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1 Introduction

Public transit is a significant transport mode worldwide but still faces some challenges. On the
one hand, from passenger’s perspective, issues such as detouring, the uncertainty of wait time
and frequent transfers makes public transit inconvenient or unattractive. On the other hand, from
operator’s perspective, low occupancy may lead to economic loss. With the development of
autonomous vehicles (AVs), public transit may step into a new era. Some researchers treated
AVs as an application of shared economy and a promising alternative to conventional taxi
service. They simulated AVs as shared autonomous vehicles (SAVs) with agent-based modeling,
a dynamic door-to-door ride-sharing service. Several simulations of SAV were recently done for
Austin (Fagnant and Kockelman, 2015b), Berlin (Maciejewski and Bischoff, 2017) and Zurich
(Boesch et al., 2016) among others. Some researchers argued that AV may become a substitute
for conventional public transit, which offers dynamic, reliable and comfortable stop-to stop
service. Some simulated the personal rapid transit (PRT), which offers stop-to-stop service on
demand with a single passenger on board. For example, Chebbi and Chaouachi (2015) simulated
PRT with agent-based modeling. In this thesis, the autonomous transit on demand (ATOD)
system is implemented, simulated and analyzed, which consists of stop-to-stop shared rides
in minibuses following dynamic routes and responding to requests. The difference and the
relationship of the private autonomous vehicle (PAV), SAV, PRT and ATOD can be found in
Fig. 1.

Figure 1: The definition of PAV, SAV, PRT and ATOD based on vehicle occupancy and type of
origin and destination

1
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AV is widely acknowledged as potential future transport mode which may start a new revolution
of public transport. From the point of view of transport, the main difference between AV and the
traditional vehicle is that AV can be precisely and centrally controlled. First, Human drivers vary
in driving behaviors, which is influenced by both internal physical and external environmental
factors. Therefore it is always difficult to simulate and predict the actual traffic situation precisely.
Nevertheless, AV is controlled by the machine with few variance of traffic behavior. From a
microscopic point of view, precisely controlled AV will increase the capacity of the road through
avoiding stop-and-go traffic, interactive intersection without the fixed traffic light, platooning,
etc., which are impossible for human drivers due to safety issues. From a macroscopic point
of view, AV enables dynamic, precisely and real-time network control and prediction, offering
more reliable public service with more flexibility. Second, the simulation of transit on demand
can also be implemented theoretically with human-driven vehicles, but the human drivers can
hardly be controlled by centralized system precisely for the optimization of system performance.
Nowadays, services such as Uber or other dynamic ride-sharing software offers similar service as
PAV or SAV with the human driver, but these platforms cannot replace public transport service.
One reason is that drivers always try to maximize the profit of themselves, which may harm the
systematical benefit. For example, some rural area cannot be covered by this service because
the cost is too high for drivers to benefit from such journey. Also, different drivers have their
criteria for accepting the request, which is not as reliable and predictable of public transport. The
intervention of various travel behavior may lead to a more various and unpredictable performance
of the system. The Uber equilibrium can reach user equilibrium but hardly reach the system
optimal, where the benefit of some vehicles may be sacrificed. Therefore, it is convincing that
the dynamic transit on demand should be introduced into cities with AV but not the vehicle with
human drivers.

For the policy makers and operators, optimal fleet size and deployment strategies are the main
concerns. Several studies are conducted to define optimal fleet size with both analytical and
simulation approaches. (See more details in Section 2) However, few researchers consider the
influence of fleet size and deployment strategies on vehicle occupancy, which is one of the
crucial characteristics of public transit. The thesis explores the optimal fleet size and deployment
strategies of ATOD, considering the benefit of ride sharing. The purpose is to help operators,
authorities and planners decide the appropriate fleet size and the deployment strategies of ATOD
to satisfy the demand with high-occupancy vehicles. In addition, Sioux Falls scenario is selected
in the thesis, which is an easy-computing but complete enough scenario for a meaningful and
reasonable result. The base scenario together with tested scenarios of different input population
file and different AV-related parameters are simulated for Sioux Falls, aiming at exploring the
sensitivity and robustness of the model and the influence of different parameters on the result.

2
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The thesis will be structured as follows: Section 1 is a brief introduction ; Section 2 will review
the previous research on AV and optimal fleet size; Section 3 introduces the framework of the
simulation, including the introduction to the selected simulation platform and corresponding
extension, MATSim (Multi-agent Travel simulator) and DRT (Demand Responsive Transit), and
the overview of the simulation; Section 4 shows in details the implementations of the project,
on-demand vehicles deployment, two new modes: new DRT call and DRT request, the incentive
to limit the fleet size, a cost-based routing module, as well as the modification of existing
modules, such as walking scoring function, dwelling time and request accepting constraints;
Section 5 introduces the overview of simulated scenarios with different configurations for the
project; Section 6 analyzes the result of different scenarios from the perspective of computation
time, mode share, score, the experience of passengers, number of passengers per vehicle, vehicle
occupancy, fleet size and fleet deployment; Section 7 concludes and discusses the possible
improvement of the project and the potential future development of ATOD.

3
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2 Literature review

2.1 Autonomous vehicle(AV)

Figure 2: Definition of Levels of Automation in SAE International Standard J3016

Source: SAE International Standard J3016

According to Fig. 2 (SAE, 2014), vehicle can be defined at six different levels from level 0
(no-automated) to level 5 (full-automated). Vehicles with level 3, where the driving mode-specific
performance by an automated driving system of all aspects of the dynamic driving task with
the expectation that the human driver will respond appropriately to a request to intervene, or
higher levels are regarded as AV. People have been dreaming of AV for a long time, but the
achievement was never as close as nowadays. With the availability of accumulated research
on computer vision technology, the booming in the high-speed processor (Sun et al., 2006),
and the increasingly hot transport issues, the autonomous vehicle becomes the favorite topic
of technology companies. Both conventional vehicles manufactures, such as Mercedes Benz
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and Ford, and information technology companies, such as Google and Apple, see great market
potential and benefit of AV in the near future. Motivated by the approaching autonomous vehicle,
relevant authorities all over the world are preparing for the revolution of transport. Studies show
that AVs have the potential to (Fagnant and Kockelman, 2015a):

• reduce traffic accidents
• alleviate traffic congestion and fuel consumption
• generate new traffic demand and VMT (Vehicle Miles Traveled), especially for kids and
elderly people

• release parking-occupied urban space

Considering the possible profound influence of AV on transportation, numerous studies looked
at AV from the perspective of transport with both analytical and simulation approach. In spite
of the importance of the microscopic simulation of AV, such as for platooning and interactive
intersection, the thesis only review the most relevant area, macroscopic city-scale simulations
with agent-based modeling.

Some studies begin to build up a macroscopic simulation framework of AV. Azevedo et al.
(2016) proposed several extensions at the short-term and midterm levels to model and simulate
autonomous vehicle system and its effects on travel behavior in Singapore using SimMobility.
Carlino et al. (2012) demonstrated a simple application using AORTA through an experiment
testing intersection policies for AV at a city-wide scale. Maciejewski and Nagel (2011) presented
the idea and the initial outcomes of DVRP (Dynamic Vehicle Routing Problem) Optimizer
in MATSim. Several studies were conducted to show the above mentioned future effects of
AV on transport. Some people claimed that SAV may alleviate congestion. Maciejewski and
Bischoff (2017) pointed out that large fleets operating in cities may have a positive effect on
traffic if road capacity increases accordingly using agent-based model MATSim. Levin et al.
(2016) concluded an opposite argument with a dynamic traffic assignment (DTA) simulator
using the cell transmission model (CTM), where SAVs can cause significant congestion because
of the additional trips made to reach travelers’ origin. Bösch et al. (2017) also worried that
the introduction of AV may have a negative influence on the accessibility of transport system.
Liu et al. (2017a) suggested that the lower fare of SAV increase the number of empty vehicles,
which may turn a congested city to a far more congested city. Bischoff and Maciejewski (2016)
contradict Levin’s opinion and show that higher congestion effects are not necessarily expected
to occur despite the increase of the total travel time due to empty trips, which is compensated
by more fluent traffic flow and no parking search. Besides, Fagnant and Kockelman (2014)
stated that the overall emission savings of SAVs can be sizable due the quick fleet turnover. To
conclude, whether AV will reduce congestion and emission is still controversial, and reducing
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empty kilometers traveled of AV might release traffic congestion.

2.2 Optimal fleet size and deployment

Apart from solving existing on-road problems, from a long-term point of view, AV is a possible
substitute for the private vehicle, which occupied vast amounts of urban space. In the future, a
single AV may replace several private vehicles, as a result, a huge number of parking areas could
be reused for better urban quality. Therefore, AV is widely simulated as SAV. The replacement
rate as well as the optimal fleet size to satisfy traffic demand attracts attention.

Hörl et al. (2017) simulated SAV in Zurich and found that different dispatching and rebalancing
algorithms give rise to a variable result of fleet sizes, waiting times and fleet occupancy. Zhu
and Kornhauser (2017) conducted a similar project in New Jersey and found that repositioning
vehicles locally can decrease the fleet size significantly, maintaining a high level-of-service(5
minutes departure delay). Zhu and Kornhauser (2017) also simulated AV as ATOD but did not
take dynamic ride sharing into consideration. Fagnant et al. (2015) studied SAV’s replacement
of conventional vehicles applying the best-performed relocation strategy from his previous
research (Fagnant and Kockelman, 2014) and the study shows that each SAV can replace around
eleven conventional vehicles. Brownell and Kornhauser (2014) calculated the greatest number
of vehicles among 48 30-min segments as the optimal fleet size with two different rebalancing
strategies. These papers more or less focus on the influence of pre-defined rebalancing strategies
on the AV fleet size. Aside from simulation studies, some researchers also solved the optimization
of fleet size from an analytical perspective. Spieser et al. (2016) assessed the optimal fleet size,
taking the cost of vehicles, customer walk access and the expense of moving empty vehicles into
account. Li et al. (2010) calculated optimal fleet size with a cost effectiveness analysis.

6
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3 Simulation framework

3.1 Simulation platform

The optimal fleet size and deployment problem with dynamic ride-sharing and individual travel
behavior require complicated real-time matching (dispatching algorithm) of AV and passengers,
which is not easy to solve with an analytical approach and conventional transport models.
Therefore, the simulation is based on existing DRT (Demand Responsive Transit) contrib of the
Multi-agent Travel simulator (MATSim). Contribs is the name for extensions in MATSim.

MATSim is chosen as the simulation platform for the project because:

• MATSim is agent-based which can simulate real-time dynamic matching problem of
millions of agents.

• NP-hard optimization problem under specific constraints can be approached with the
co-evolutionary algorithm of MATSim.

• MATSim is applicable for large-scale macroscopic simulations with a massive amount of
individual travelers.

• MATSim is expendable and modularized, where modification and new implementation
can be easily adapted to the existing system.

• Several extensions to simulate dynamic ride-sharing and ATOD are available in MATSim.

3.1.1 Introduction to MATSim

Figure 3: MATSim loop

scoring
initial 

demand

execution 

(simulation)
analyses

replanning

Source: Horni et al. (2016)
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MATSim is an activity-based, extendable, open-source multi-agent simulation framework
implemented in Java. (Horni et al., 2016) A typical MATSim loop consists of initial demand,
simulation, scoring, replanning and analyses and the loop will be iterated during simulation.
During the iterations, with the co-evolutionary algorithm, each agent will optimize their score
individually and reach an equilibrium. (Horni et al., 2016) It is noted that normally MATSim
simulates the traffic behavior of a single day.

Figure 4: Typical plan in MATSim

<person id="10012_2">

<attributes>

<attribute name="age" class="java.lang.Integer" >26</attribute>

<attribute name="carAvail" class="java.lang.String"

>always</attribute>

<attribute name="employed" class="java.lang.Boolean" >true</attribute>

<attribute name="sex" class="java.lang.String" >f</attribute>

</attributes>

<plan score="19.704615430161144" selected="yes">

<activity type="home" link="109283506_1" facility="5821_18"

x="686463.2969000004" y="4824239.2903" end_time="08:21:24" >

</activity>

<leg mode="drt" trav_time="00:05:48">

</leg>

<activity type="work" link="238014193_0" facility="7540_16"

x="684918.0522999996" y="4823849.636299999" start_time="07:14:19"

end_time="17:29:58" >

</activity>

<leg mode="drt creation" trav_time="00:06:33">

</leg>

<activity type="home" link="109283506_1" facility="5821_18"

x="686463.2969000004" y="4824239.2903" >

</activity>

</plan>

</person>

Source: Sious Falls scenario

Initial demand Distinct from traditional assignment platform, such as PTV Vissum, initial
demand in MATSim is not a zone-based OD matrix, but agent-based activity chains. The
activity chains are usually derived from empirical data through sampling or discrete choice
modeling.(Horni et al., 2016). As depicted in Fig. 4, activity chain consists two parts, leg
and activity. Activity describes the purpose of the trip and leg includes transport mode, travel
time, departure time, etc.. Besides, the score is recorded after each iteration to estimate the
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performance of each activity chain. In addition, a typical plan in MATSim also contains the
socio-demographic information of the agent, such as age, car availability, employment and sex.

Execution Mobsim (Mobility simulation) is a core part of MATSim, although different traffic
model can be installed for different simulation purpose. Default QSim, which applies for
queue-based traffic flow model, is enough for the large-scale macroscopic simulation. At the
beginning of the simulation, each agent will choose a plan from their memory depending on
the executed score of plans from previous iterations. The selected plan will be executed and
evaluated for the current iteration with QSim.

Figure 5: Typical converged score curve

Source: Sioux Falls scenario

Scoring and replanning After simulation, the performance of each agent will be evaluated
during scoring and the plan will be modified accordingly during replanning. The normal scoring
function is the sum of the linear positive utility function of activity, negative utility function of
leg and customized event-based scoring. Several replanning strategies with different weights
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can be defined in the configuration to modify respectively routing, transport mode, departure
time, destination etc.. For a simulation, normally two or more strategies will be defined and
the weights indicate the proportion of plans following different strategies. Each agent will store
a specific number of plans and the worst-performed plan will be obsolete once the memory is
full. Innovation in MATSim means whether to choose new plans from memory. Before turning
off innovation, agents can try any plan under the condition of the replanning strategies; while
after turning off innovation, agents must select plans from their memory and update the score
of existing plans. After an adequate number of iterations, the scoring function should have
converged and the system will reach its equilibrium. Fig. 5 shows a typical converged score curve.
This iterative scoring and replanning process is important components of the co-evolutionary
algorithm in MATSim.

3.1.2 Introduction to DRT contrib

Several extensions to simulate AV are available in MATSim, DRT (Demand Responsive
Transit), DVRP (Dynamic Vehicle Routing Problem) and taxi contrib. DVRP is a simulation
framework which can be described as the Dynamic Multi-Depot Vehicle Routing Problem with
Time Windows and Time-Dependent Travel Times and Costs (Maciejewski and Nagel, 2011).
Compared to the normal population agent, the dynamic agent in DVRP can modify its dynamic
activity chain during the day. On the basis of DVRP, taxi extension and DRT extension (also
called taxibus extension) were developed. DRT contrib is an extension of MATSim which allows
to serve several passengers on board at the same time (Bischoff et al., 2016). Compared to other
existing contribs in MATSim, the simulation of ATOD is close to the simulation of taxibus in
the DRT contrib, where minibuses with dedicated stops, centralized dispatching algorithm and
dynamic ride-sharing have already been successfully implemented. The DRT in MATSim is a
transport simulation system, which can switch between stop-to-stop service and door-to-door
service.

Vehicle DRT contrib needs to import vehicle file into the simulation. Although in ATOD
simulation, initial fleet size is zero and vehicles are generated during simulation, the attribute of
generated vehicles are still the same, which contains vehicle ID, capacity, service begin and end
time and start link.

Transit schedule In DRT contrib, minibuses travel dynamically among existing transit stops,
therefore transit stops file should be input in the simulation framework. Different from
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conventional PT transit schedule, only stop facilities is needed as an input of simulation. The
origin and destination of DRT routing will be constrained to the location of the stop facilities.

Figure 6: Input transit schedule file in DRT contrib

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE transitSchedule SYSTEM

"http://www.matsim.org/files/dtd/transitSchedule_v1.dtd">

-<transitSchedule>

-<transitStops>

<stopFacility linkRefId="127" y="-600" x="0" id="1"/>

<stopFacility linkRefId="152" y="-200" x="800" id="2"/>

<stopFacility linkRefId="217" y="-600" x="200" id="3"/>

<stopFacility linkRefId="240" y="-400" x="400" id="4"/>

</transitStops>

</transitSchedule>

Source: DRT contrib

3.2 Simulation framework

As shown in Fig. 7, in the DRT module, a typical user goes first to the closest transit stops,
submits a travel request upon arrival and waits for a minibus. Among all the available minibuses,
the request will be dispatched to the one with least time loss, taking both pick-up time loss and
drop-off time loss into account. Giving priority to the accepted passengers, the system will
reject the request once specific accepting constraints are not satisfied. Then the passenger will
compare the travel cost of all accepted vehicles and submit the request to the minibus with least
cost. If no vehicle accepts the request, the request will be labeled as "rejected" in the system.
Later, ATOD will travel to pick up the passenger and drop off the passenger at the closest transit
stops to the destination. After the simulation of the whole day, the above-mentioned process will
be evaluated during scoring.

In most simulations, the initial fleet size and location is pre-defined, but some researchers use
simulation to find an optimal fleet size. Fagnant et al. (2015) run a seed simulation to define
an appropriate fleet size, which generates vehicles once the passenger waits for more than 10
minutes. This approach can guarantee the passengers’ maximum waiting time, however, as there
is no penalty for extra vehicles with low-occupancy in the model, the fleet size is overestimated.
Therefore, as shown in Fig. 7, the following functionalities are incorporated into the DRT
module:
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• On-demand vehicles deployment
• Mode choice: Order a new minibus vs. Request a ride
• Incentive
• Selection of origin and destination stops

Figure 7: Workflow of ATOD simulation

ATOD

Origin

Centralized 
Dispatching 

System

Request
Submit Store

Dispatch

Accept or reject

Drop Off

Transit stops
Walk

Transit stops

Travel to pick up

Travel to drop off

Destination

On demand 
vehicle 

deployment

Call a new vehicle

Scoring

Incentive

 Order a new 
minibus vs. 

request a ride

Existing capability

Implementation of the thesis

Implementation of the thesis

Cost-based 
routing 
module

The main objective of these functionalities is to create a trade-off between calling a new minibus,
and requesting a ride in one of the already deployed vehicles. If an agent calls a new minibus, it
will not have to wait long at the transit stop, it will not be aborted by the simulation, but that
vehicle must be popular for other agents or indispensable. If an agent tries to travel in one of the
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moving minibuses, it will have to wait, it can be aborted if its request is rejected many times, but
it will not be penalized for calling a new vehicle. These agents can also decide to walk longer at
the beginning or the end of their trips to find an appropriate vehicle.

Apart from above mentioned newly implemented functionalities, following mentioned existing
modules in DRT contrib will also be modified to fit the purpose of the simulation.

• Walking scoring function
• ATOD dwelling time
• Request accepting constraints
• Annealing

Driven by the evolutionary algorithm, the simulation will try to reach an equilibrium with least
aborted trips, least number of vehicles and most ride sharing. The fleet size and deployment in
the equilibrium will be considered the optimal solution.
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4 Implementations

4.1 On-demand vehicles deployment

On-demand vehicle deployment consists of the on-demand vehicle generator and vehicle removal
algorithm. The generator will create a new vehicle for the passenger who calls a new vehicle at
the passenger’s current location. If a vehicle is idle for more than I minutes (I is defined as the
vehicle idle time in the configuration), the vehicle will be marked as rarely-used and removed
from the simulation.

The on-demand vehicles deployment can be regarded as a re-balancing strategy under the
assumption that the empty traveling time from or to depots is neglected. Since no initial minibus
is existing in the system, the number and the location of minibuses is highly dependent on
demand. The maximum number of vehicles in the system can represent the optimal fleet size on
demand.

4.2 Mode choice: Order a new minibus vs. Request a ride

Agents in MATSim can evolve to equilibrium through changing mode, routing, and time
allocation. In order to find the optimal fleet size in the system, agents are allowed to choose
between two modes, new DRT call and request DRT.

For agents with the new DRT call mode, minibuses are created whenever they arrive at the
stations. Agents with the request DRT mode are not allowed to create any vehicles and they have
to wait till the request is accepted by the existing minibuses. Every U minutes (U is defined as
the request update time in the configuration), the rejected request will be submitted again. To
improve the computational performance, once a DRT requester waits for more than W minutes
(W is also defined in configuration as the maximum passenger waiting time), the agent will be
labeled as "stuck and abort" in the system and it will get a significant penalty for not finishing its
daily plan. The negative value is extremely huge, which is the most negative marginal utility
during the trip multiplied by 24 hours. In other words, the aborted trip is the same as the trip
where agent spend a whole day (24 hours) to travel by the most unpleasant mode or wait.

In other words, agents who cannot find a deployed minibus are encouraged to call new vehicles;
while a new DRT caller whose vehicle is not frequently-used will be penalized. The ratio of new
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DRT callers and DRT requesters emerges from the evolutionary algorithm of MATSim, and the
number and location of new DRT caller represent the optimal fleet size and the initial location of
the minibuses.

4.3 Incentive

In order to find the optimal fleet size, it is essential to limit the number of new DRT callers.
In MATSim, all plans will be rerouted based on the score of previous iterations. Therefore,
ride-sharing can be encouraged through a bonus or penalty. In the simulation, only popular
vehicle incentive is implemented.

Popular vehicle incentive It is calculated directly by the total number of passengers traveling
with the vehicle. The utility function of new DRT call mode with popular vehicle incentive is
defined as:

Ut = βr ∗ P + Cr︸        ︷︷        ︸
incentive

+βDRT ∗ tt (1)

The constant Cr of each new DRT calling trip and marginal disutility of DRTβDRT is defined in
the configuration, βr is 1 util/passenger for the simulation, P is the number of passengers the
vehicle serves. In other words, the incentive will be awarded if the minibus the caller creates
serve more than Cr passengers. The more popular the vehicle is, the higher score for the caller
of the vehicle can get.

4.4 Cost-based Routing Module

For traditional public transit, passengers always compare different transit stops and choose the
most satisfying one in terms of traveling time. In the DRT module, passenger always walks to
the closest stop in terms of Euclidean distance to call a minibuses. In reality, for conventional
taxi service, people are eager to walk a little bit more to call a taxi in the main street or to call
a taxi on the other side of the road to avoid the detour. To simulate these behaviors, a new
routing module is implemented in the system under the assumption that agents prefer stops
with less waiting time and less detouring based on existing MATSim contrib, event-based PT
router. It took the given schedule as a start point for the initial iteration, but information on travel
times, occupancy of the public transport vehicles, and waiting time was updated for subsequent
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iterations.(Ordóñez Medina, 2016) As mentioned in the Section 1, DRT can be simulated as a
public transport with dynamic routing, therefore similar routing module, a cost-based routing
module, is implemented in the system with some modifications.

Figure 8: Cost-based Routing Module(WC: Waiting Cost, TC: Traveling Cost, Red Line: Least
Cost Routing)

The waiting time of each stop is zero at first iteration, and the waiting time of each stop will be
updated each iteration with the actual value of previous iteration. Similar to the transit router,
the new routing module will compare the total travel time, which is the sum of traveling time
of the access walk, waiting time and traveling time of minibuses of all stops within the 1000m
of origin or destination and choose the one with least total travel time. The waiting time is the
average waiting time of the passengers who depart at +/-15 minutes from the stop in the last
iteration. For example, if one DRT requesting passenger is going to depart at 15:00 at iteration
3, the passenger will take for all stops within the 1000m radius of origin as possible origin
stops and all stops within the 1000m radius of destination as possible destination stops. For all
possible origin and destination stops, the passenger will calculate and compare the sum of cost
of walking to any possible origin stops, average waiting time of origin stops from 14:45 - 15:15
at iteration 2, traveling from origin stops to destination stops, walking from possible destination
stops to the destination. The agent will choose the origin and destination stop with least cost and
compare the least DRT traveling cost with direct walking cost and decide the travel route with
the corresponding routing module. It is worth noting that new DRT caller is routed with the
similar routing module but excluding waiting time in cost calculation due to the assumption that
new DRT caller will be immediately served. As shown in the Figure 8, each stop is depicted
as two nodes with a connecting link in the model. Both nodes share the similar ID, but one
of them ends with "_W". Cost of traveling of access walk will be saved in the link between
origins and origin stops or between destinations and destination stops, cost of traveling of DRT
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will be saved in the link between origin stops and destinations, cost of waiting will be saved
in the connecting link between two stop nodes, which is a directed link. Link of access walk
can only depart or arrive at the stop node without "_W" and link of DRT can only start from
the stop node with "_W" and end at the stop node without "_W". Implementing this algorithm
as well as multi-node Dijkstra algorithm, the agents can find the least total cost route. In the
Figure 8 among the six possible DRT routing and one direct walk routing, despite the fact that
the travel cost from origin to Stop 1(S1) is higher than to S2 as well as the travel cost from S2 to
S4 is the least, the agent will choose the red path, origin - S1 - S5 - destination, because of the
compensation of lower estimated waiting cost.

It is expected that agents will always try the stops with least travel cost of access walk and
in-vehicle, given that initial waiting time of all stops is zero and only travel time counts. However,
with the accumulated experience, agents may try further stops with less average waiting time.
For example, if agents have perfect experience with closest stops, it will keep its choice next
iteration, otherwise it will keep trying a further stops with probably shorter waiting time till the
best combination of travel cost of access walk, waiting cost and travel cost of DRT is reached.
Similar to public transport hubs in reality, some stops may be more attractive than others and
will offer more frequent service. As a result, it is supposed that some stops with high demand
will become big transport hub and may attract more minibuses as well as passengers. Passengers
who live in rural and low demand area may have to walk more to gather in transport hub while
passengers who live in high demand area may walk less. Besides, the short-distance traveler
may prefer to walk considering the unpredictable and unreliable time. Mode share of walking
may increase with iterations.

4.5 Walking scoring function

In the simulation, walking is the only substitute of the two DRT modes. Walking is highly
recommended for short-distance trips but not for long-distance trips. In MATSim, linear
walking as well as in-vehicle traveling and waiting scoring function without any constraints
is implemented by default. However, different from in-vehicle traveling and waiting, walking
has its limitation. It is widely acknowledged that a half-mile (approx. 800m) is an appropriate
and comfortable upper limit for walking. Therefore, in the simulation, when calculating the
direct walking score in cost-based routing module, linear walking utility function with 800-meter
limitation is implemented, which can be interpreted that agents will choose DRT mode without
hesitation once the direct walk distance is more than 800m. It is noted that during scoring, since
access walk and walk will be scored together, no limitation should be applied because sometimes
the nearest stop for passengers may be further than 800m. Under this condition, access walk for
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more than 800m to request or call a minibus is the only option for the agent.

4.6 ATOD dwell time

Table 1: A Summary of results from international works

Study Stop design Avg. deceleration/ Boarding time per passenger
acceleration time

Xu, Kwami, Bus bay 9.0s/10.7s
2.1s(single-channel door)
1.7s(double-channel doors)

& Yang, 2010 Curb-side stop 8.5s/10.9s -

Bus bay 11.11s/11.12s
2.22s(load factor < 0.7)

Chen, Zhou, 2.37s(load factor >= 0.7
Zhou & Mao, 2013

Curb-side stop 9.74s/10.2s
1.82s(load factor < 0.55)
2.49s(load factor >= 0.55)

Transport for Bus bay - 2.8-3.8s
London, 2006 Curb-side stop - 0.5-1s faster than bus bay

Genivar, 2011
Bus bay -

3.5s
Curb-side stop -

Wang, Ye, Wang Bus bay - 2.5–4.0s(single-channel door)
Xu & Wang, 2016 Curb-side stop - 0.6–2.5s (multiple- channel doors)

Source: Liu et al. (2017b)

ATOD dwell time is similar to bus dwell time. In the DRT contrib, dwell time is fixed, which is
the 60s for all stops. However, in reality, bus dwell time is influenced by several factors, including
the type of vehicles, the design of stop bay, the number of doors, number of boarding passengers
etc. The first three factors are neglected in the simulation. Thus, in order to accurately describe
dwell time and at meanwhile simplify the issue, it is assumed in the simulation that bus dwell
time is only a linear function of the number of boarding passengers, therefore the dwell time can
be described with the following equation:

Tdwell = θp ∗ Pboarding + D (2)

where Tdwell is noted as ATOD dwell time, θp is boarding time for each passenger and D is
a constant which describes fixed dwell time, such as deceleration and acceleration time of
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minibus. According to Liu et al. (2017b) summary of international works, both deceleration and
acceleration time are around 10s and boarding time per passenger is around 2s. It is assumed
that acceleration and deceleration will take twice as much time as driving with free flow speed,
which means the time loss due to processing such as acceleration and deceleration will be
(10 + 10) ∗ 0.5 = 10. Therefore, the θp in the model is 2 and D is 10. It is noted that given
the above equation of ATOD dwell time, the waiting time of new DRT call can be longer than
DRT request. For example, new DRT caller needs to wait for at least 10s (acceleration and
deceleration) + 2s (boarding time for one passenger) + 1s (reacting time) = 13s for a minibuses;
while if DRT requester happens to arrive at the stop when the vehicle is going to depart, the
requester will only wait for 2s (boarding time for one passenger) + 1s (reacting time) = 3s.

4.7 Request accepting constraints

Request accepting constraints is of great significance for the ride-sharing problem. A simple but
important request accepting constraint can be the rejection of a new request from a full vehicle.
Another crucial constraint for the ride-sharing problem can be detour accepting constraints. As
it is rare to find some ideal passengers whose origin and destination happen to be on the way
of other passengers, detouring to some extent is necessary. In other words, higher occupancy
requires the sacrifice of time by passengers. Detouring can happen during both pick-up and
drop-off. For example, minibuses may detour a few minutes to pick up more passengers. Then
the in-vehicle passengers’ travel time will be sacrificed and drop-off time will be postponed. At
the meanwhile, if the minibuses accept more requests on the way to pick up passengers. Then
the waiting time for these passengers may also be influenced by the further request and pick up
time will be postponed. Once the request is accepted by the minibus, the agent has no chance to
submit to another minibus; while for the new-approaching request, it is possible to be accepted
by other vehicles once rejected. Given that accepted requests cannot be canceled, the experience
of accepted passengers have higher priority and need to be guaranteed. The request accepting
constraints is set for a better experience of accepted passengers. Apart from the constraints of
detour loss, minibuses too far away will be excluded when new requests are coming even though
a minibus is idle to reduce long-distance empty traveling.

4.7.1 Detour loss

As detouring is the key point of the request accepting constraint, it needs to be quantified for
comparison. Detour loss is a number to measure detouring, which consists of pick-up detour
loss, drop-off detour loss and stop duration. Each request can be divided into two tasks, pick-up
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task and drop-off task. Theoretically, pick-up task and drop-off task can be inserted into any
position of any vehicle, but different insertions or vehicles leads to different detour losses.

In the simulation, the detour loss of every insertion of every vehicle will be looped, calculated
and compared. The detour loss of rejected insertions is Double.M AX and the best insertion will
be the one with least detour loss. If the least detour loss is Double.M AX , it means the request is
rejected by all insertions of all vehicles.

Figure 9: Illustration of the calculation of detour loss

Fig. 9 illustrates an example of the calculation of detour loss. Passenger A&B are in-vehicle
passengers and passenger C is waiting for a minibus and the request is already accepted. Passenger
D just submitted the request and the vehicle is evaluating the influence of the request. The
original task order is pick-up C - drop-off A - drop-off B&C, when D request comes, pick-up D
and drop-off D can be inserted into arbitrary position among insertions current status - pick-up C,
pick-up C - drop-off A, drop-off A - drop-off B&C and after drop-off B&C, as long as drop-off
D is after pick-up D. Thus, there will be ten combinations of insertions of pick-up and drop-off
tasks. Among the potential six different routes, only accepted routes are marked in the illustration
(The specific accepting constraints will be discussed in next section). Route 1 is current status
- pick-up D - pick-up C - drop-off D - drop-off A - drop-off B&C; Route 2 is current status -
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pick-up D - drop-off D - pick-up C - drop-off A - drop-off B&C. Given stop duration for one
passenger is s=12, pick-up detour loss of route 1 is a + b - f + s = 172s, drop-off detour loss of
route 1 is e + i - h + s = 92s, total detour loss of route 1 is 264s; Pick-up detour loss of route 2 is
a + c - f + s = 252s, drop-off detour loss of route 2 is d + s = 32s and total detour loss of route 2
is 284s. Route 1 will be selected. Note that travel time is not estimated based on real-time travel
situation, but with free-flow travel situation.

4.7.2 Pick-up detouring accepting constraints

Max travel time constraints and calculation of pick-up tolerance Pick-up detouring toler-
ance is how long the accepted passenger can wait for the coming vehicle. Pick-up detouring
tolerance consists of max traveling time and waiting tolerance. The former parameter also
decides the maximum accepted estimated traveling time from the current location of the vehicles
to the location of the passengers.

Max travel time constraints:
Estimated travel time to pick up <= Max travel time

Figure 10: Illustration of pick-up tolerance

Fig. 10 exemplifies how the max traveling time and waiting tolerance function in the model.
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Given that max traveling time is 600s, minibus A is excluded even though the real total detour
loss of A is the minimum due to lower exceeding estimated travel time. B and C are all available
in terms of max traveling time and C will be chosen for less total detour loss. The pick-up
tolerance of passenger is max traveling time plus additional waiting tolerance, which means
the time of detouring allowed is also related to estimated travel time. In the graph, since the
maximum travel time is already reached, the passenger can only allow 300s delay for pick-up.
If estimated travel time is less than max travel time, the tolerance will be the subtraction of
estimated travel time from max travel time plus max travel time. In other words, the maximum
waiting time for the accepted request, also known as pick-up tolerance, is the sum of max travel
time and waiting tolerance. The latest departure time, which is the sum of current time and
maximum waiting time, will be saved as latest departure time once the request is accepted.

Pick-up detouring accepting constraints:
For all pick-up tasks between new pick-up task and new drop-off task:
The estimated end time of the pick-up task + stop duration + pick-up detour loss <= The latest
departure time of the task
For all pick-up tasks after both new pick-up task and new drop-off task:
The estimated end time of the pick-up task + stop duration + total detour loss <= The latest
departure time of the task

Pick-up detouring tolerance constraints Once a new request coming, all tasks after the
insertion of the new request will be influenced. All pick-up tasks after the insertion apply for
pick-detouring tolerance constraints. As mentioned above, every accepted request has an attribute
called latest departure time. All latest departure time of pick-up tasks after the new insertion
will be compared to the departure time with new requests . The constraints will guarantee all
waiting passengers can depart before latest departure time, otherwise the new request will be
rejected with no exception.

As depicted in the Fig. 9, pick-up C is the only affected pick-up task. The influence of route 1 is
172s (pick-up detour loss) and of route 2 is 284s (total detour loss). Assuming current time is 0s
and the latest departure time of pick-up C is 300s, then the estimated end time of the pick-up C is
40s and the stop duration for one passenger is 12s. For route 1, 40s + 172s = 212s < 300s, the
insertion will be accepted by pick-up constraints; while for route 2, 40s + 284s = 336s > 300s,
the insertion will be rejected.
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4.7.3 Drop-off detouring accepting constraints

Similar to pick-up detouring accepting constraints, drop-off detouring accepting constraints note
the tolerance of increasing travel time for in-vehicle passengers. Once a new request is accepted,
all drop-off tasks after the insertion will be postponed. Every accepted requests have an attribute
called latest arrival time. Latest arrival time is calculated by the function:

Tlatest Arrival = αDetourTolerance ∗ TeatimatedTravel + βDetourTolerance︸                                                             ︷︷                                                             ︸
Max ride-sharing travel time

+TdepartureTime (3)

where Tlatest Arrival is the latest arrival time, TeatimatedTravel is the estimated travel time from
pick-up stop to drop-off stop and TdepartureTime is the time when the request is scheduled. Distinct
from pick-up tolerance, drop-off tolerance is dependent on estimated travel time, which means a
long-distance passenger can tolerate more detouring.

All latest arrival time of pick-up tasks after the new insertion will be compared to the arrival
time with new requests. The constraints will guarantee all in-vehicle passengers can arrive at
the destination before latest arrival time, otherwise the new request will be rejected with no
exception.

Drop-off detouring accepting constraints:
For all drop-off tasks between new pick-up task and new drop-off task:
The estimated begin time of the drop-off task + stop duration + pick-up detour loss <= The latest
arrival time of the task
For all drop-off tasks after both new pick-up task and new drop-off task:
The estimated end time of the task + stop duration + total detour loss <= The latest arrival time
of the task

Table 2: Influence of request D of route 1

Passenger Arrival time once request D is accepted Latest arrival time

A a + s + b + s + e + s + i + g = 356s ( f + s + h + g) ∗ α + β = 338s

B a + s + b + 12 + e + s + i + g + s + j = 468s ( f + s + h + g + s + j) ∗ α + β = 506s

C e + s + i + g + s + j = 244s (h + g + s + j) ∗ α + β = 578s

As depicted in route 1 of Fig. 9, the drop-off of passenger A, B and C are all influenced by the
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new request D. Given current time is 0s, travel tolerance beta(β) is 200, and travel tolerance
alpha(α) is 1.5, the influence of request D on drop of can be calculated as shown in Table 2.
Although the drop-off constraints of passenger B and C is satisfied, the request is still rejected
due to violating the constraints of passenger A.
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5 Scenario

The simulation is executed on the scenario of the Sioux Falls(SD, USA), the population was
scaled down to 10% of total population(8483 agents) for computational reasons, and the road
capacity was scaled down accordingly. All agents executed exactly two legs during a day, home
to work or secondary and work or secondary to home. Sioux Falls is a small city with 1810
nodes, 3359 links and 150 transit stops in the transport network. It is chosen to test the new
ATOD implementation because it is simple enough for computation but also complete and
realistic enough for reasonable results. Due to the purpose of the simulation is not to estimate or
simulate the real situation of Sioux Falls but to understand and solve the fleet size and deployment
problem, the transport mode of all plans are converted to new DRT call and DRT request mode
in the input population file. It is noted that cost-based routing module will compare the cost of
new DRT call or DRT request with the direct walk and the agents may turn to walk even though
their original plan is new DRT call or DRT request. In addition, 10% of trips are randomly
chosen as new DRT call and 90% are randomly chosen as DRT request. The initial proportion of
new DRT call and DRT request are based on the assumption that one autonomous vehicle can
replace around 10 conventional private vehicles.(Fagnant and Kockelman, 2014)

Table 3: Fixed parameters for simulation

Parameter Value

Initial fleet size 0
Vehicle capacity 8 seats
Vehicle idle time 1800 seconds
Maximum passenger waiting time 3600 seconds
Marginal utility of waiting -6 util/hour
Constant of DRT request -1 util
Marginal utility of DRT request -4 util/hour
Marginal utility of new DRT call -4 util/hour
Marginal utility of walk -5.8 util/hour
Detour tolerance alpha 1.5
Detour tolerance beta 600s
Max travel time 600s
Max waiting tolerance 300s
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In the simulation, the values of some parameters can refer to previous research or can be fixed in
the simulation, while some essential parameters may not have any reference values and need to
be calibrated for robustness of the model and for a reasonable result. All fixed parameters are
listed in the following Table 3. Initial zero fleet size and 8-seat vehicle are fixed for the purpose
and assumption of the simulation. For the reason of improving computation time, the vehicle
will disappear after being idle for more than 1800 seconds(half an hour), and the passenger will
be labeled as "stuck and abort" after waiting for more than 3600 seconds (1 hour). It means
that the vehicle will go back to the depot after being idle for 30 minutes and the experience of
passengers who waits for more than 1 hour will be extremely terrible.

The marginal utility of waiting and walking is defined according to Wardman et al. (2016),
where the marginal utility of walking is 1.45 times more than the marginal utility of in-vehicle
traveling and the marginal utility of waiting is 1.5 times more. The constant of new DRT call is
variable, while the constant of DRT request is fixed, -1. These scoring parameters are crucial
for a trade-off of new DRT call, DRT request, and walk modes. Agents may obtain the same
score of walking 10 min as waiting 9min and traveling with DRT 1min. Despite the relatively
large negative constant, a new DRT caller whose vehicle serves more than the constant can get a
higher score than DRT ride-sharing passengers with least waiting time, even a new DRT caller
whose vehicle serves only one passenger can get a higher score than aborted DRT ride-sharing
passengers. Calculating the score of each trade-off option, agents are forced to make a decision
for an equilibrium where least and appropriate deployed vehicles can satisfy all the demand in
the city. Loose detour tolerance can, on one hand, increase vehicle occupancy by accepting more
passengers on the way, but on another hand, destroy the experience of passengers by long time
waiting and detouring. Pick-up tolerance, including max travel time and max waiting tolerance,
as well as drop-off tolerance, including detour tolerance alpha and beta, can affect the results
collectively with different combinations. These parameters will be set fixed in the project and
will be tested in future work.

Table 4: Variable parameters for simulation

Parameter Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Value 7

Request update time 30s 300s 400s 500s 600s 700s 800s
Annealing On Off - - - -
New DRT call constant -10 util -20 util -30 util -40 util -50 util -60 util -

Apart from fixed parameters, some crucial parameters for ATOD will be tested, compared and
analyzed from the perspective of the score, mode share, computational time, fleet size, the
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popularity of vehicles, ridership, fleet deployment and experience of passengers. The purpose is
to compare the influence of these variables on the simulation and to figure out the better value in
terms of fewer minibuses, higher occupancy, and better user experience. Since the following
variables depict the model from totally different perspective, these variables can be seen as
independent and identically distributed random variables. The influence of each variable can be
explored individually.

Besides, the simulation will run 100 iterations with 10% agents change single trip mode each
iteration for all scenarios. For first 60 iterations agents choose their plan randomly, and for the
last 40 iterations, some agents begin to keep choosing the plan with the highest score in their
memory. Simulation with annealing and without annealing will be compared in two different
scenarios. Annealing means to disable random plan choosing gradually. In the simulation
without annealing, above mentioned 10% agents will stop choosing plan randomly immediately at
iteration 61; while in the simulation with annealing, 2.5% agents will begin to keeping choosing
the best plan in their memory at iteration 61, 5% at iteration 71, 7.5% at iteration 81, and 10% at
iteration 91. As the simulation relies on the balance between new DRT call and DRT request,
sudden change of mode share may result in unstable simulation result. Therefore, a better and
robust result is expected for the simulation with annealing.

5.1 Base scenario

Table 5: Configuration of base scenario

Parameter Value

Request update time 600s
Annealing With annealing
DRT constant -30 util

Several groups of scenarios with different parameters will be run to test the robustness and
the influence each parameter. Only one parameter is variable for each group. For example,
for a group of Request Update Time, the parameter of annealing, and DRT constant are the
same, the only variable is request update time. Obviously, there are in total three groups of
parameters to be tested, namely group of request update time, annealing and DRT constant. For
each group, except the tested parameter, all other parameters are control parameters, which
should be consistent with the base scenario, a relatively reasonable and easy-computing scenario.
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Aside from above-mentioned parameters, it is of great significance to validate the sensitivity and
robustness of the model. Although the input initial population file is the same for all scenarios
to control variables, it is essential to test whether the result of fleet size and deployment is
independent of the randomly selected initial new DRT caller. Two different sensitivity analysis
will be conducted in the project, 10% new DRT caller with six different random seeds and 10%,
20%, 30% new DRT caller, each with two different random seeds. The former analysis is to
show the influence of initial random location of new DRT caller and the latter analysis is to
test whether the initial number of new DRT caller will result in different optimal fleet size and
deployment.

Table 6: Overview of sensitivity analysis: sensitivity of different random seeds and sensitivity of
different initial proportion of new DRT caller

Sensitivity analysis Random seed Proportion of new DRT caller

Random generated new DRT caller 1-12 10%

Different proportion of new DRT caller
1-2 10%
13-14 20%
15-16 30%

5.2 Overview of all scenarios

Overall 12 different scenarios for sensitivity analysis and 12 scenarios for variables will be run in
the simulation. For better computational performance, in the base scenario, a request will update
every 10 minutes. Thus, it is to be figured out in Group A whether relatively long update interval
will influence the result in terms of optimal fleet size, deployment strategy and the waiting time.
The assumption that annealing can improve the stability of the system and reach a more reliable
equilibrium will be tested in Group B. According to existing research, linear walk scoring with
800m limitation is chosen in the base scenario, but whether different walk scoring result in
different output still needs to be tested in Group C. Bonus for ride-sharing passengers based on
the maximum number of passengers share the ride together seems to be an efficient approach
to improve vehicle occupancy. Group D is to explore the improvement. Request accepting
constraints is highly related to vehicle occupancy. Imagining an extreme situation where all
agents can wait and travel forever long and where no request will be rejected, vehicle occupancy
should be always close to eight, but the wait time and travel time might be long. Therefore, in
group E, the influence of different accepting constraints is to be figured out.
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6 Data analysis

6.1 Sensitivity analysis

Ensuring the result of the simulation is independent of initial population files, sensitivity analysis
is necessary for the model. The result should not rely on the locations of random generated
new DRT caller at iteration 0 as well as should not depend on the initial ratio of new DRT
caller and DRT request. Therefore two different sensitivity analysis is conducted to test the
robustness of the model, sensitivity of different random seeds and sensitivity of different initial
ratio. Sensitivity analysis is also of great significance to analyze the influence of parameters.

6.1.1 Overall performance

From Table 7, it is observed that the model is relatively robust in terms of avg. executed score,
mode share, average access walking time, average in-vehicle time, number of passengers per
vehicle, max fleet size despite different random seeds; while the model is varied from the
perspective of avg. computation time, average waiting time, vehicle kilometers traveled, empty
kilometers traveled and average vehicle occupancy. The range and deviation caused by random
seed can be found in Table 9. The indicator with CV(Coefficient of variance) more than 0.1 is
regarded as a sensitive indicator. Later the range and deviation of parameter analysis will be
compared with the of sensitivity analysis. If the result is similar to sensitivity analysis, it notes
that the variance may not come from the different parameters.

The result of Table 8 shares similarities with Table 7, but the variance of average computation
time, average executed score, average wait time, vehicle kilometers traveled, empty kilometers
traveled, number of passengers per vehicle is higher. It shows that different initial proportion
of new DRT caller leads to the higher variance of indicators, but these sensitive indicators do
not show any tendency with the increasing fraction of initial new DRT caller. It is noted that
although the difference of average executed scores is only 3, it is considered as a huge gap due to
the relatively small marginal disutility of traveling. For example, marginal disutility of DRT is
only -4 util/hr, the average difference of 3 already means that each passenger travels 45 minutes
more with DRT.
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Table 7: Overall performance for sensitivity analysis of different initial ratio

Random seed 1 2 3 4 5 6

Avg. Computation time 619.80s 608.59s 625.92s 616.55s 619.79s 743.78s
Avg. executed score 104.28 103.85 103.18 103.36 103.99 104.33

Mode share
new DRT call 0.0352 0.0339 0.0342 0.0339 0.0356 0.0342
DRT request 0.8510 0.8507 0.8431 0.8529 0.8503 0.8504
Walk 0.1138 0.1153 0.1226 0.1132 0.1141 0.1154

Average time
Access walking 875.39s 874.42s 875.31s 875.14 874.21s 874.82s
Waiting 306.49s 398.66s 538.46s 520.25s 352.91s 304.59s
In-vehicle 291.08s 290.67s 290.84s 291.74s 294.77s 297.03s

Vehicle kilometers traveled 27352 32068 37131 35436 30672 27485
Empty kilometers traveled 1675 3180 4898 4214 2664 1669
No. of passengers per vehicle 25.18 26.06 25.62 26.17 24.88 25.88
Average vehicle occupancy 5.20 4.64 3.87 4.20 4.92 5.21
Max fleet size 252 297 294 304 276 255
Random seed 7 8 9 10 11 12
Avg. Computation time 637.82s 599.22s 630.80s 444.62s 605.80s 755.33s
Avg. executed score 103.24 103.21 103.64 103.68 104.15 104.14

Mode share
new DRT call 0.0325 0.0380 0.0345 0.0347 0.0329 0.0333
DRT request 0.8516 0.8489 0.8502 0.8483 0.8496 0.8511
Walk 0.1159 0.1132 0.1153 0.1170 0.1174 0.1155

Average time
Access walking 875.84s 873.88s 874.51s 874.13s 874.45s 875.60s
Waiting 550.86s 488.83s 442.50s 428.03s 358.16s 351.29s
In-vehicle 291.15s 302.75s 296.08s 293.93s 297.71s 294.14s

Vehicle kilometers traveled 36200 34527 33589 33073 29968 30503
Empty kilometers traveled 4627 3574 3516 3623 2395 2721
No. of passengers per vehicle 27.23 23.36 25.62 25.48 26.79 26.52
Average vehicle occupancy 4.07 4.30 4.37 4.48 4.93 4.93
Max fleet size 287 332 294 299 272 271
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Table 8: Overall performance for sensitivity analysis of different initial ratio

Fraction of initial new DRT caller 10% 20% 30%
Random seed 1 2 13 14 15 16

Avg. Computation time 619.83s 608.59s 643.87s 516.75s 707.64s 447.89s
Avg. executed score 104.28 103.85 102.89 103.80 104.30 101.19

Mode share
new DRT call 0.0352 0.0339 0.0335 0.0337 0.0318 0.0313
DRT request 0.8510 0.8507 0.8448 0.8446 0.8491 0.8466
Walk 0.1138 0.1153 0.1217 0.1217 0.1191 0.1221

Average time
Access walking 875.39s 874.42s 876.27s 876.36s 875.72s 876.23s
Waiting 306.49s 398.66s 597.17s 422.32s 343.35s 813.93s
In-vehicle 291.08s 290.67s 295.30s 298.89s 291.37s 281.05s

Vehicle kilometers traveled 27352 32068 38780 31583 29143 43195
Empty kilometers traveled 1675 3180 5417 2938 2379 8144
No. of passengers per vehicle 25.18 26.06 26.23 26.05 27.73 28.07
Average vehicle occupancy 5.20 4.64 3.70 4.61 5.10 3.17
Max fleet size 252 297 300 292 248 279

Table 9: Range and deviation of 16 random seeds

Max Min Average Std. CV

Avg. computation time 755.33 444.62 625.67 77.02 0.12
Avg. executed score 104.33 103.18 103.75 0.43 0.00
Mode share - new DRT call 0.04 0.03 0.03 0.00 0.04
Mode share - DRT request 0.85 0.84 0.85 0.00 0.00
Mode share - Walk 0.12 0.11 0.12 0.00 0.02
Avg. access walk time 875.84 873.88 874.81 0.64 0.00
Avg. wait time 550.86 304.59 420.09 88.53 0.21
Avg. in-vehicle time 302.75 290.67 294.32 3.64 0.01
Vehicle kilometers traveled 37131.00 27352.00 32333.67 3228.10 0.10
Empty kilometers traveled 4898.00 1669.00 3229.67 1052.73 0.33
No. of passengers per vehicle 27.23 23.36 25.73 1.00 0.04
Avg. vehicle occupancy 5.21 3.87 4.59 0.45 0.10
Max fleet size 332.00 252.00 286.08 22.35 0.08
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6.1.2 Ridership

The distribution of ridership varies in the different group of random seeds, but all follow a
distribution with the highest density in the middle and gradually decreasing tail on both sides.
In all random seeds, there are more vehicles with 8 passengers than 7 passengers because the
maximum number of passengers share ride is 8. If more than 8 passengers are willing to board,
the exceeding passengers have to wait for the next minibus. It can be imagined that if the vehicle
is infinity large, there will be probably a long tail on the right side of the graph. Besides, with
the increasing initial proportion of new DRT caller, no specific patterns can be observed. The
uncertainty of the distribution of vehicle occupancy may be from the dynamic passenger-vehicle
matching. Due to the real-time matching and dynamic routing, randomness cannot be avoided in
the system. A tiny difference in the initial matching may result in total different vehicle routing
and vehicle occupancy. Besides, as a relatively small city, the traffic demand of Sioux Falls is
probably limited for higher ridership and more incentives of ride-sharing are still needed to be
tested.

Figure 11: Ridership during the day for sensitivity analysis of random seeds (Part A)

(a) Random seed 1 (b) Random seed 2

(c) Random seed 3 (d) Random seed 4
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Figure 12: Ridership during the day for sensitivity analysis of random seeds (Part B)

(a) Random seed 5 (b) Random seed 6

(c) Random seed 7 (d) Random seed 8

(e) Random seed 9 (f) Random seed 10

(g) Random seed 11 (h) Random seed 12
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Figure 13: Ridership during the day for sensitivity analysis of random seeds (Part C)

(a) Random seed 13 (b) Random seed 14

(c) Random seed 15 (d) Random seed 16

6.1.3 Fleet size

As shown in Figure 14 and Figure 15, the two peaks show the temporal distribution of fleet size
is in line with the travel demand. During peak hour, around 200-300 vehicles are needed to
satisfy the demand while during off-peak hour, only 20 - 50 vehicles are in use. In most random
seeds, morning peak starts from 07:30 and ends at 09:30, while afternoon peak starts from 16:45
and ends at 18:45. In some random seeds with more flat peak, the above mentioned time may be
postponed, for example in random seed 16, the end time of afternoon should be postponed to
19:45. In addition, in 15 out of 16 random seeds more vehicles observed in the afternoon peak
than in the morning peak, and the exception is random seed 4. The maximum number of fleet
size is around 250-300. The shape of the two peaks varies a lot among different random seeds.
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Figure 14: Fleet size for sensitivity analysis (Part A)

(a) Random seed 1 (b) Random seed 2

(c) Random seed 3 (d) Random seed 4

(e) Random seed 5 (f) Random seed 6

(g) Random seed 7 (h) Random seed 8
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Figure 15: Fleet size for sensitivity analysis (Part B)

(a) Random seed 9 (b) Random seed 10

(c) Random seed 11 (d) Random seed 12

(e) Random seed 13 (f) Random seed 14

(g) Random seed 15 (h) Random seed 16
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6.1.4 Fleet deployment

Fleet deployment shows the location where the vehicle is generated during morning and afternoon
peak. In both morning and afternoon peak, the spatial distribution of initial vehicle position is
close to travel demand. The most popular stops may attract more than 50 new calling vehicles
around. During morning peak, some stops in the surroundings are more attractive than stops in
the city center; during afternoon peak, some stops in the city center are more popular. Fleet
deployment strategies of all random seeds are more or less similar, therefore only two typical
graphs are selected in Fig. 16. The difference between these two typical graphs is whether huge
amount of vehicles or no vehicle are generated in the northeast corner of the city.

Figure 16: Fleet deployment for sensitivity analysis of random seeds

(a) Random seed 1

(b) Random seed 3
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6.2 Group of request update time

6.2.1 Overall performance

Similar to sensitivity analysis, it seems that mode share, average access walking time, average
in-vehicle time are independent of request update time. For avg. computation time, it is plausible
that the simulation of request update time of 30s is time-consuming, which reviews of all not
accepted requests every 30 seconds, however, it is surprising that there is no much difference
among simulations of other request update time. In addition, the result of the average executed
score, average waiting time, vehicle kilometers traveled, empty kilometers traveled, max number
of passengers per trip and max fleet size violates the expectation. With the decreasing request
update time, the average waiting time increases dramatically but the vehicle occupancy(max
number of passengers per trip) drops. As a result, more fleet size is needed to serve the same
demand for a much more frequent updating scenario, which also causes the decrease of vehicle
kilometers traveled and empty kilometers traveled as well as the drop of the average executed
score. More exploration is needed to explain the weird result.

Table 10: Overall performance for group of request update time

Request update time 800s 700s 600s 500s 400s 300s 30s

Avg. Computation time 584.4s 675.9s 619.8s 528.0s 530.2s 644.7s 2852.1s
Avg. executed score 104.14 104.19 104.28 102.47 102.92 101.39 102.02

Mode share
new DRT call 0.0311 0.0309 0.0352 0.0326 0.0355 0.0355 0.0355
DRT request 0.8488 0.8480 0.8510 0.8485 0.8451 0.8417 0.8405
Walk 0.1201 0.1210 0.1138 0.1189 0.1179 0.1227 0.1240

Average time
Access walking 875.69s 878.04s 875.40s 875.13s 874.63 876.11 877.55
Waiting 385.61s 373.48s 306.49s 683.67s 564.46 715.98 737.72
In-vehicle 296.84s 294.98s 291.08s 284.26s 293.82 290.48 299.83

Vehicle kilometers traveled 31396 30432 27352 41351 37843 41766 44242
Empty kilometers traveled 2812 2489 1675 7101 5186 7125 8507
No. of passengers per vehicle 28.33 28.41 25.18 27.04 23.87 24.67 24.69
Average vehicle occupancy 4.72 4.82 5.20 3.38 3.80 3.35 3.20
Max fleet size 258 270 252 277 315 307 322

In order to eliminate the interference of uncertainty of the model itself, as the model is not

38



Simulation of Autonomous Transit On Demand for Fleet Size and Deployment Strategy OptimizationJanuary 2018

robust in some parameters, range and deviation with sensitivity analysis is compared in Table 16.
Compared to Table 9, the CVs of other indicators of different request update time are all
higher than the of different random seeds, which means different update time does influence the
performance. The average computation time is much higher with huge deviation due to the long
computation time of request update time 30s.

The result can be divided into two groups, request update time less than 600s (the left group
in the table) and request update time 600s and more (the right group in the table). Compared
to the right group (high update frequency), the left group (low update frequency) has higher
avg. executed score, lower wait time, shorter vehicle kilometers traveled and empty kilometers
traveled, higher average vehicle occupancy and less fleet size.

Table 11: Range and deviation of different update time

Max Min Average Std. CV

Avg. computation time 2852.10 528.00 919.30 854.08 0.93
Avg. executed score 104.28 101.39 103.06 1.17 0.01
Mode share - new DRT call 0.04 0.03 0.03 0.00 0.06
Mode share - DRT request 0.85 0.84 0.85 0.00 0.00
Mode share - Walk 0.12 0.11 0.12 0.00 0.03
Avg. access walk time 878.04 874.63 876.08 1.27 0.00
Avg. wait time 737.72 306.49 538.20 181.37 0.34
Avg. in-vehicle time 299.83 284.26 293.04 5.04 0.02
Vehicle kilometers traveled 44242.00 27352.00 36340.29 6575.00 0.18
Empty kilometers traveled 8507.00 1675.00 4985.00 2689.80 0.54
No. of passengers per vehicle 28.41 23.87 26.03 1.87 0.07
Avg. vehicle occupancy 5.20 3.20 4.07 0.83 0.20
Max fleet size 322.00 252.00 285.86 28.45 0.10

6.2.2 Experience of passengers

Total wait time is consists of two parts in the simulation: scheduled wait time and wait time
after accept. The former wait time is the wait time for the request to be accepted, which is a
multiple of request update time plus one reaction time; the latter wait time is the wait time for
vehicle’s arrival after accept, which is theoretically limited by pick-up tolerance (15 min in the
simulation). Different request update time can only influence the former wait time, but contrary
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to expectation, less request update time result in more scheduled wait time as well as total wait
time.

Figure 17: Experience of passengers for group of request update time

Table 12: Analysis of average wait time

Request update time 800s 700s 600s 500s 400s 300s 30s

Wait time[s] 385.61 373.48 306.49 683.67 564.46 715.98 737.72
Scheduled wait time[s] 22.53 23.43 6.00 172.87 104.63 196.73 173.96

Wait time after accept[s]
Dwell time 55.86 56.15 54.84 57.44 56.27 56.47 56.45
Others 307.22 293.90 245.65 453.35 403.55 462.80 507.30

It is possible that request update time 300-600s is so long that may result in a huge negative
score, but request update 30s is much more acceptable. Thus, after 100 iterations, agents with
request update time 300-600s tend to avoid request update, but agents with request update time
30s still update, which result in longer scheduled wait time. Besides the various total wait time
is also caused by wait time after accept. Although the maximum wait time after accept should
not exceed 15 min, the long tail of wait time after accept in Fig. 17 shows that some trips violate
pick-up tolerance. Actually, the rule is still strictly followed, because it can only guarantee that
no more detour is accepted but cannot guarantee the vehicle will arrive at the stop in time.

40



Simulation of Autonomous Transit On Demand for Fleet Size and Deployment Strategy OptimizationJanuary 2018

One possible explanation is that the long wait time after accept is from the consolidation of
agents, which means maybe in some scenarios passengers prefer popular transport hub and board
in some stops together which save the boarding time. Dwell time in the Table 12 describes the
boarding time of other passengers between the request accepted and the arrival of the minibus. If
consolidation exists, the average dwell time should be shorter, because, for example, the average
dwell time for 8 passengers boarding in the same stop is (10 + 2 * 8) / 8 = 3.25s but the average
dwell time for 8 passengers boarding in the different stop is (10 + 2) * 8 / 8 = 12s. However, the
dwell time is similar to all different scenarios, the consolidation is not observed.

Another possible explanation is that the time loss due to congestion can still enlarge the wait
time after accept. At the very beginning, if a lot of requests are accepted by a vehicle before
congestion appears, when congestion appears, all the request will be delayed, the wait time of
the last request in the list may be postponed a multiple of delays. As shown in Fig. 18, if five
tasks come at the very beginning, they will be accepted because the max wait time of the last
passenger is only 500s. However, later with the congestion, the travel time will be three times
more, the delay of the last passenger will be (300 - 100) * 4 = 800s. As an accepted request
cannot submit their request to other vehicles, the delay of a passenger will be multiplied by
the number of tasks prior to picking up the passenger. With frequent update time, it is more
likely for a vehicle to accept lots of request at the beginning. When congestion begins, these
requests already lose the chance to submit to better vehicles. Besides, after only 30s of rejection,
probably the request only satisfy the upper or lower boundary of the constraints; while after 300s
of rejection, probably the request has more options to compare and can choose a better vehicle.
Above mentioned explanations are just some guesses, more exploration is needed to explain the
result.

Figure 18: Delay caused by congestion, ET: Estimated travel time, TT: Travel time, D: Delay
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6.2.3 Vehicle kilometers traveled

In spite of the fact that vehicle kilometers traveled(VKT) and empty vehicle kilometers trav-
eled(EVKT) drops a lot with increasing request update time, passenger kilometers traveled(PKT)
and passenger estimated kilometers(PEKT) both go up. Longer PKT and PEKT means more
detouring given that origins and destinations are same for all scenarios. To be concluded, more
detouring in the scenario of request update time 600s encourage high vehicle occupancy, which
gives rise to low fleet size, less congestion and less VKT. Less congestion compensates for the
time loss of detouring and result in less waiting.

Table 13: Analysis of kilometers traveled for group of request update time, VKT: Vehicle
kilometers traveled, EVKT: Empty vehicle kilometers traveled, PKT: Passenger
kilometers traveled, PEKT: Passenger estimated kilometers traveled

Request update time 800s 700s 600s 500s 400s 300s 30s

VKT[km] 31396 30432 27352 41351 37843 41766 44242
EVKT[km] 2811.63 2489.34 1674.65 7101.10 5185.52 7124.78 8507.21
PKT[km] 67335 67127 67969 62140 64075 26 61738 61535
PEKT[km] 38706 38593 38793 38672 38694 38620 38575

6.2.4 Ridership

The distribution of ridership shares similar pattern within the group with high update frequency
and the group with low update frequency. Most trips in the group with high update frequency
are shared with 8 passengers, while the group with low update frequency has the most trips
with only 1 or 2 passengers, which is the reason of the relatively high fleet size and high vehicle
kilometers traveled.
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Figure 19: Ridership during the day for group of request update time

(a) Request update time 30s (b) Request update time 600s

(c) Request update time 300s (d) Request update time 700s

(e) Request update time 400s (f) Request update time 800s

(g) Request update time 500s
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6.2.5 Fleet size

Figure 20: Fleet size for group of request update time

(a) Request update time 30s (b) Request update time 600s

(c) Request update time 300s (d) Request update time 700s

(e) Request update time 400s (f) Request update time 800s

(g) Request update time 500s
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Similar to the result of sensitivity analysis, there are more minibuses in the system during
afternoon peak than during morning peak. The peak of the group with low update frequency is
more flat while the peak of the group with high update frequency is sharper. Despite the different
values of peaks, the number of vehicles during the off-peak hour is all round 50.

6.2.6 Fleet deployment

The result of fleet deployment does not show any pattern with the increasing request update time.
The spatial distribution of the initial location of vehicles is similar to the result of sensitivity
analysis.

6.3 Group of annealing

6.3.1 Overall performance

Table 14: Overall performance for group of annealing

Annealing Yes No

Avg. Computation time 619.8s 573.63s
Avg. executed score 104.28 102.83

Mode share
new DRT call 0.0352 0.0636
DRT request 0.8510 0.8334
Walk 0.1138 0.1030

Average time
Access walking 875.40s 872.96s
Waiting 306.49s 261.97s
In-vehicle 291.08s 294.20s

Vehicle kilometers traveled 27352.33 26890.22
Empty kilometers traveled 1674.65 1253.81
No. of passengers per vehicle 25.18 14.11
Average vehicle occupancy 5.20 5.26
Max fleet size 252 356
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The result of the group of annealing is opposite to both sensitivity analysis and the group of
request update time. Once annealing is turned off, the mode share changes dramatically, the
number of passengers per vehicle is halved and the number of fleet size skyrockets. Although
both empty kilometers traveled and average wait time decreases without annealing, but the score
also drops. Probably oversupply can explain the result.

6.3.2 Score and mode share

Figure 21: Score for group of annealing

(a) With annealing (b) No annealing

From ??, it is obvious that the score will hit the bottom whenever turning off the innovation but
recover soon afterwards. With annealing, the score goes down four times at iteration 60, 70, 80,
90(the one at iteration 60 is not very visible); while the score only drops once at iteration 60
without annealing. From Figure 22, the balance between DRT request and new DRT call changes
slightly whenever turning off the innovation but the ratio remains almost the same. However,
without annealing, a peak can be captured at iteration 60 for both DRT request and new DRT
call, because DRT request is more attractive in general. If the demand of DRT, which is the sum
of DRT request and new DRT call, surpasses the supply, which is the new DRT call, the balance
of the system will be destroyed and the exceeding part of demand will be aborted. Although the
system recovers immediately at iteration 61, the terrible experience of DRT request at iteration
60 is already stored in the memory. Therefore, it may result in a relatively higher mode share
of new DRT call. The extra vehicles will give rise to higher fleet size and lower number of
passengers per vehicle.
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Figure 22: Mode share for group of annealing

(a) With annealing (b) No annealing

6.3.3 Number of passengers per vehicle

6.3.4 Ridership

The distribution of vehicle occupancy is similar and the distribution without annealing is more
evenly distributed. It is also proved that annealing has few impact on ridership.

Figure 23: Ridership during the day for group of annealing

(a) With annealing (b) No annealing
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6.3.5 Fleet size and deployment

Figure 24: Fleet size for group of annealing

(a) With annealing (b) No annealing

Figure 25: Fleet deployment for group of annealing

(a) With annealing (b) No annealing

Given that the average vehicle occupancy remains the same and the slight decrease of average
wait time, the increase of fleet size without annealing means that extra vehicles share the
passengers. From Figure 25, it illustrates that the spatial distribution of the initial location of
vehicles with and without annealing is almost the same, and the difference is just more vehicles
are generated in some places. These vehicles share the request of the vehicles in the scenario of
with annealing.
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6.4 Group of new DRT call constant

6.4.1 Overall performance

Table 15: Overall performance for group of new DRT call constant

New DRT call constant -10 -20 -30 -40 -50 -60

Avg. Computation time 524.46s 439.58s 619.80s 567.02s 621.37s 654.66s
Avg. executed score 103.38 102.60 104.28 103.50 101.37 100.40

Mode share
new DRT call 0.0329 0.0321 0.0352 0.0339 0.0346 0.0346
DRT request 0.8663 0.8543 0.8510 0.8519 0.8512 0.8497
Walk 0.1007 0.1136 0.1138 0.1141 0.1142 0.1157

Average time
Access walking 869.30s 873.05s 875.40s 874.39s 874.99s 875.58s
Waiting 728.59s 688.5s 306.49s 340.97s 539.45s 605.05s
In-vehicle 283.35s 289.49s 291.08s 295.15s 295.85s 291.56s

Vehicle kilometers traveled 42674 41692 27352 29228 36078 36790
Empty kilometers traveled 7848 6879 1675 2052 4949 4788
No. of passengers per vehicle 27.29 27.62 25.18 26.10 25.68 25.54
Avg. vehicle occupancy 3.35 3.40 5.20 5.00 4.13 4.00
Max fleet size 319 273 252 286 303 296

The result of the group of DRT constant is similar to the result of the group of request update time,
average executed score, average wait time, vehicle kilometers traveled, empty kilometers traveled
and average vehicle occupancy and max fleet size increases first and decreases afterwards with
the increasing new DRT call constant. Compared to sensitivity analysis, the CV of all above
mentioned indicators is much higher, which means that the variance is not only from randomness,
but also influenced by new DRT call constant. The performance of the scenarios can be divided
into two groups, groups with new DRT call constant -30 and -40 and group with other new DRT
call constant.The number of passengers per vehicle is around 25-30 for almost all simulated
scenarios, which also proves that the optimal value of new DRT call constant should around
25-30.
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Table 16: A Tables long Caption

Max Min Average Std. CV

Avg. computation time 654.66 439.58 571.15 79.21 0.14
Avg. executed score 104.28 100.40 102.59 1.46 0.01
Mode share - new DRT call 0.04 0.03 0.03 0.00 0.03
Mode share - DRT request 0.87 0.85 0.85 0.01 0.01
Mode share - Walk 0.12 0.10 0.11 0.01 0.05
Avg. access walk time 875.58 869.30 873.78 2.38 0.00
Avg. wait time 728.59 306.49 534.84 176.54 0.33
Avg. in-vehicle time 295.85 283.35 291.08 4.51 0.02
Vehicle kilometers traveled 42674.17 27352.33 35635.76 6283.49 0.18
Empty kilometers traveled 7847.57 1674.65 4698.32 2485.46 0.53
No. of passengers per vehicle 27.62 25.18 26.23 1.00 0.04
Avg. vehicle occupancy 5.20 3.35 4.18 0.78 0.19
Max fleet size 319.00 252.00 288.17 23.56 0.08

6.4.2 Ridership

Still similar to the group of request update time, the vehicle occupancy of the well-performed
group with value -30 and -40 is similar and with the highest density of 8 passengers; while
the vehicle occupancy of the group with not so good result is also similar and with the highest
density of 2 passengers. The shape of the distribution seems to be almost same for new DRT call
constant -10 and -20, -30 and -40, and -50 and -60.

50



Simulation of Autonomous Transit On Demand for Fleet Size and Deployment Strategy OptimizationJanuary 2018

Figure 26: Ridership during the day for group of new DRT call constant

(a) New DRT call constant -10 (b) New DRT call constant -20

(c) New DRT call constant -30 (d) New DRT call constant -40

(e) New DRT call constant -50 (f) New DRT call constant -60
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6.4.3 Fleet size

Figure 27: Fleet size for group of new DRT call constant

(a) New DRT call constant -10 (b) New DRT call constant -20

(c) New DRT call constant -30 (d) New DRT call constant -40

(e) New DRT call constant -50 (f) New DRT call constant -60

52



Simulation of Autonomous Transit On Demand for Fleet Size and Deployment Strategy OptimizationJanuary 2018

From the result of fleet size, also similar conclusion can be drawn that the group with good
performance has a sharper peak while the group with bad performance has a more flat peak. It is
interesting that for the graph of new DRT call constant -50, the afternoon peak is sharp and the
morning peak is flat; while the result of new DRT call constant -60 is totally the opposite. The
result of fleet deployment of this group is similar to previous simulations, therefore the analysis
of fleet deployment is neglected.
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7 Conclusion and discussion

7.1 Conclusion

The paper shows the possibilities of the application of agent-based modeling in areas other than
transport simulation. The purpose of the simulation is not only to model the real ATOD system
but solve a complex transport optimization problem with the evolutionary algorithm. After the
equilibrium, the system can indicate the appropriate fleet size and deployment on demand with
high vehicle occupancy. The result confirms that with an appropriately designed trade-off, the
simulation can output a reliable and meaningful result, which can help policy-makers decide
how many minibuses is needed to satisfy the demand and how to deploy minibuses.

From data analysis, on one hand, it is an exciting discovery that indicators such as mode share,
average executed score, access walk time, in-vehicle travel and number of passengers per vehicle
do not change a lot with different parameters and input population file, which shows the reliability
and robustness of the model under the circumstance of dynamic ride-sharing. Although the fleet
size varies among all the simulated scenarios, the range of optimal fleet size can be determined,
which should be around 250-300 in peak hour and 50 in off-peak hour. In addition, the fleet
deployment is similar among ll simulation, which follows the pattern that the initial location of
minibuses are around suburb in the morning, and gathers in some area of the city center in the
afternoon.

On another hand, the variance of some indicators of the model is still large in the sensitivity
analysis, such as wait time, vehicle kilometers traveled, empty kilometers traveled and average
vehicle occupancy. The uncertainty of the model is probably from dynamic vehicle occupancy.
Since the model takes the dynamic matching problem into account and routing reacts to the
demand, a tiny difference in vehicle-passenger matching may change the route of many vehicles
and result in total different vehicle occupancy as well as other indicators. Furthermore, better
performance of these parameters is observed with the increasing request update time and the
performance goes up and comes down with increasing new DRT call constant. The best-
performed request update time should be more than 500s, and the most appropriate new DRT
call constant should be around -30. More accurate best request update time and new DRT call
constant should be determined through more simulation.

The framework of ATOD system enables people to explore the influence of specific parameters
on the transport performance, fleet size, vehicle occupancy and fleet deployment under the
constraints such as request accepting constraints, frequently-used vehicle incentive, vehicle
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capacity constraints. The result proves the successful implementation of the system under some
assumptions and simplifications such as, both positioning and repositioning time is ignored
in the system, people can only choose DRT for their journey, preference of people on ride
sharing is ignored, etc.. The current result shows that under above-mentioned assumption, it
is possible to introduce a new ATOD system to satisfy transport demand with relatively high
vehicle occupancy and reliable service. The thesis offers a framework to solve the optimization
problem with MATSim, and the framework is very extendable and flexible, other optimization
with different constraints and objective function can easily adapt to the ATOD system.

7.2 Future work

The thesis offers a simulation framework to solve the optimization problem of ATOD. There
are still dozens of future work can be done to further improve the model as well as apply the
model to solve existing transport problem and to support policy-making. This thesis is just a
start point of exploring the possibilities of MATSim and the potential of AV. It can be imagined
that with the realization of AV, there will be increasingly more discussion related to AV from the
perspective of transport in the future.

7.2.1 The improvement of the model

First, the dynamic vehicle routing and matching in the simulation result in some variance in
sensitivity analysis. Further exploration is needed to figure out what influences vehicle occupancy
and how to reduce the variances in sensitivity analysis.

Second, the relationship of request update time and vehicle occupancy is not very clear. Although
some explanations are given in Section 6, more simulation and analysis are needed to confirm the
explanations. If scenarios with more request update time are simulated in the future, the curve
of vehicle occupancy with the changing request update time can be determined. In addition, the
curve of scheduled wait time and wait after accept time for every iteration should be determined
to observe the influence of increasing request update time in details.

It is also important to input the output fleet size and deployment strategies into the simulation
with other 10% of the total population for validation. The validation result can test whether the
model is overfitting.

As vehicle capacity in the model limits the vehicle occupancy, it is interesting to simulate the
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model with various vehicle size to reach a better performance in vehicle occupancy. Besides,
different operators compete with different vehicle size will also be a good next step. The model
can be modified to analyze ATOD from operator’s perspective

7.2.2 The application of the model

Despite that ATOD is not launching yet, it is still possible to apply this model to improve the
existing public transit system. It will be super interesting to compare the performance of ATOD
with PT, from both operator and passenger perspective. Same scenarios and configuration in the
thesis can be repeated with only PT mode. The result can show us whether the introduction of
future ATOD really can improve the passengers’ experience of public transit service as well as
reduce the operation cost. In addition, It is also interesting to have a look at the final routing of
each minibuses and compare it with the public transit lines. Probably the routing from ATOD
can inspire policy makers and planners for a better public transport network design.

Besides, although Sioux Falls is a completed and realistic scenario, more complicated and huge
scenarios, such as Zurich, Singapore, etc., are still needed to be tested for a more meaningful
result. Then the result can be located on a real map and compare with site analysis. The
comparison result can be a good guide and reference for authorities to evaluate both current and
future transport situations. Furthermore, more detailed policies regarding AV and PT in cities
such as Zurich and Singapore can be implemented into the ATOD system for a more reasonable
result and a more complicated analysis.
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A Configuration of basic scenario

<?xml version="1.0"?>

<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v2.dtd">

-<config>

-<module name="drt">

<!-- If true, the startLink is changed to last link in the current

schedule, so the taxi starts the next day at the link where it stopped

operating the day before. False by default. -->

<param name="changeStartLinkToLastLinkInSchedule" value="false"/>

<!-- Beeline distance factor for DRT. Used in analyis and in plans file.

The default value is 1.3. -->

<param name="estimatedBeelineDistanceFactor" value="1.3"/>

<!-- Beeline-speed estimate for DRT. Used in analysis, optimisation

constraints and in plans file, [m/s]. The default value is 25 km/h -->

<param name="estimatedDrtSpeed" value="8.333333333333334"/>

<!-- Defines the slope of the maxTravelTime estimation function

(optimisation constraint), i.e. maxTravelTimeAlpha *

estimated_drt_travel_time + maxTravelTimeBeta. Alpha should not be

smaller than 1. -->

<param name="maxTravelTimeAlpha" value="1.5"/>

<!-- Defines the shift of the maxTravelTime estimation function

(optimisation constraint), i.e. maxTravelTimeAlpha *

estimated_drt_travel_time + maxTravelTimeBeta. Beta should not be

smaller than 0. -->

<param name="maxTravelTimeBeta" value="600.0"/>
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<!-- Max travel time from vehicle to drt passenger (optimisation

constraint). -->

<param name="maxWaitTime" value="600.0"/>

<!-- Maximum walk distance to next stop location in stationbased system.

-->

<param name="maxWalkDistance" value="10000000000.0"/>

<!-- Number of threads used for parallel evaluation of request insertion

into existing schedules. If unset, the number of threads is equal to the

number of logical cores available to JVM. -->

<param name="numberOfThreads" value="15"/>

<!-- Operational Scheme, either door2door or stationbased. door2door by

default -->

<param name="operationalScheme" value="stationbased"/>

<!-- Bus stop dwell time per passenger. -->

<param name="stopDurationBeta" value="2.0"/>

<!-- Bus stop acceleration and deceleration time. -->

<param name="stopDurationConstant" value="10.0"/>

<!-- Stop locations file (transit schedule format, but without lines) for

DRT stops. Used only for the stationbased mode -->

<param name="transitStopFile" value="schedule.xml"/>

<!-- Choose whether input vehicles from files -->

<param name="inputVehicleFile" value="false"/>
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<!-- If generate vehicles in the simulation, please input the capacity of

vehicles -->

<param name="capacity" value="8"/>

<!-- An XML file specifying the vehicle fleet. The file format according

to dvrp_vehicles_v1.dtd -->

<param name="vehiclesFile" value="null"/>

<!-- Writes out detailed DRT customer stats in each iteration. True by

default. -->

<param name="writeDetailedCustomerStats" value="true"/>

<!-- Writes out detailed vehicle stats in each iteration. Creates one file

per vehicle and iteration. False by default. -->

<param name="writeDetailedVehicleStats" value="false"/>

<param name="initialFleetSize" value="0"/>

<!-- Maximum extra waiting time for passenger whose request is accepted.

Max waiting time equals detouIdx + maxWaitTime-->

<param name="detourIdx" value="300.0"/>

<!-- request update time interval-->

<param name="requestUpdateTime" value="30"/>

<!-- If a vehicle is idle for more than killing time, it will disappear

from the system-->

<param name="killingTime" value="1800"/>

<!-- If a passenger waits for more than 2 hours, it will be labeled as

abort...-->
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<param name="abortTime" value="3600"/>

</module>

-<module name="dvrp">

<!-- Mode which will be handled by PassengerEngine and VrpOptimizer

(passengers’/customers’ perspective) -->

<param name="mode" value="drt"/>

<!-- Mode of which the network will be used for routing vehicles,

calculating trave times, etc. (fleet operator’s perspective). If null,

no mode filtering is done; the standard network (Scenario.getNetwork())

is used -->

<param name="networkMode" value="null"/>

<!-- Used for estimation of travel times for VrpOptimizer by means of the

exponential moving average. The weighting decrease, alpha, must be in

(0,1]. We suggest small values of alpha, e.g. 0.05. The averaging starts

from the initial travel time estimates. If not provided, the free-speed

TTs is used as the initial estimates For more info see comments in:

VrpTravelTimeEstimator, VrpTravelTimeModules, DvrpModule. -->

<param name="travelTimeEstimationAlpha" value="0.05"/>

</module>

-<module name="controler">

<param name="outputDirectory"

value="output/walkScoreLinear800_withAnnealing_requestUpdate30_noRideSharingBonus_detourAlpha1.5_detourBeta600_newDRTConstant30_2"/>

<param name="firstIteration" value="0"/>

<param name="lastIteration" value="100"/>

<param name="eventsFileFormat" value="xml"/>
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<param name="mobsim" value="qsim"/>

<param name="overwriteFiles" value="deleteDirectoryIfExists"/>

<param name="writeEventsInterval" value="10"/>

<param name="writePlansInterval" value="10"/>

</module>

-<module name="plans">

<param name="inputPlansFile" value="population_10prct_90drt_new.xml.gz"/>

</module>

-<module name="network">

<param name="inputNetworkFile" value="network.xml"/>

</module>

-<module name="global">

<param name="numberOfThreads" value="15"/>

</module>

-<module name="qsim">

<param name="startTime" value="00:00:00"/>

<param name="endTime" value="24:00:00"/>

<param name="simStarttimeInterpretation" value="onlyUseStarttime"/>

<param name="flowCapacityFactor" value="0.1"/>

<param name="storageCapacityFactor" value="0.3"/>

</module>
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-<module name="planCalcScore">

<param name="writeExperiencedPlans" value="true"/>

-<parameterset type="scoringParameters">

<param name="marginalUtilityOfMoney" value="1.0"/>

<param name="performing" value="6.0"/>

<param name="utilityOfLineSwitch" value="-1.0"/>

<param name="waiting" value="-6.0"/>

<param name="waitingPt" value="-6.0"/>

-<parameterset type="activityParams">

<param name="activityType" value="home"/>

<param name="typicalDuration" value="08:00:00"/>

</parameterset>

-<parameterset type="activityParams">

<param name="activityType" value="work"/>

<param name="typicalDuration" value="09:00:00"/>

</parameterset>

-<parameterset type="activityParams">

<param name="activityType" value="secondary"/>

<param name="typicalDuration" value="01:00:00"/>

</parameterset>
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-<parameterset type="modeParams">

<param name="constant" value="-1.0"/>

<param name="marginalUtilityOfDistance_util_m" value="0.0"/>

<param name="marginalUtilityOfTraveling_util_hr" value="-4.0"/>

<param name="mode" value="drt"/>

<param name="monetaryDistanceRate" value="0.0"/>

</parameterset>

-<parameterset type="modeParams">

<param name="constant" value="-1.0"/>

<param name="marginalUtilityOfDistance_util_m" value="0.0"/>

<param name="marginalUtilityOfTraveling_util_hr" value="-4.0"/>

<param name="mode" value="pt"/>

<param name="monetaryDistanceRate" value="0.0"/>

</parameterset>

-<parameterset type="modeParams">

<param name="constant" value="-1.0"/>

<param name="marginalUtilityOfDistance_util_m" value="0.0"/>

<param name="marginalUtilityOfTraveling_util_hr" value="-4.0"/>

<param name="mode" value="car"/>

<param name="monetaryDistanceRate" value="0.0"/>

</parameterset>
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-<parameterset type="modeParams">

<param name="constant" value="-30.0"/>

<param name="marginalUtilityOfDistance_util_m" value="0.0"/>

<param name="marginalUtilityOfTraveling_util_hr" value="-4.0"/>

<param name="mode" value="drt creation"/>

<param name="monetaryDistanceRate" value="0.0"/>

</parameterset>

-<parameterset type="modeParams">

<param name="constant" value="-1.0"/>

<param name="marginalUtilityOfDistance_util_m" value="0.0"/>

<param name="marginalUtilityOfTraveling_util_hr" value="-5.8"/>

<param name="mode" value="walk"/>

<param name="monetaryDistanceRate" value="0.0"/>

</parameterset>

</parameterset>

</module>

-<module name="strategy">

<param name="maxAgentPlanMemorySize" value="4"/>

<!-- 0 means unlimited -->

<param name="fractionOfIterationsToDisableInnovation" value="1"/>

-<parameterset type="strategysettings">
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<!-- iteration after which strategy will be disabled. most useful for

‘‘innovative’’ strategies (new routes, new times, ...). Normally, better

use fractionOfIterationsToDisableInnovation -->

<param name="disableAfterIteration" value="-1"/>

<!-- strategyName of strategy. Possible default names:

SelectRandomBestScoreKeepLastSelectedChangeExpBetaSelectExpBetaSelectPathSizeLogit

(selectors), ReRoute TimeAllocationMutator ChangeLegMode

TimeAllocationMutator_ReRoute ChangeSingleLegMode ChangeSingleTripMode

SubtourModeChoice ChangeTripMode TripSubtourModeChoice (innovative

strategies). -->

<param name="strategyName" value="SelectExpBeta"/>

<!-- weight of a strategy: for each agent, a strategy will be selected

with a probability proportional to its weight -->

<param name="weight" value="0.9"/>

</parameterset>

-<parameterset type="strategysettings">

<!-- iteration after which strategy will be disabled. most useful for

‘‘innovative’’ strategies (new routes, new times, ...). Normally, better

use fractionOfIterationsToDisableInnovation -->

<param name="disableAfterIteration" value="60"/>

<!-- strategyName of strategy. Possible default names:

SelectRandomBestScoreKeepLastSelectedChangeExpBetaSelectExpBetaSelectPathSizeLogit

(selectors), ReRoute TimeAllocationMutator ChangeLegMode

TimeAllocationMutator_ReRoute ChangeSingleLegMode ChangeSingleTripMode

SubtourModeChoice ChangeTripMode TripSubtourModeChoice (innovative

strategies). -->

<param name="strategyName" value="ChangeSingleTripMode"/>

<!-- weight of a strategy: for each agent, a strategy will be selected
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with a probability proportional to its weight -->

<param name="weight" value="0.027"/>

</parameterset>

-<parameterset type="strategysettings">

<!-- iteration after which strategy will be disabled. most useful for

‘‘innovative’’ strategies (new routes, new times, ...). Normally, better

use fractionOfIterationsToDisableInnovation -->

<param name="disableAfterIteration" value="70"/>

<!-- strategyName of strategy. Possible default names:

SelectRandomBestScoreKeepLastSelectedChangeExpBetaSelectExpBetaSelectPathSizeLogit

(selectors), ReRoute TimeAllocationMutator ChangeLegMode

TimeAllocationMutator_ReRoute ChangeSingleLegMode ChangeSingleTripMode

SubtourModeChoice ChangeTripMode TripSubtourModeChoice (innovative

strategies). -->

<param name="strategyName" value="ChangeSingleTripMode"/>

<!-- weight of a strategy: for each agent, a strategy will be selected

with a probability proportional to its weight -->

<param name="weight" value="0.026"/>

</parameterset>

-<parameterset type="strategysettings">

<!-- iteration after which strategy will be disabled. most useful for

‘‘innovative’’ strategies (new routes, new times, ...). Normally, better

use fractionOfIterationsToDisableInnovation -->

<param name="disableAfterIteration" value="80"/>

<!-- strategyName of strategy. Possible default names:
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SelectRandomBestScoreKeepLastSelectedChangeExpBetaSelectExpBetaSelectPathSizeLogit

(selectors), ReRoute TimeAllocationMutator ChangeLegMode

TimeAllocationMutator_ReRoute ChangeSingleLegMode ChangeSingleTripMode

SubtourModeChoice ChangeTripMode TripSubtourModeChoice (innovative

strategies). -->

<param name="strategyName" value="ChangeSingleTripMode"/>

<!-- weight of a strategy: for each agent, a strategy will be selected

with a probability proportional to its weight -->

<param name="weight" value="0.024"/>

</parameterset>

-<parameterset type="strategysettings">

<!-- iteration after which strategy will be disabled. most useful for

‘‘innovative’’ strategies (new routes, new times, ...). Normally, better

use fractionOfIterationsToDisableInnovation -->

<param name="disableAfterIteration" value="90"/>

<!-- strategyName of strategy. Possible default names:

SelectRandomBestScoreKeepLastSelectedChangeExpBetaSelectExpBetaSelectPathSizeLogit

(selectors), ReRoute TimeAllocationMutator ChangeLegMode

TimeAllocationMutator_ReRoute ChangeSingleLegMode ChangeSingleTripMode

SubtourModeChoice ChangeTripMode TripSubtourModeChoice (innovative

strategies). -->

<param name="strategyName" value="ChangeSingleTripMode"/>

<!-- weight of a strategy: for each agent, a strategy will be selected

with a probability proportional to its weight -->

<param name="weight" value="0.023"/>

</parameterset>

</module>
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-<module name="facilities">

<param name="inputFacilitiesFile" value="Siouxfalls_facilities.xml"/>

</module>

-<module name="changeMode">

<!-- Defines all the modes available, including chain-based modes,

seperated by commas -->

<param name="modes" value="drt, drt creation"/>

</module>

</config>
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