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Abstrct 
Nowadays, transport simulation becomes an indispensable tool for transport planners, traffic en-
gineers and also policy decision makers. Calibration is a crucial step in building a reliable simula-
tion model. The calibration here refers to the parameter optimization. The goal of the optimization 
is to make the analyzed model output as close as possible to the observations made in reality. In 
this thesis, SPSA (Simultaneous Perturbation Stochastic Approximation) is chosen to be the cali-
bration algorithm to solve the calibration problem. In order to minimize the difference of mode 
share distribution of census data and simulation output, eight parameters of the utility function in 
MATSim are calibrated. Golden Section Method (GSM) is also applied combined with SPSA to 
improve the efficiency of the algorithm. As a result, SPSA is proved to be an efficient method to 
solve calibration problem for agent-based model.  
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1 Introduction 
In modern life, traffic systems are more and more complex due to the rapid urban growth and 
accompanying increased demand for transport. The travel behavior and decisions of each in-
fluence the traffic pattern.  Considering the large population in the city, the complexity of traffic 
system makes the prediction and management of transport system enormous challenges. There-
fore, transport simulation is nowadays getting indispensable for planning, designing and oper-
ating transportation system. With the traffic simulation, the effect of possible measures on dif-
ferent situations can be tested, which usually aim at optimizing the traffic flow, increasing ac-
cessibility or decreasing congestion and pollution. However, before that, a satisfactory traffic 
model should first be an accurate representation of the observed traffic conditions. Therefore, 
model calibration is a vital step in building a reliable traffic simulation. A complicated model 
usually requires various input parameters. The calibration here refers to the parameter optimi-
zation, through which, the analyzed model output is as close as possible to the observations 
made in reality. 

Transport simulation has many categories. While the traditional four-step process has been used 
as a modeling tool for many decades, the agent-based demand models (ABDM) is gaining pop-
ularity and shows the prominent advantages of flexibility and accuracy. Instead of generating 
aggregative origin-destination (OD) matrices, ABDM is a fully disaggregate approach to sim-
ulate every traveler individually, which enables an ex-post analysis of arbitrary demand seg-
ments. [15] For instance, MATSim is an agent-based dynamic traffic assignment model, where 
the agents optimize their daily activity plans according to the score. The score is calculated 
using MATSim’s scoring function. The detailed procedure is explained in Section 4. The pa-
rameters of the scoring function determine the travel behavior of each agent and the traffic 
pattern of the whole system, which are, therefore, the focused calibration variables in this thesis. 
However, due to the complex behavior and the long running time of MATSim, efficiency is 
particularly crucial for calibration. Simultaneous perturbation stochastic approximation (SPSA) 
has been first developed by Spall [25], which addresses explicitly large-scale, stochastic prob-
lems. Compared to other large population-based global optimization methods, SPSA is attrac-
tive because of its efficient gradient approximation by perturbing all variables at once, thus 
requiring much less run time. The algorithm process is introduced in Section 3.  

With the help of new technologies, the data can be gathered by sensors, traffic counts, GPS 
data and other information sources and gives us a lot of details about real traffic conditions. In 
this thesis, the main focused traffic characteristic is the mode share distribution along travel 
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distances, which is one of the essential features of traffic patterns. Hence, the calibration prob-
lem in this thesis is the problem of finding a parameter set of the utility function in MATSim, 
with which, the error of the mode share distribution of simulation output and sensor data can 
be as small as possible. 

This research aims to implement SPSA into MATSim, test the feasibility of the calibration 
algorithm and improve the efficiency by the modification of the step rules. The rest of the article 
is organized as follows. In the next section, the related work about the calibration problem for 
DTA model and the application of SPSA algorithm is reviewed. Section 3 introduces the gen-
eral SPSA algorithm and the possible modification to improve the performance of the algorithm. 
In Section 4, the fundamental principle and functions of MATSim are presented including the 
general structure of MATSim, the ABDM, and the utility function. After the Section 5 of the 
description of the study case Zurich, in Section 6, the specific implementation of SPSA is pro-
posed, which includes the procedure and the discussion of the parameter and objective function. 
Lastly, the results, analysis, and summary are shown in Section 7 and 8. 

 



Calibration of Agent-based Transport Simulation with SPSA method ________________________________ July 2018 

 

2 Literature Review 
For solving the problem of calibrating Dynamic Traffic Assignment (DTA) model, many cali-
bration methodologies have been explored. Because of the nonlinear nature of calibrating de-
mand and supply parameters in DTA system, extended Kalman filter (EKF) was explored com-
paring also with limiting EKF (LimEKF) and unscented Kalman filter. [2] Frederix (2011) 
proposed the use of marginal computation (MaC) with the use of kinematic wave theory prin-
ciples to estimate dynamic O-D matrix on congested networks using a DNL or DTA model. 
[16] Also to achieve the accurate estimation and prediction of O-D matrix, another application 
of principal component analysis (PCA) was introduced by Djukic (2012) with dramatically 
reduced computational costs. [11]  

Spall (1992) developed simultaneous perturbation stochastic approximation (SPSA), which 
computes a gradient approximation calculating only two measurements of objective function 
per iteration, regardless of the dimension of the calibration problem. This technique is espe-
cially attractive when dealing with a large number of parameters simultaneously and solving 
problems where the objective function is not precise, which is the case for DTA model calibra-
tion. Some works of calibration with SPSA algorithm were successfully achieved in both mi-
croscopic traffic simulation applications [3] and mesoscopic simulation-based DTA systems [4] 
by Balakrishna. Ben-Akiva (2012) also proved the feasibility of calibrating over forty thousand 
parameters simultaneously in DTA system with SPSA. [6] Vaze (2011) compared SPSA with 
other calibration methods, for instance, genetic algorithms (GA).  As a result, SPSA was shown 
to be the most effective algorithm for DTA system and small network. [27] 

In spite of the widely accepted virtues of SPSA algorithm, researchers also proposed some 
modifications to improve the performance of the algorithm. Lee and Ozbay (2009) introduced 
an enhanced SPSA in conjunction with the Bayesian sampling approach, which enables the 
user to enhance calibration by considering statistical data distribution. Another enhanced SPSA 
algorithm was raised by Lu (2015), called weighted SPSA, which incorporates the information 
of spatial and temporal correlation in a traffic network to limit the impact of noise and improve 
convergence rate and robustness.[22] Cipriani (2011) also described three modifications: (1) 
replacement of basic SPSA step rule by the Golden Section Method (GSM); (2) the use of third 
degree polynomial interpolation (PI) of objective function to compute the new solution along 
the descendant direction; (3) Asymmetric design (AD) during the gradient approximation.  

Specific to the problem of calibrating MATSim, Cadyts (Calibration of Dynamic Traffic Sim-
ulations) [12] and Opdyts (Optimization of Dynamic Traffic Simulations) [13] are the two main 
approaches developed by Flötteröd. Cadyts calibrates DTA model by adjusting the plan choice 



Calibration of Agent-based Transport Simulation with SPSA method ________________________________ July 2018 

 

probabilities for all agents, while Opdyts identifies the best parameters out of a candidate set 
without running the MATSim simulation until convergence for every single parameter setting. 
Flötteröd (2012) proposed a Bayesian optimization for solving calibration of a large-scale travel 
microsimulation. [15] Beyeler in his latest work also introduced a practical multi-fidelity 
Bayesian batch optimization for calibration of DTA models and applied it into MATSim. [9] 
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3 Heuristic Calibration Methods  

3.1 General SPSA  

SPSA (Simultaneous Perturbation Stochastic Approximation) is a stochastic gradient approxi-
mation algorithm. Compared with other path search algorithm, it is able to minimize the error 
function when the relationship between the objective function and the variables to be optimized 
is unknown and can only be estimated with noisy observations. SPSA starts from an initial 
estimation of the variable vector and iteratively traces a sequence of variable estimations which 
make the objective function converges to zero based on the gradient approximation. Its greatest 
advantage is the efficiency of calibrating a large number of parameters simultaneously. Because 
in SPSA all of the variables in the decision vector are perturbated at the same time, and the 
approximation of gradient needs only two function evaluations regardless of the number of 
variables. 

The standard iterative form of SPSA is: 

 #$%& = 	#$ −	*$+,$(#$)  1

where #$  is the estimate of the variable set in the kth iteration of the algorithm,  +,$(#$) is the 
approximation of the gradient at #$ . *$ is a non-negative coefficient, which determines the kth 
step size and usually gets smaller as 0 becomes larger. The standard step size rule has the fol-
lowing form: 

 *$ =
1

(2%$%&)3
 2

where *, 5 and 6 are the algorithm parameters. 

The approximation of gradient is the essential step of the stochastic approximation. The tradi-
tional approach perturbs each variable in #$  one at a time, while the SPSA approach perturbs 
all of the variables at the same time. Assuming that # is 7-dimensional, the gradient approxi-
mation step can be expressed as follows: 
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where T() is the objective function. As SPSA is an aggregated optimization algorithm, the 
value of the objective function should be a scalar instead of a vector. The concrete definition 
of objective function for this specific MATSim calibration problem is explained in Section 6.2. 
While the approximation of gradient, #$  is perturbed by the value of ∆$ times U$, where ∆$ is 
an m-dimensional perturbation vector. Its components are chosen randomly as either -0.5 or 
0.5 with the same probability of ½. Also, U$ is a positive scalar and has the similar form to *$ 
that usually gets shrunken when k is larger, but it determines the amplitude of the perturbation: 

 U$ =
@

($%&)V
 4

The sequences *$ and U$ are critical elements in the optimization process. U$ defines the region 
where two measurements of the objective function are calculated to compute the gradient ap-
proximation. If *$ or U$ are chosen too small, the algorithm might be stuck in the current posi-
tion regardless of whether it is optimal or not. To the contrary, if  *$ is too larger, the algorithm 
might take a large step far away from the optimal solution. Also, an over-large U$ might lead 
to the algorithm not converged after many iterations. Spall (1992) proved that the SPSA algo-
rithm converges when the parameters of the algorithm fulfill some conditions. But within the 
framework, the user is free to choose the parameters.  These conditions include: 

α − 2γ > 3γ −
6

2
≥ 0 

α > 0; 	γ > 0 

c > 0; 	a, A > 0 

The more detailed conditions are given in Spall (1992) [25]. The proposed value for α and γ 
are chosen to be 0.602 and 0.101. 

A two-dimensional example of SPSA algorithm is explained in Appendix B  two-dimensional 
example of SPSA algorithm. 
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3.2 Golden Section Method 

Since the parameters of the SPSA algorithm are crucial for the effectiveness, the basic step rule 
can return an uneven convergence of the objective function with relatively poor results even 
after many iterations when the parameters are not chosen suitably. Therefore, each calibration 
problem requires users put effort into testing and adjusting the calibration parameters. In order 
to improve this ineffectiveness, Cipriani (2011) proposed the replacement of the basic SPSA 
step rule by the Golden Section Method (GSM) [10] 

GSM is a technique which iteratively narrows the search area. In the beginning, two points are 
chosen to define the range where an optimum is searched. In this calibration problem, the first 
point p is the current vector #$ , and the second point q is the candidate vector in the next iter-
ation in the standard SPSA iteration form as follows: 

 a = #$  

b = #$ −	*$+,$(#$)  5  

where *$ and +,$(#$) still satisfy the Equation (2) and Equation (3) respectively.  

A high value of *$ means that a large area needs to be searched, which leads to more number 
of simulations. A small *$ might make the search area is too small to find the minimum in it. 
Commonly, * is chosen so that *$ is equal to the maximum step size, which means the maxi-
mum change of the variables in one iteration. As the standard step size rule, the maximum step 
size also decreases during iterations. 

Once the points p and q are determined, two inner points d& and dE are calculated based on the 
golden ratio 

 e =
√gD&

E
 6

so that 

 d& = a − e(a − b) = #$ − *$+,$(#$)e  

dE = b + e(a − b) = #$ − *$+,$(#$)(1 − e)  7  

Now the objective value T(d&) and T(dE) can be found and compared. There are two different 
cases: T(d&) ≥ T(dE) and T(d&) < T(dE). 

If  T(d&) < T(dE), then the interval where the minimum lies is expected to be [d&, a], otherwise 
the minimum occurs in [b, dE]. The interval is the new search area for the next iteration, and 
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the procedure is repeated for the new point a′ and b′. An example of this procedure for one-
dimensional θ is shown in Figure 1. 

Figure 1     Illustration of the GSM procedure 

  

 

  
This procedure is repeated until the interval is reduced to the level of a chosen value ε. To make 
the solution more and more accurate during iterations, ε is also set to decrease with the number 
of iterations. 
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4 Deloyed Silumation System (MATSim) 
MATSim is an activity-based, multi-agent simulation framework implemented in JAVA. [19] 
In this section, the basic concepts behind MATSim and its framework are introduced. 

4.1 Agent-based Demand Model (ABDM) 

Demand model is the central part of traffic simulation. Theoretically, travel is viewed as derived 
from the demand for activity. However, in practice travel has been modeled with trip-based 
rather than activity-based methods. As the most classic trip-based demand model, the four-step 
model has been used in traffic simulation for many years. The four-step model, including trip 
generation, trip distribution, modal split, and assignment, uses origin-destination (OD) matrix 
as the principal database rather than activity surveys. In other words, the activity characteristics 
and the information of each traveler are ignored in this model. 

Activity-based travel theory was started by Hagerstrand (1970) when he first elaborated the 
temporal-spatial constraint of traveling and indicated that the aim of travel is enabling people 
to engage in desired activities. [18] The basic ideas of activity-based travel theory are (1) the 
demand for travel is derived from demand for the activities which require travel; (2) human 
behavior is constrained in time and space; (3) the household significantly affects individual 
activity and travel decisions and (4) activity and travel decisions occur dynamically. 

Based on this, agent-based demand model came into use. The meaning of “agent” here is a 
traveler modeled in the simulation and all agents build the population. Each agent has its daily 
plan of activity chain, which includes the information of activity type, departure time, activity 
duration, route, mode, destination and so on. Instead of just producing the traffic, the agents try 
to manage their day in a profitable way. Through the individual decision-making process of 
modification of the activity chain, each agent tries to optimize its plan. The agent travels in the 
system according to the plan and interacts with each other. The derived traffic is generated. The 
major advantage of agent-based model, compared to the traditional four-step model, is the abil-
ity to simulate each traveler individually. The more explicit modeling is not just a more precise 
representation of the real world, but also offers more opportunities to make various ex-post 
analysis and research. 
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4.2 MATSim framework 

MATSim is an activity-based, multi-agent simulation framework, which is designed for large-
scale scenarios. As introduced in Section 4.1, every agent tries to optimize its daily activity 
schedule iteratively. In MATSim, the optimization is based on the co-evolutionary principle. 
Due to the limited transportation infrastructure, all agents compete with all other agents and 
change their plan accordingly. Then after iterations, an equilibrium is reached eventually, 
where the agents cannot further improve their plans. In other words, the result of the co-evolu-
tionary algorithm in MATSim is user equilibrium rather than system equilibrium. 

The entire MATSim iterative process is presented in Figure 2. It starts with an initial demand, 
which is generated from the initial activity chains of all agents in the study area. The initial 
activity chains are usually derived from empirical data through sampling or discrete choice 
modeling. In every iteration, each agent selects a plan from its memory, which contains a fixed 
number of plans.  After the simulation of the network loading with “mobsim” (mobility simu-
lation), each agent gets a score according to the executed plan, which can differ from the initial 
selected plan at the beginning of the iteration. The agent sometimes has to adjust the activity 
chain due to the result of interaction with other agents in the system, for example, the conges-
tion. The score can be interpreted as an econometric utility. (See Section 4.3) 

On the replanning stage, a certain share of the agent is allowed to clone the selected plan and 
modify it and store the new plan in its memory. The considerations of modification in MATSim 
can be departure time, route, mode, and destination. The further possible considerations, such 
as activity adding or dropping, are currently under development. This process corresponds to 
the decision making by each agent. Once the number of plans in the agent’s memory reaches 

Figure 2     MATSim loop 

  

 

Source: Horni, A., K. Nagel and K. W. Axhausen, (2016). The Multi-Agent Transport Simulation MATSim, Ubiq-
uity Press, London 
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the ceiling, the plan with the lowest score is removed from the memory. The agent, who has no 
chance to modify the plan, selects the best from the existing plans in the memory.  

An iteration ends up with the evaluation of the agents’ experiences and scoring the executed 
plan. The scoring function, also called the utility function, is explained in Section 4.3. The 
MATSim loop is repeated until the average population score gets stabilized, which means the 
iterative simulation gets to the closed point of user equilibrium. A typical score curve is shown 
as Figure 3. 

As the result of the simulation, the output files of MATSim include Log file, score statistics, 
leg travel distance statistics and so on. Besides these summarized output information, every 
action in the simulation generates an event, including “an agent finishes an activity”, “an agent 
starts a trip”, “a vehicle enters a road segment”, “a vehicle leaves a road segment”, “an agent 
arrives at a location” and so on. These events and plans of agents are also recorded for analysis. 

4.3 Utility function 

The score is to describe the performance of a plan. A higher score means better performance, 
to the contrary, a worse plan corresponds to a lower score. However, whether the performance 

Figure 3     Typical score progress 

  

 

Source: Horni, A., K. Nagel and K. W. Axhausen, (2016). The Multi-Agent Transport Simulation MATSim, Ubiq-
uity Press, London 
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of a plan is good or not, is decided by the travelers’ preference. In other words, some people 
may prefer a crowded but fasted trip rather than a comfortable but slower trip, while some may 
choose the other. Therefore, the typical way to describe the subjective performance is to use 
econometric utility functions.  

In MATSim, the basic utility functions are founded by Charypar and Nagel (2005). The utility 
of a plan opq1r is calculated as the sum of all activity utilities o1@s,t plus the sum of all travel 
utilities osu1v,Pwxy(t): 

 opq1r = ∑ o1@s,t + ∑ osu1v,Pwxy(t)
{D&
t|}

{D&
t|}  8

where � is the number of activities, b is the trip that follows activity b. 

The utility of an activity b is calculated as the sum of utilities of performing activity oxÄu,t, the 
spend waiting time oÅ1Çs,t, the penalty for not staying long enough oy1uqÉ.xp and the penalty 

for a “too short” activity oÖÜwus.xÄu,t

 o1@s,t = oxÄu,t + oÅ1Çs,t + oy1uqÉ.xp + oÖÜwus.xÄu,t  9

While the agents earn positive utilities during activities, traveling, on the other hand, costs 
people money and time. Therefore, the utility of a trip is usually negative. The travel utility for 
a trip b is given as: 

 osu1v,t = àPwxy(t) + âsu1v,Pwxy(t) ∙ ãsu1v,t + âP ∙△ 7t 

+<âx,Pwxy(t) + âP ∙ çx,Pwxy(t)C ∙ ésu1v,t + âsu1rÖèyu ∙ dsu1rÖèyu,t  10

where: 

àPwxy(t) is a mode-specific constant, 
âsu1v,Pwxy(t) is the marginal utility of traveling time by mode, 
ãsu1v,t is the travel time between activity location b and b + 1, 
âP is the marginal utility of money, 
△7t  is the change in monetary budget caused by fares, or tolls for the complete leg, 
âx,Pwxy(t) is the marginal utility of distance, 
çx,Pwxy(t) is the mode-specific monetary distance rate, 
ésu1v,t is the travel distance between activity location b and b + 1, 
âsu1rÖèyu  is public transport transfer penalties, 
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dsu1rÖèyu,t  is a binary variable representing whether a transfer occurred the previous and cur-
rent leg. 

The calculation of the utility function is the basis of the decision-making process of each agent. 
These parameters of the utility function decide what kind of plans are good and affect directly 
the individual decision of each agent, which is the determinant of traffic demand. However, 
those parameters are usually hard to obtain from observations or experience directly. The cali-
bration is, therefore, extremely crucial. 
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5 Case Study Zurich 
For the implementation of the algorithm, two different scenarios of Zurich are used. Both of 
them are provided by the Institute for Transport Planning and Systems (IVT) at ETH Zürich. 
The small-scale Zurich scenario of 0.1% population serves as a test-case scenario to keep run-
ning time at an acceptable level, whereas the Zurich scenario of 10% population is used to 
evaluate the robustness and the performance of the algorithm on a larger scale scenario. 

5.1 Network 

The study area is confined by a circle with a radius of 30 kilometers and a center at “Bellevue”, 
which is located in the central area of Zurich. The network consists of over 70’000 nodes and 
over 157’000 directional links, which includes the information of location, direction, length, 
free speed, capacity and the travel modes allowed on the link. For the public transport, there 
are over 8’000 stop facilities and 648 transit lines in the system. 

Figure 4 The network of Zurich scenario 

  

 

 Source: The Zurich scenario provided by IVT, ETH Zürich 
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5.2 Demand 

In the activity-based model, the travel demand is derived from the activities required by agents.  
In order to obtain a higher computational speed, 0.1% and 10% population are chosen for two 
scenarios. The activities are executed at the facilities in the system. Different facilities corre-
spond to different activity types, including home, work, education, leisure, and shop. Due to 
the decrease in population, the number of households and facilities should also be reduced 
correspondingly. The specific number is as follows: 

Table 1 Description of Zurich scenarios 

  Scenario Population Household Facility 

0.1% sample 1566 agents 1565 households 4363 facilities 

10% sample 158485 agents 149592 households 147563 facilities 

  

5.3 Configuration file 

The configuration options of MATSim can be described and set in the configuration file. Spe-
cifically, the attributes and parameter of data containers, global modules, mobility simulation, 
replanning strategies and observational modules can be defined. Importantly, the iteration count 
is set to 80, where the average score of the population is already getting stable. It is also worth 
mentioning that the flow capacity factor of the mobility simulation (qsim) needs to be set ac-
cording to the sample scenarios. For example, the flow capacity factor should be 0.1 for 10% 
sample, and 0.001 for 0.1% sample. At the replanning stage, the replanning strategy needs to 
be defined. In this thesis, the change of travel mode is allowed with the weight of 0.2.  

5.4 Census data 

The census data is collected from the microsensors in the region of Zurich. The data records 
148’092 trips, which include the information of travel distance, travel mode and the coordinate 
of the start and end point. Among these trips, there are 23’641 trips that departure and also 
arrive in the study area. 
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Figure 5 Trip count distribution of census data for different modes 

  

 

  
As shown in Figure 5, the trip distributions by trip distance are entirely different for four dif-
ferent modes. The distributions of walk and bike concentrate in the short distance. Over 70% 
of walking trips are shorter than 1kelometer. To the contrary, the distributions of car and public 
transport are more even along travel distance. But for long-distance trips, there are still more 
than 10% and 20% of trips by car and by public transport respectively over 30 kilometers. 

Mode share is an important indicator in developing a sustainable transport within a city or a 
region. A mode share oP,x is the percentage of travelers using a particular type of transporta-
tion, which can be written as follows: 

 oP,x =
rI,ê

∑ rI,êI∈í

 11

where ì = {U*ï, añóòôU	ãï*öõaúïã, ù*ò0, óô0û}, öP,x  is the number of trips by mode 7 at 
distance é. 

The mode share distribution by distance reflects how travel distance affects travelers’ decision 
of mode choice. Figure 6 shows the result from census data. Private car is the most attractive 
travel mode within most distances, around half of travelers travel by car in this area. As the 
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second attractive travel mode in general, people have more intentions of taking public transport 
for long distances than short distances. Walk and bike represent a small fraction of all trips. 
Most traveler (over 70%) choose to walk within 1 kilometer, while travelers prefer riding a 
bike between two and five kilometers. 

Figure 6 Mode share distribution of census data for different modes 

  

 

  

5.5 Uncalibrated simulation 

The uncalibrated result is the output of the simulation with the initial parameters of the utility 
function. As shown in Figure 7, the travel mode of bike is much more attractive than the census 
data due to the unsuitable parameters of the utility function. The huge distance between census 
data and simulation output need to be reduced as much as possible by the calibration process.  
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Figure 7 Comparison between mode share distribution of census data and uncalibrated 
simulation output  
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6 Calibration 
The calibration process with SPSA algorithm is implemented in the framework of MATSim in 
JAVA. The calibration procedure, variables, objective function and the measurements of per-
formance are clarified in this section. 

6.1 Calibration variables 

As introduced in section 3.1, the major advantage of SPSA algorithm over other stochastic 
approximation is the ability to calibrate a large number of variables at the same time in an 
efficient way. However, in order to implement the algorithm and test the feasibility of calibrat-
ing MATSim, the study starts with a small number of variables. In this thesis, which is the first 
stage of the study, the calibration variables are chosen to be the constant parameter àPwxy(t) 
and the marginal utility by traveling time âsu1v,Pwxy(t) in Equation (10). So, there are eight 
variables need to be calibrated in total considering the four travel modes in the system, which 
are: 

à@1u, âsu1v,	@1u , àps, âsu1v,	ps, àÅ1q$ , âsu1v,	Å1q$ , à†Ç$y, âsu1v,	†Ç$y . 

Since the constant parameter àPwxy(t) has no physical meaning in reality, it can be set as any 
value from negative infinity to positive infinity. Whereas the marginal utility âsu1v,Pwxy(t) has 
to be non-positive. In the MATSim system, trips are regarded as the derivate of the demand for 
activities. While the agents can work to earn money and go hiking for health and pleasure 
during activities, they have to spend time and money on the trips. Therefore, âsu1v,Pwxy(t) 
should be negative to represent the disutility of trips. 

6.2 Objective function 

The choice of calibration objective plays an essential role in the calibration problem. Because 
it determines what values are required to be minimized in the process. In general, the goal of 
the calibration process in this thesis is to minimize the errors of mode share distribution be-
tween census data and simulation output. As explained the Equation (3) in Section 3.1, the 
result of the objective function T() should be a scalar. Hence, as an aggregated result, it is not 
worth of calculating all the distance between census data and simulation output in each small 
distance bin as shown in Figure 7. In other words, to simplify the problem, the number of bins 
for mode share distribution should be reduced, and the suitable bin size needs to be found.  
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As described in Section 5.4, the mode share distributions in reality are skewed and concentrate 
at the different distances for different modes. Therefore, it is reasonable to have uneven and 
different bin sizes for four travel modes. 

In general, more bins with smaller bin size mean a higher resolution and a higher accuracy. For 
example, the most trips by walk occur when the trip distance is less than 2 kilometers. Therefore, 
the bins at the short distance should be narrower than at the long distance. A suitable way to 
determine the bin size is to find the boundaries that split the data into a predefined number of 
buckets containing an equal number of trips. In this thesis, the number of bins is chosen to be 
five. Hence, each bin should contain exactly 20% trips for each mode as shown in Figure 8.  

Figure 8 Equi-depth histogram of trip distribution for different modes 

  

 

 
As there are five bins for each of four travel modes, twenty differences between census data 
and simulation result need to be minimized. So, the objective function can be determined in 
different ways. For now, two options are under consideration, which are the sum of twenty 
absolute errors (Equation 12) and the maximum error among them (Equation 13). 

 T<#°$C = ∑ ¢oP,x − o
£
P,x¢P∈§,x∈•  12

 T<#°$C = max
P∈§,x∈•

¢oP,x − o
£
P,x¢  13

The comparison of these two objective function is introduced in Section 7.1. 
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6.3 Calibration procedure 

As illustrated in Figure 9, the calibration process starts from the initial variables and the com-
puting two gradient candidates. Then three MATSim simulations with three variable sets, in-
cluding initial variables and two gradient candidates, run at the same time. Based on the simu-
lation output, the objective values of three variable vectors can be calculated by comparison 
with census data. Those objective values then at the next stage are used to evaluate the gradient 
approximation. At the step of computing new variables, step size *$ needs to be determined 
and also GSM can be implemented. The new variables have to satisfy the constraints, then the 
loop of the calibration process is repeated until the objective value, and variables get stabilized.  

 

Figure 9 Calibration process 

  

 

  

6.4 Measures of performance 

Once the simulation results are obtained, they could be compared with the observation meas-
urements qualitatively and quantitatively, in order to measure the performance of the calibra-
tion. Different methods of calculating simulation errors are applied in this thesis in order to 
quantify and aggregate the calibration results from different aspects. The quantification meth-
ods include: (a) Normalized Root-Mean-Square Error (RMSN), (b) Root-Mean-Square Percent 
Error (RMSPE), (c) Mean Absolute Normalized Error (MANE) and (d) Mean Percentage Error 
(MPE). 
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The RMSN and RMSPE quantify the overall error of the simulation. The large errors are more 
heavily penalized by these measures than the small errors. RMSN is formulated as follows: 

 ®ìo� =
©{∑ (™I,´

¨ D™I,´
≠ )ÆI∈í,	´∈[G,Ø]

∑ ™I,	´
≠

I∈í,	´∈[G,Ø]

 14

where  

� = number of bins 
ì = travel modes {U*ï, aã, ù*ò0, óô0û} 
∞P,r
w = observation, and 
∞P,r
Ö = simulated value of mode 7 in bin ö. 

RMSPE is calculated as follows: 

 ®ìo±≤ = ≥
&

{
∑ ¥

™I,´
¨ D™I,´

≠

™I,´
≠

µ

E

P∈§,	r∈[&,{]  15

The MANE indicates the overall error of simulation as well, but it is not particularly sensitive 
to large errors. The MANE is expressed as follows: 

 ì5�≤ =
&

{
∑ ¥

¢™I,´
¨ D™I,´

≠ ¢

™I,´
≠

µP∈§,	r∈[&,{]  16 	

The MPE indicates the existence of systematic under- or overprediction of the simulation, 
which is calculated as follows: 

 ì±≤ =
&

{
∑ ¥

™I,´
¨ D™I,´

≠

™I,´
≠

µP∈§,	r∈[&,{]  17

While the rest three indicators are limited to be positive, MPE can be both positive and negative. 
A negative value means an underprediction of the simulation, whereas the positive value indi-
cates an overprediction. 
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7 Results 
The performance of SPSA algorithm on calibrating MATSim is tested in different scenarios in 
this section. The small scenario of 0.1% population is used for the comparison between differ-
ent objective functions, different step size rules and the sensitivity analysis of the important 
parameters in the algorithm. The robustness of the algorithm is proved with the large scenario 
of 10% population. The concrete parameters of the algorithm chosen for the case study are 
listed in the Appendix C  Parameters of SPSA algorithm for case study.

7.1 Comparison between different calibration objective functions 

As introduced in Section 6.2, the sum of all differences and the maximum difference between 
census data and simulation output are the two options of the objective function in this thesis. 
Table 2 illustrates the performance of two objective functions. Compared with the uncalibrated 
result, the results of both two options reach to a similar satisfactory level.  

Table 2 Comparison between different calibration objective functions 

     RMSN RMSPE MPE MANE 

 value change % value change % value change % value change % 

Initial 0.463 - 6.039 - -3.235 - 6.313 - 

Sum 0.141 69.5 0.941 84.4 0.341 89.5 1.449 77.0 
Max 0.153 67.0 1.022 83.1 0.064 98.0 1.440 77.2 

    
However, the vibration of the objective function of maximum difference is much more severe 
than the sum of differences. The objective value still fluctuates and doesn’t get converged after 
the 100th iteration as shown in Figure 10. 

By using the sum objective function, the algorithm tries to find the gradient where general 
differences decrease. To the contrary, with the maximum objective function, the algorithm tries 
to minimize a specific mode at a certain distance until it is not the maximum difference anymore. 
Then the new maximum difference starts to be minimized. Ideally, when the maximum differ-
ence is minimized to a certain level, the general differences should also be limited within a 
small number. Especially the extremely large error should be avoided. However, in practice, 
the instability, as its major disadvantage, limits the effectiveness and accuracy of the algorithm. 
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Figure 10 Comparison between different calibration objective functions 

  

 

  

7.2 Comparison between different step size rules 

The basic step rule and GSM are introduced in Section 3.1 and Section3.2. As shown in Figure 
11, the algorithm converges with fewer iterations with GSM. However, the additional simula-
tions have to run in order to calculate the inner points of GSM, which results in a higher com-
putational cost. Therefore, the efficiency of the algorithm is not improved significantly with 
GSM considering the running time or computational cost.  

As the indicators of performance shown in Table 3, the results of calibration with two different 
step rules have no obvious differences. 

Figure 11 Comparison between different step size rules 
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Table 3 Comparison between different step size rules 

     RMSN RMSPE MPE MANE 

 value change % value change % value change % value change % 

Initial 0.463 - 6.039 - -3.235 - 6.313 - 

Basic 
step 0.141 69.5 0.941 84.4 0.341 89.5 1.449 77.0 

GSM 0.153 67.0 1.202 80.1 0.151 95.3 1.437 77.2 

  

7.3 Sensitivity analysis 

It is already proved by Spall (1992) [25] and Cipriani (2011) [10] that the parameters of SPSA 
are the determinants of algorithm efficiency. A good choice of the parameters helps SPSA to 
converge faster. Therefore, the further exploration of the parameters might be useful to improve 
the performance of the algorithm. 

7.3.1 Parameter ∂ 

* is the essential parameter in Equation (1) and Equation (2), which determines the step size of 
algorithm directly. As clarified in Section 3.1, either too small or too large * has the negative 
impact on the algorithm efficiency. In the sensitivity analysis, * is set to be 0.2, 0.5, 0.7 respec-
tively.  

Table 4 Sensitivity analysis of parameter * 

     RMSN RMSPE MPE MANE 

 value change % value change % value change % value change % 

Initial 0.463 - 6.039 - -3.235 - 6.313 - 

* = 0.2 0.130 71.9 1.170 80.6 -0.135 95.8 1.367 78.3 

* = 0.5 0.127 72.6 0.935 84.5 -0.030 99.1 1.228 80.5 

* = 0.7 0.128  72.4 0.865 86.5 0.118 96.4 1.237 80.4 
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As shown in Figure 12, the algorithm with * of 0.2 converges much slower than 0.5 and 0.7. 
While it gets converged after 40 iterations, the algorithms with * of 0.5 and 0.7 are already sta-
bilized after 30 iterations. Although compared with uncalibrated simulation, the results of * = 0.2 
are acceptable (as shown in Table 4), there is still a gap compared with  * = 0.5 or * = 0.7.  

Obviously, the variables need more steps to move to the optimal point with smaller step size. 
That’s why algorithm with smaller * is harder to get converged. However, the calibration with * 
of 0.7 is not the first one to get to the stable state. The objective value with * of 0.5 decreases 
faster than with * of 0.7. If * is too larger, the algorithm might take a large step far away from 
the optimal solution. Hence, it might get converged with more iterations. 

Figure 12 Sensitivity analysis of parameter * 
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7.3.2 Parameter ∑ 

The value U plays a crucial role in SPSA algorithm since it defines the area, around which the 
objective function of current variables is evaluated to find a new gradient.  

As illustrated in Figure 13, the algorithm converges faster with a higher value of U. However, 
due to the larger fluctuation the result of U = 1.7 is not as good as U = 1.3 or U = 1.0 (As shown 
in Table 5) In addition, the value of U has no direct correlation with step size according to the 
result of analysis, but has a positive correlation with the amplitude of gradient evaluation, which 
also affects the speed of convergence and the stability.

Figure 13 Sensitivity analysis of parameter U 

  

 

  
 

 



Calibration of Agent-based Transport Simulation with SPSA method ________________________________ July 2018 

 

Table 5 Sensitivity analysis of parameter c 

     RMSN RMSPE MPE MANE 

 value change % value change % value change % value change % 

Initial 0.463 - 6.039 - -3.235 - 6.313 - 

c = 1.0 0.135 70.8 0.850 85.9 0.126 96.1 1.205 80.9 

c = 1.3 0.128 72.4 0.865 85.7 0.118 96.4 1.237 80.4 

c = 1.7 0.136 70.6 1.170 80.6 -0.136 95.8 1.367 78.3 

 
 
 

 

 
 

7.4 Result of large scenario 

The large scenario of 10% sample is used to test the robustness of the algorithm. Due to the 
considerable long running time, only 16 iterations have been finished in this thesis. But as 
shown in Figure 15, the algorithm tends to be converged after only six iterations. The indicators 
of performance (Table 6) also illustrates that the calibration result is already at a satisfactory 
level. 

Figure 14 Calibration result of large scenario 

  

 

  
Figure 14 presents scatterplots of the same results Each point in these plots represents the mode 
share for one mode in one bin, with the census data plotted on the y-axis and the corresponding 
simulated value plotted on the x-axis. A diagonal line indicates the location of the points in the 
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case of a perfect fit. Ideally, all points should lie on that line. As illustrated in Figure 14, the 
points are much closer to the line after calibration compared with the uncalibrated simulation.  

Figure 15 Objective evaluation of large scenario 

  

 

 
However, the gradient evaluation shown in Figure 15 still fluctuates heavily, though the objec-
tive evaluation seems to be stabilized. The calibration process indeed needs to run for more 
iterations. But at the same time, the parameter γ, which determines the reduction of U$ during 
iterations, might be chosen in a more suitable way. 

The more visualizations of calibration result are attached in Appendix D  Calibration result of 
large scenario. After calibration the differences of mode share distribution between census data 
and simulation output are reduced significantly. 

Table 6 Calibration result of large scenario 

     RMSN RMSPE MPE MANE 

Before  0.451 5.215 -2.893 5.924 
After  0.119 0.862 0.070 1.072 

Change %  73.6 83.5 97.6 81.9 
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8 Conclusion and Outlook 
In this thesis, the SPSA algorithm has been implemented in MATSim for solving the calibration 
problem of an agent-based model. It is proved that SPSA is an efficient algorithm for calibrat-
ing multi-variables. However, the efficiency is largely depended on the choice of suitable pa-
rameters of SPSA algorithm. Therefore, testing and adjusting parameters are extremely crucial 
for solving the problem. The effects of different parameters on the algorithm are now more 
apparent by the sensitivity analysis. The better understanding of the meaning and effects of 
algorithm parameters is helpful to find the suitable parameters for the calibration problem. In 
addition to the parameter * and U, the sensitivity analysis of other parameters is also worth 
doing for the further step of this study.

The proposed combination of GSM and SPSA algorithm is also tested in this thesis. The algo-
rithm indeed converges with much fewer iterations when GSM is applied. However, the com-
putational cost of each iteration increases dramatically due to the considerable long running 
time of MATSim. In this case, the efficiency is not improved significantly by applying GSM 
in SPSA algorithm.  

As the time limitation of the thesis, the number of calibration variables is only eight, which is 
still a long way from the ceiling of SPSA algorithm. SPSA should have the potential to calibrate 
over a hundred variables at the same time. Therefore, increasing the number of calibration var-
iables is also the next step of this study. 

In summary, SPSA algorithm is a suitable method for the calibration problem of an agent-based 
model due to its attractive efficiency and performance. So far, the study is just at the beginning 
stage. The further work, including the cross-validation of the result, increasing number of cal-
ibration variables needs to be done in the future. Additionally, some enhanced SPSA method, 
such as weighted SPSA, was developed, which also can be the method in the future to solve 
the more complicated calibration problem for MATSim. 
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Appendix B  two-dimensional example of SPSA algorithm 
 

Figure 16 two-dimensional example of SPSA 

  

 

   

In the two-dimensional example, the optimization problem can be regarded as the problem of 
location choice of the variable. The variable moves on a plane, and tries to move to a point, 
where the objective value is minimum.  

As illustrated in Figure 16, by calculating the objective value of two opposite sample points, 
the gradient approximation is calculated. The variable moves along the gradient by a suitable 
step.  
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Figure 17 two-dimensional calibration example 

  

 

   

Figure 17 gives a concrete example of calibration with SPSA algorithm. The variables of pt 
constant and car constant move from the upper left of the plane to lower right long the gradient. 
The objective value is getting lower and lower long this direction.  
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Appendix C  Parameters of SPSA algorithm for case study 
 

 Step 
Rule 

Objective 
function  ! "� c # 

Sensitivity 
analysis of 
! 

basic sum 0.2 0.601 1.3 0.101 
basic sum 0.5 0.601 1.3 0.101 
basic sum 0.7 0.601 1.3 0.101 

       
Sensitivity 
analysis of 
$ 

basic sum 0.7 0.601 1 0.101 
basic sum 0.7 0.601 1.3 0.101 
basic sum 0.7 0.601 1.7 0.101 

       
Objective 
function 

basic sum 1 0.601 2 0.101 
basic max 4 0.601 2 0.101 

       

Step rule basic sum 1 0.601 2 0.101 
GSM sum 2 0.601 2 0.101 

       
Large  
scenario basic sum 0.5 0.601 1.3 0.101 
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Appendix D  Calibration result of large scenario 
 
Figure 18 Comparison of mode share distribution between census data and simulation output 
of large scenario 
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Figure 19 Comparison of mode share distribution with uneven bin size between census data 
and simulation output of large scenario before calibration 
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Figure 20 Comparison of mode share distribution with uneven bin size between census data 
and simulation output of large scenario after calibration 

 

 

  
 

 


