they were not present in the
real-world data set;

• subproblem choice: a subset of unsatisfied train path applications can be chosen by a
pattern specifying a set of periodicities to select the corresponding train path applications;

• initial pruning: the initial pruning parameters are set to default values; in case of
infeasibility with these default values, the initial pruning parameters are determined from





      

Figure 16: A Semi-Automatic Workflow for the Train Path Allocation Problem (UML 2.0
Activity Diagram). The dashed parts are not implemented and intervention by an
operations research expert is required.
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an earliest path heuristic within the requested bounds and global minimum dwell time
or within the requested bounds enlarged by the global maximum earlier departure and
maximum later arrival bounds; geographical constraints have not been implemented;

• partial allocation: instead of reporting infeasibility, infeasible applications may optionally
be removed from the allocation problem when their DAG is constructed and found
infeasible;

• MIP model: whether the path-based or the arc-node model should be used, can be specified
by a command line option; the model is passed to a Gurobi solver (Gurobi Optimization,
Inc., 2015);

• allocation: train path slots which have been allocated and train path applications which
have been satisfied are simply marked in the spreadsheet file and will be filtered out if the
file is taken again as input when the next subproblem is dealt with;

• pruning: the choice of new pruning parameters in case of infeasibility has not yet been
implemented (dashed line in Figure 16); this will be the topic of the in Subsection 5.2;

• statistical information: in the current state of the implementation, statistical information
has to be interpreted by an operations research expert:

– computational information: web pages displaying the train path DAGs (with those
nodes and arcs that are recursively removed) are produced and lists containing
information on the models and DAGs (such as number of constraints, number of arcs,
initial pruning parameters per system node) are compiled; further information (such
as computation times) can be found in the log file;

– infeasibility: a so-called IIS analysis is performed and the result is displayed (see
Section 5.2);

– commercial information (such as comparing individual best-cost against the effective
cost of the found in the overall allocation) is not yet compiled in the implementation.

For more details, refer to the command line options listed in Appendix B and the list of used
technologies in Appendix A.

5.2 Identifying the Source of Infeasibility of a Train Path
Allocation Problem

Although all individual applications may be feasible (this is the case if there is at least one
path from sk to tk in the corresponding train path DAG), the allocation problem of finding an
allocation for all applications may still not be feasible. In the case of infeasibility, how can useful
information be derived from the model in order to proceed in the assignment process? This is
the situation of the dashed arrow at the bottom of Figure 16.





      

An approach comes from the observation that the allocation problem is infeasible if a single train
path slot is used in all solution candidates of several requests; and, similarly, if two train paths
slots are used in every combination of solution candidates of three requests. These observations
motivate the following definition (SAS Institute Inc., 2009).

Definition 5.1 (Irreducible Infeasible Set (IIS)). An irreducible infeasible set (IIS) is an in-
feasible subset of constraints that become feasible if any single constraint or variable bound is
removed. ♣

Notice that it is possible to have more than one IIS in an infeasible problem, i.e., an IIS gives
a partial explanation of the problem’s infeasibility and reflects the current state of the solver’s
solution procedure. Commercial solvers such as Gurobi (Gurobi Optimization, Inc., 2015) can
provide an IIS in the case of model infeasibility.

Definition 5.2 (IIS Train Path Slots, IIS Train Path Applications). A constraint of an IIS
falls in one of three categories:

• it corresponds to a unit capacity constraint (20) or conflict constraint (29) of a train path
slot: the corresponding train path slots are called IIS slots for the IIS;

• it corresponds to a flow constraint (21) or path choice constraint (30) of a train path applica-
tion: the corresponding train path applications are called IIS train path applications
for the IIS;

• it corresponds to a flow constraint (21) or path choice constraint (30) of a dummy node sk

or tk in the train path DAG. ♣

This definition allows to locate the source of the infeasibility.

Example 5.3 (IIS Analysis in Scenario III (Conflict)). Consider again Example 3.12. Here,
the demand of 4 services per hour is larger than the available services (which is only 3 services
per hour). In case of infeasibility, the automatic IIS analysis locates the source of infeasibility as
shown in the output of Figure 17: the Gurobi solver detects infeasibility and gives a list of 19
constraints which form the IIS. From this list, 4 applications and 3 slots are identified from 16
flow conservation constraints and 3 unit capacity constraints. ♣

Based on an IIS analysis, a re-pruning heuristic could be developed as follows:

1. feasibility check on the subproblem of IIS applications: Is the (unpruned) allocation
problem restricted to the IIS applications feasible? If not, the whole allocation problem is
infeasible. This subproblem might be large and thus this check might not be practically
tractable.





      

Figure 17: IIS Analysis Output for Scenario III (Conflict) in an Arc-Node MIP: the IIS contains
19 constraints, 16 of which are IIS application constraints and 3 are IIS slot constraints.
They map to 4 applications and 3 slots. Interpretation: there are only 3 slots at the
bottleneck train path section (M2, M1) per hour and direction, but 4 applications per
hour and direction requiring the bottleneck.

Before optimization: model has 19824 constraints and 16128 variables
Optimize a model with 19824 rows, 16128 columns and 44352 nonzeros
Variable types: 0 continuous, 4032 integer (4032 binary)
Root relaxation: infeasible, 2801 iterations, 0.02 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/ode Time

0 0 infeasible 0 − infeasible − − 0s
Explored 0 nodes (2801 simplex iterations) in 0.37 seconds
The model is infeasible; computing IIS
Computing Irreducible Inconsistent Subsystem (IIS)...

Constraints Bounds Runtime
Min Max Min Max

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 19824 0 32256 0s
IIS computed: 19 constraints, 0 bounds
IIS runtime: 0.25 seconds
The following constraint(s) cannot be satisfied:
Found IIS constraint fc|D1_B1_005_4|D1_B1_005_4_end
Found IIS constraint fc|D1_B1_005_4|M1_B1_05−002_4
Found IIS constraint fc|D1_B1_005_4|M1_B1_06−001_4
Found IIS constraint fc|D1_B1_005_4|M1_B1_05−003_4
[...]
Found IIS constraint ucc|M2_M1_05−002_4
Found IIS constraint ucc|M2_M1_04−003_4
Found IIS constraint ucc|M2_M1_05−001_4
Found 3 IIS slots and 4 IIS train path applications:
IIS slot #M2_M1_05−001_4 [Do 05:00:00,Do 05:20:00], (M2, M1)
IIS slot #M2_M1_04−003_4 [Do 04:40:00,Do 05:00:00], (M2, M1)
IIS slot #M2_M1_05−002_4 [Do 05:20:00,Do 05:40:00], (M2, M1)
IIS train path application #C1_A1_005_4 [Do 04:00:00,Do 05:30:00], (C1, A1)
IIS train path application #D1_A1_005_4 [Do 04:00:00,Do 05:30:00], (D1, A1)
IIS train path application #C1_B1_005_4 [Do 04:00:00,Do 05:30:00], (C1, B1)
IIS train path application #D1_B1_005_4 [Do 04:00:00,Do 05:30:00], (D1, B1)





      

2. relaxation of pruning: increase the maximum dwell time, later arrival and earlier departure
step-wise for all applications whose DAG contains an IIS slot until new slots have been
added at some of the train path sections of the IIS slots.

3. warm start: solve the updated problem; if it is infeasible, go back to the first step and loop
until either an infeasible subset of applications is found or the problem is solved.

Feedback to planners could be based on the following ingredients:

1. list of infeasible train path allocations: the train path allocations need to be checked against
the train path catalogue;

2. list of IIS applications and slots identified recursively by removing one of the IIS application
constraints until the remaining subproblem problem is feasible: in this case, the applications
need to be modified or rejected or the catalogue needs to be modified.

Section Synopsis and Discussion

In case of infeasibility, an IIS analysis allows to identify the source of infeasibility in terms of the
train path catalogue and train path applications. However, at the present stage of development,
this information has to be compiled and interpreted by an operations research expert to make it
accessible to domain-expert in timetable planning or to applicants.

6 Conclusion

6.1 Short Summary

In this thesis, a mathematical formulation of the train path allocation problem has been proposed
and two MIP formulations have been given and discussed and proven to be applicable to the size
of a real-world data set. The pivotal element is the concept of train path DAG, which allows to
represent the possible train paths of a train path application of a (pruned) allocation problem.
Furthermore, a tool has been implemented which allows to deal with train path allocation in an
interactive, iterative and open approach and is able to visualise topologies, train path DAGs and
lists with pruning parameters for infeasibility analysis.





      

6.2 Further Research

Although a first step has been made, a lot of theoretical, algorithmic and commercial questions
remain open in the proposed model and algorithms:

• cost functions and service levels: instead of a linear cost function as suggested, other cost
functions could be implemented, e.g., earliness and lateness could be penalised by an
exponential function and they could be weighted (see service levels below);

• interfacing: for requests coming from outside or going into the defined macroscopic
topology, interface points and times could be calculated;

• microscopic scheduling, in particular in system nodes: it should be verified whether the
allocations are conflict-free at the microscopic level and whether they are robust;

• improved pruning: in the case of infeasibility, an automatic choice of pruning parameters
should be implemented;

• modelling: system node capacity constraints and crossing constraints at system nodes
could be added to the model;

• different standardised speed levels could be defined in the train path catalogue and the
train path applications;

• train path allocation with periodicity should be worked out in detail and implemented;
• train categories: different train categories reflecting different speed characteristics are not
reflected in the train path slot catalogue; as suggested above, a simple approach would be
to design the train path slot catalogue (still conflict-free at the macroscopic level) with a
slot set for each category;

• exclusive alternatives in the train path slot catalogue: for instance, in order to model
alternatives for different train categories or different directions on the same tracks, conflict-
freeness at the macroscopic level would have to be dropped and exclusion-constraints
would have to be introduced in the model; an appealing feature of the current approach is
that such constraints are not necessary;

• hierarchical decomposition: a subproblem could be split into subproblems which are
solved sequentially in a divide-and-conquer approach, for instance based on periodicity
(see Appendix D) or on service levels; decomposition could be further refined using:

– automatic application splitting: in the case of infeasible repeated periodical applica-
tions, an automatic split of the application into two independent applications could
be implemented;

– warm start of iterations: allocated train path slots from previous subproblems could
be taken as flexible and used as initial solutions (such that the overall solution quality
may be improved);

• commercial definition of service levels with corresponding slot bounds, cost functions,





      

and monetary pricing;
• the strength of the MIP formulation should be analysed;
• a column generation approach with pricing could be applied in order to deal with large-scale
models.
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A Used Technologies

The technologies used in the implementation are listed in Table 6. The 3rd-party Maven
Dependencies and their License are listed in Table 7,
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Table 6: Used Technologies

Technology Description

MacBook Pro, i5 2.53 GHz, 8 GB RAM Hardware
Gurobi Optimizer 6.5.0 Linear programming solver
IDEA IntelliJ (Community Edition) 14 Java IDE
Oracle JDK 1.7.0_79 incl. VisualVM Java Development Kit,

VisualVM for performance analysis
Apache Maven 3.3.3 Build tool
SonarQube 5.1 Codequality analysis

d3js 3.5.6 Graphs and matrices
Datatables 1.10, Bootstrap 3.3 Data tables

OmniGraffle Pro 4.2.1 Vector graphics
TeXShop 3.18 Typesetting
LaTeXiT 2.5.2 Mathematical formulae in vector graphics

Source: Own representation

Table 7: Used 3rd-Party Libraries

GroupId ArtifactId Version Type License

commons-cli commons-cli 1.3 jar Apache License 2.0
commons-io commons-io 2.4 jar Apache License 2.0
com.google.guava guava 19.0 jar Apache License 2.0
joda-time joda-time 2.8.1 jar Apache License 2.0
junit junit 4.12 jar Eclipse Public License 1.0
org.apache.commons commons-lang3 3.4 jar Apache License 2.0
org.apache.logging.log4j log4j-api 2.3 jar Apache License 2.0
org.apache.logging.log4j log4j-core 2.3 jar Apache License 2.0
org.codehaus.plexus plexus-utils 3.0.20 jar Apache License 2.0
org.joda joda-convert 1.7 jar Apache License 2.0
org.json json 20140107 jar The JSON License
org.mockito mockito-all 1.9.5 jar The MIT License

Source: Own representation
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B Command Line Interface

The command line options of the implementation are listed in Table 8.

C Train Path DAG Expansion

The standard formulation of multicommodity flow problems is to impose capacity constraints on
the arcs instead of nodes (Barnhart et al., 2000). The following construction shows that a train
path DAG can be expanded to a new DAG whose arcs have unit capacity, complying with the
original setting. An example of such an expansion is shown in Figure 18: the nodes (apart from
the source and target dummy nodes) correspond to train path slots or slot-slot-connections; on
the other hand, the arcs have no real-world semantics in this representation.

Definition C.1. LetDk = (Vk, Ak ) be train path dag for request k. The expanded train path
DAG E (Dk ) = (E (Vk ), E (Ak )) defined as follows:

• Vertices E (Vk )
– sk, tk ∈ E (Vk )
– for v ∈ V : two vertices vin, vout ∈ E (Vk )

• Directed edges E (Ak ):
– for v ∈ V : (vin, vout ) ∈ E (Ak )
– for (v,w) ∈ Ak: e ∈ E (Ak ) where

∗ if v,w ∈ V : e = (vout,win)
∗ if v = sk,w ∈ V : e = (sk,win)
∗ if v ∈ V,w = tk: e = (vout, tk ) ♣

Example C.2 (Expanded Train Path DAG in Scenario I (without Earliness)). The expanded
train path DAG of Figure 13(a) is shown in Figure 19. ♣

D Periodical Train Path Allocation with Periodicity

A train path slot typically operates on a specific pattern of days of service in a week, and a
train path application may ask for a set of days of service. Such a periodicity is captured in the
following definitions.





      

Table 8: Command Line Options

Command Line Option Description

-clean start with empty allocation
-cleanoutput delete dthe output dir
-confighelp show file format configuration

options and terminate
-file <file> input file
-globalHardMaximumEarlierDeparture <nb> global hard maximum earlier

departure (minutes) (default
value: 0)

-globalHardMaximumLaterArrival <nb> global hard maximum later
arrival (minutes) (default
value: 0)

-globalHardMinimumDwellTime <nb> global hard minimum dwell
time (default value: 0)

-ignoreinfeasibleapps ignore infeasible train path
applications and try to
allocation feasible applications

-help show this help message and
terminate

-output <file> output directory (default value:
output)

-pathbased use path-based model, default
is arc-node model

-properties <file> properties file (in ISO 8859-1
encoding)

-requestfilter <pattern> Pattern of the form
01??000 (default value: ???????)

-showconfig show effective file format
configuration

-skipweboutput do not create html pages (may
save time)

Source: Own representation





      

Figure 18: Illustration of Train Path DAG Expansion: dashed arrows show the expansion for
some elements of the train path DAG.
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Figure 19: Expanded Train Path DAGs for Scenario I (without Earliness).

Source: Own representation





      

Definition D.1 (Periodicity). Let T ∈ IR be a positive number and let N ∈ IN be a positive
integer. Let (T, N ) be called periodical time frame representing the time frame [0, τ[,
τ = N · T . A set Π ⊆ {1, . . . , N } is called a periodicity in the periodical time frame (T, N ) ♣

Definition D.2 (Train Path Slot with Periodicity). A train path slot with periodicity in a
macroscopic railway topology T = (S, E), with respect to a periodical time frame (T, N ) is a
quintuple v = (sv, tv, δv, αv, Πv) where

• (sv, tv, δv, αv) is a train path slot such that δv, αv ∈ [0,T[,
• Πv ⊆ {1, . . . , N } is a periodicity in (T, N ). ♣

In the same way, train path applications with periodicity can be defined.

Definition D.3 (Train Path Catalogue with Periodicities). A train path catalogue with
periodicity in a macroscopic railway topology T = (S, E) is a finite set V of train path slots
with periodicity with respect to a common periodical time frame (T, N ). ♣

In this setting, three approaches are possible:

1. flat allocation: if different allocations on different days of service are acceptable, a simple
train path slot can be introduced for all |Πv | days of service:

vi = (sv, tv, [δv + (i − 1) · T] , [αv + (i − 1) · T mod (N · T )]) , ∀i ∈ Πv, (32)

and the same rationale can be applied to train path applications with periodicity; then the
model for the simple train path allocation case can be used as described in this thesis;

2. penalise differences: if different allocations on different days of service are acceptable but
undesirable, then such combinations could be penalised in the objective function;

3. hard constraints: if different allocations on different days of service are not acceptable, the
approach for simple train path allcation of this thesis has to be modified as sketched here:
a) for all applications k ∈ K , construct the train path DAG for a prototypic day i ∈ Πk

of service using a filtered catalogue Ṽ k = V k
i ∪ V k

i−1 ∪ V k
i+1,

• V k
i = {v ∈ V : Πv ⊆ Πk }: V k

i contains only those slots that are available on all
requested days of service,

• V k
i−1 = {v ∈ V : j − 1 ∈ Πv for all j ∈ Πk }: V k

i−1 contains only those slots that
are available on all days previous to a requested day of service,

• V k
i+1 = {v ∈ V : j + 1 ∈ Πv for all j ∈ Πk }: V k

i+1 contains only those slots that
are available on all days following a requested day of service;

b) replace vi by v in the train path DAG;





      

c) introduce unit capacity and conflict constraints only for requests whose periodicity
have one requested day of operation in common (i.e., for k, k′ such that Ṽ k ∩ Ṽ k ′ , ∅);

this approach ensures that the train path DAGs encode train paths that work on all requested
days of operation and that the MIP works on the slots and applications with periodicity
(the details ensuring that the same slot with periodicity can be used by several applications
with disjoint periodicities are omitted here); this approach has to assume that train paths
only use Ṽ k , but it allows to extend the theory developed in this thesis to periodical train
path allocation with periodicity.

Notice that periodicities are partially ordered by set inclusion. Therefore, a sequence of
subproblems can be determined by topological sorting; such a hierarchical decomposition
approach could allow to keep the mathematical optimisation problem tractable. Also notice that,
in case of infeasibility, the periodicity could be split into two subsets, resulting in two independent
applications (a semi-flat approach) and deviations between services could be penalised in the
objective function. However, these ideas are not formalised nor implemented in this thesis and
remain to be worked out in detail.
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