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Abstract—This paper aims at creating short-term 

predictions of platform overloads on train station platforms 

using supervised machine learning.  As this is one of the first 

attempts at predicting passenger flows for a small space and 

time resolution, the focus is kept on basic algorithms. More 

specifically, the paper compares the results of the oneR, J48, 

RandomForest and NaiveBayes algorithms using Matthew's 

Correlation Coefficient (MCC) and the area under the 

Precision-Recall curve (AuPRC) as performance indicators. 

The input data for the algorithms, i.e. the set of classified 

instances, describes the occurrence of overloads on the 

platform by combining operational, platform, and descriptive 

data. The overload class is defined using a theoretical 

definition based on the widely used Level of Service concept for 

pedestrian facilities. This methodology is tested by creating a 

prediction model for the Amsterdam Zuid train station in the 

Netherlands where new and detailed data and evaluation 

possibilities were available provided by ASE AG and NS 

Stations. The J48 algorithm outperforms the others in the final 

prediction model. However, the results show that accurately 

predicting overload situations in the short-term future is 

difficult using basic supervised machine learning algorithms. 

Keywords—Platform overload, Passenger flows, prediction, 

supervised machine learning. 

I. INTRODUCTION  

Travel demand is constantly increasing around the globe at 

high rates forcing stations to operate at near, or even over 

capacity. The capacity at a train station is defined and 

measured by the number of passengers that can comfortably 

be present in a given space [1]. However, due to the cyclic 

nature of pedestrian flows, these issues are often only 

relevant during the morning and evening peak hours when 

the flows are the highest. It is crucial for stations to find 

ways to maximize the usage of their capacities to provide an 

attractive and safe service for the users with efficient 

planning and operation [2]. To be able to effectively run a 

station at its capacity limits at these crucial times, operators 

need to be able to closely monitor the current situations in 

the station and reliably predict future scenarios.  

With the usage of the newly developed Pedestrian 

Analytics System (PAS) by ASE AG [3], it is now possible 

to anonymously track and extensively evaluate pedestrian 

movement allowing operators to gain valuable information 

on the usage of the station. The increasing concern around 

train stations reaching their capacities therefore benefits 

from the rise and availability of big data to gain a better 

understanding of the pedestrian distribution to maximize 

their usage. As the technology of the PAS has emerged and 

established recently, there is a research gap discovered 

regarding this detailed space-time knowledge and 

availability of pedestrian flow data [3]. This immense 

amount of data lends itself to the application of a machine 

learning approach, where large data inputs can be analyzed 

using appropriate algorithms.   

II. LITERATURE REVIEW 

A. Dimensioning Train Stations 

A common assessment scheme used for dimensioning 

railway stations is the Level of Service (LoS) scheme, where 

six service levels, ranging from levels A to F, are used to 

quantify the quality, safety, and comfort of pedestrian 

facilities. The LoS scheme dates back to 1965 where it was 

introduced in the Highway Capacity Manual by the 

Transportation Research Board [4] for the dimensioning of 

roadways, and was later adapted for pedestrian facilities by 

Fruin [5]. Small changes and adaptions have been made to 

these densities over the years. The threshold densities 

defined in paper, based on [2] are shown in Table 1. LoS C 

is the standard level of service that should be maintained on 

the platform when no train is present, while higher densities, 

up to LoS E, are permitted during the passenger exchange 

taking place on the side of the train's arrival. LoS F should 

be avoided because the safety of pedestrians can no longer 

be guaranteed. Despite common adaptations, there is a lack 

of information regarding the time component of the LoS 

schemes, i.e. defining how long that higher densities can be 

tolerated. This can be linked back to the reduced amount of 

pedestrian data available at a fine time and spatial scale [6].  

TABLE I.  THRESHOLD DENSITIES [P/M2]  LOS 

 

B. Forecasting Passenger flows 

Often, forecasts have been done at a larger temporal and 

spatial aggregation. However, to predict overloads on the 

platform, a forecast at a much smaller resolution is required. 

Previously, this smaller aggregation was difficult to achieve 

due to the lack of data, especially pedestrian data, now 

provided by PAS [3]. These new pedestrian sensing 

technologies allow the recording of the walking paths of 

passengers at a granularity of 0.25 seconds and a high 

spatial accuracy. These tracks can also be aggregated in 

space and time to create occupancy readings of pre-defined 

zones. Data availability, various queries in space and time, 

LoS Walking Areas Waiting and Congestion 

A 0.30  0.55 

B 0.45 0.75 

C 0.60 0.95 

D 0.75 1.25 

E 1.50 2.50 

F >1.50 >2.50 



and analysis are provided by the PAS in high efficiency, 

integrated in an encompassing and sophisticated software 

environment [3]. Considering the newly available data, the 

relation between the demand and the capacity of the given 

infrastructure, or a direct prediction of the occurrence of 

dangerous situations on the train station platform now 

becomes feasible, however, has not been pursued so far. 

III. METHODOLOGY 

In order to apply the method of supervised machine 

learning, an input data set as set of classified instances must 

be given to the chosen algorithms. Here, this set of classified 

instances must contain features relating to the situation on 

the platform. These will then be classified by a chosen 

definition of platform overloads.  The exact nature of the 

input data depends on the information available, however at 

minimum, the following three categories of data should be 

included: 

 Descriptive data:  information about the current 

situation. 

 Operational data: information describing the scheduled 

timetable and actual train operations. 

 Platform data: information describing the movements 

of pedestrians on the platform from a pedestrian 

tracking system. An important measure that should be 

derivable from the output is the density on the 

platform, since this is often the quantity used for the 

dimensioning of railway stations for the LoS scheme. 

These individual data sources are merged together, 

depending on what should be predicted. The individual 

instances in the dataset are then each given their respective 

classification according to the chosen overload definition. 

Various appropriate machine learning algorithms were 

compared to see which model performs best at correctly 

identifying the platform overloads.   

A. Classification  

A theoretical definition based on the LoS concept is used for 

the definition of platform overloads, with the platform 

functions shown in “Fig 1.” The safety area should be 

avoided, the circulation is used for walking, and the rest is 

used for waiting and congestion. The missing time 

component in this dimensioning scheme is set to 30s 

to avoid creating warnings for short, tolerable spikes in 

densities created by the fluctuating nature of pedestrian 

behavior. 
 

The following classes were created: 

 No warning 

 Precautionary Warning: when the threshold density 

above LoS C has been reached in one zone for more 

than 30s. 

 Overload Warning: threshold density above LoS C has 

been in the zone in question and at least one adjacent 

zone for more than 30 seconds. 

Higher densities are permitted on the plaform during 

passenger exchange. These warnings can be ignored if a 

train is present.  

 
Fig. 1. Platform Functions 

B. Model Set-up 

The data is stored in a matrix form, where every row in the 

dataset is an instance of the dataset and every column is a 

feature, except for the last column which is the class. The 

dataset was created in a time-based approach, where every 

instance describes a time on the platform. To provide an 

easily adaptable model, the model was set-up so that the 

following variables can be given as an input to data-

preprocessing script.  

 Time aggregation (agg): The duration of time to be 

represented for every instance.  

 Prediction window (pw): time difference between the 

given information and the time for which the 

prediction should be made. 

 Historic window (hw):  the amount of information 

from the past minutes the model is given. 

C. Machine Learning 

In a first attempt to predict platform overloads, basic 

algorithms will be tested to examine their performance. 

These basic algorithms are favored since they provide 

insight to their mapping from input to output. The positive 

class, here the overload class, is the class of interest. The 

results of the predictions can be summarized in a confusion 

matrix, as shown in “Table II”, including the assumed cost 

for its occurrence. The cost of under classifying an instance 

being twice as bad as an overclassification. The model is 

trained using cost-sensitive learning, where the goal is to 

minimize the overall cost.   

TABLE II.  CONFUSION MATRIX AND ASSOCIATED COST 

Actual Class 

Predicted Class 

Overload 
 

No Overload 

Overload true positive (TP) – 0 false positive (FP) - 10 

No Overload false negative (FN) - 5 true negative (TN) -  0 

 

 

The performance of the algorithms will be judged based on 

AuPrC (eq. 1) and MCC (eq. 2) where both values have a 

maximum desired value of 1.0.  

 
 

 
 



Statistical modelling The NaivesBayes algorithm will be 

tested, where the output is based on the Bayes’ Thereom 

of conditional probability. The assumption is made that all 

the features are of equal importance and independent of 

one another. Although this is often not the case in real 

world data, this algorithm has been shown to perform 

surprisingly well [8]. 

 

Decision Trees Decision trees represent a sequence of 

decisions that need to be made in order to reach a certain 

outcome. Three types will be tested. The oneR algorithm 

is a basic decision tree that is limited to only making one 

rule for classification. The J48 algorithm is a basic 

decision tree, which employs the method of pruning to 

increase its performance. The RandomForest is a 

combination of decision trees, where decision trees are 

created for random combinations of features and instances, 

and the final class is predicted using the majority class [8]. 

 

Artificial neural network (ann): An ann was tested as a 

comparison to the basic learning algorithms. In an ann 

there is always an input layer and output layer, with x 

number of hidden layers in-between. The output is 

dependent on the input, where the mapping is from the 

input to the output is done by multiplied the features by 

arbitrary weights in the number of hidden layers. These 

weights are optimized through an iterative process [8].  

IV. CASE STUDY AMSTERDAM ZUID 

The methodology was tested on the train station Amsterdam 

Zuid in the Netherlands, with data provided by [3,9] for two 

train station platforms. Each of these platforms is equipped 

with the PAS system provided by ASE AG that records the 

occupancy for 47 zones on the platform on very high time 

and space accuracy and enabled evaluations and queries. 

These zones are located near the access areas to the 

platform. No readings are provided for the rest of the 

platform. The resulting input set has the following features: 

 Description data: time of day, rain, temperature 

 Platform data: zone overload 

 Operational data: train series, rolling stock, dwell time, 

delayed arrival, previous train cancelled, phase. 

The phase describes the current operational phase of the 

platform, where 4 phases are defined. The time directly 

before a train arrival is phase 1, the time between the train 

arrival and train departure is phase 2, and the time right after 

the train departure is phase 3. Phase 1 and 3 both last 1 

minute. The rest of the time is defined by phase 0, where 

boarders are slowly making their way to the platform. Phase 

2 is a non-safety critical phase, and can thus be neglected in 

terms of overloads. 

The pedestrian flows at the station are similar to those 

typically seen in train station, with much higher frequencies 

experienced during the weekdays than on the weekends. 

This is further induced by the location of the station in a 

business district. At a time-resolution of 1 hour, the typical 

morning and evening peaks can be seen, with a maximum 

peak of around 3’000 passenger per platform per hour. The 

magnitude of two peaks is comparable. When these flows 

are separated between boarder and alighters, the location of 

the business district is distinctly seen with more alighters 

using the station in the morning and boarders in the evening, 

representing the people coming to work in the morning and 

leaving in the evening. No peak is seen towards noon. 

The total passengers per hour per platform is show in “Fig. 

2”. 

 During the weekend, no peaks are seen, instead a 

relatively constant hourly flow of around 700 passengers per 

platform per hour can be observed. At a smaller time scale 

resolution of 1 min, the oscillating nature of these pedestrian 

flows is very relevant.  

As expected, the class imbalance was very large, with 

96.5% of the instances being in class 1, 3.2% in class 2, and 

0.3% in class 3. A distribution of these overload 

classifications throughout the day in 15 minute intervals can 

be seen “Fig. 3”. Class 0, i.e. the negative class, has been 

removed from the figure to have a better view of the 

positive class. The figure shows a similar pattern to the 

pedestrian flows with a morning and evening hour peak, 

although the passenger flow peaks were comparable during 

the morning and evening hour peak, this is not the case for 

the distribution of the overloads since a much larger 

frequency of overloads is seen in the evening. This is due to 

the differing behaviour of boarder and alighters, where 

alighters simply exit the platform as soon as they arrive at 

the station and boarders linger on the platform waiting for 

train to arrive. Therefore, this increase in overloads in the 

evening peak can be explained by the larger proportion of 

boarders at the station.   

During the weekend, no peaks are seen, instead a 

relatively constant hourly flow of around 700 passengers per 

platform per hour can be observed. At a smaller time scale 

resolution of 1 min, the oscillating nature of these pedestrian 

flows is very relevant. 
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Fig. 2. Total passengers per platform per hour 
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Fig. 3. Distribution of overloads per platform per 15 minutes 
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Fig. 4. Distribution of overloads per minute in regular operating hours 

from 10:00 to 13:00 (above) and in the evening peak hour (below) for 

platform 1.   

As expected, the class imbalance was very large, 

with 96.5% of the instances being in class 1, 3.2% in class 2, 

and 0.3% in class 3. A distribution of these overload 

classifications throughout the day in 15 minute intervals can 

be seen “Fig. 3”. Class 0, i.e. the negative class, has been 

removed from the figure to have a better view of the 

positive class. The figure shows a similar pattern to the 

pedestrian flows with a morning and evening hour peak, 

although the passenger flow peaks were comparable during 

the morning and evening hour peak, this is not the case for 

the distribution of the overloads since a much larger 

frequency of overloads is seen in the evening. This is due to 

the differing behaviour of boarder and alighters, where 

alighters simply exit the platform as soon as they arrive at 

the station and boarders linger on the platform waiting for 

train to arrive. Therefore, this increase in overloads in the 

evening peak can be explained by the larger proportion of 

boarders at the station.   

Furthermore, it can be seen that Platform 1 has 

slightly higher pedestrian flows, and thus also a slightly 

higher number of overloads. Class 0 has been removed from 

the figure to have a better view of the positive class. The 

distribution of the overload per minute for platform 1 is 

shown in “Fig. 4”, where the sporadic nature of the 

classifications can be seen. In the evening peak hour there is 

a clearer relation between a minutes’ class and the class 

before can be seen. Although, large spikes are often 

followed by low peaks. In the regular operating hours, 

seemingly random appearances of overloads occur. This 

could be due to the theoretical approach of overloads 

applied, where even though an increase in density is seen, 

and thus an overload is incurred, no dangerous situation 

happened on the platform.  

V. RESULTS 

An important step in developing a machine learning model 

is finding the optimal feature set [10]. Due to the very small 

representation of class 2, first a binary classification model 

was attempted. The initial set of classified instances was 

input to the chosen algorithms, yielding the results shown in 

“Fig. 5”. It can be seen that all models perform better than a 

random prediction model but J48 performs significantly 

better than the rest of the other algorithms, at a 95% 

confidence level using a paired t-test, with an MCC = 0.39 

and AuPRC = 0.19.  Since these metrics maximize at 1, 

there is some room for improvement. It can be seen that the 

ann performs very similarly to the randomForest, and 

NaivesBayes model, therefore it will not be pursued further 

for the feature manipulations due to its’ much longer 

computational times, with computation times over 180x as 

long as the other models.  

The confusion matrix for the initial J48 matrix can be 

seen in “Table III”, where as expected the number of true 

negatives is very high, while the number of true positive is 

relatively low.  
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Fig. 5. Initial Results for all the algorithms. 

TABLE III.  CONFUSION MATRIX J48 INITIAL 

Actual Class 
Predicted Class 
Overload 

 

No Overload 

Overload 26.6 %  73.4 % 

No Overload 0.06 % 99.4 % 

 

A. Feature Manipulation 

In order to further improve the metrics of the model, 
different, the features were manipulated to create different 
model variations. 13 different models were created were the 
following manipulations were done: 

Summarizing platform features: Instead of giving the 

algorithm the information to all 47 zones, a feature 

describing the total number of overload zones on one 

platform side is given. This increased the model the model 

performance. The J48 model performs best with         

MCC  = 0.402 and AuPRC = 0.197.  

 

Categorizing features: First, the time of day feature given 

as morning peak, evening peak or regular operating hour. 

Second, the weekday was given as a weekend or workday. 

Both these variations decreased the performance of the 

model.  



 
Model set-up: the model set-parameters were adjusted. First, 

the historic window was set to 5, then it was reduced to 0. 
Second, the prediction window was raised to 5. All these 
variations decreased the performance of the model. This 
shows that due to the sporadic distribution of the classes 
the model does not benefit from including too much past, 
information, however, having information to the direct past 
improves the model  

Focus on overload times: the goal was to reduce the amount 
of negative class instances in the dataset. This was done by 
focusing on situations were a high relative frequency of 
overloads occurred. First, only the phase 1 instances were 
taken, where phase 1 is the phase just before the train 
arrives, therefore, high densities are to be expected since it 
can be assumed that almost all the boarder are on the 
platform waiting for their train arrival [1]. Secondly, an 
evening peak hour model was created. Both variations 
decreased the performance of the model. The peak hour 
slightly increased the performance of the NaivesBayes 
model, however, due to the significant loss in information 
by only predicting the evening peak, the performace would 
have to be substantially higher to make up for this loss 
worthwhile. 

Removal of features: Two extremes were tested. First, the 

removal of seemingly useless features was tested. Second, 

the removal of the most important features. The results of 

the decision tree algorithm were used to decide which 

information was important based on their information 

gain. The only feature removal that has a positive effect on 

the model was removing the features related to the 

weather, where the J48 algorithm still performs best, with                    

MCC = 0.403, and AuPRC = 0.198.  

 

Multi-class classification: The multi-class (3 class) 

classification problem was also attempted to see the 

effects of the results. Like in the binary classification, all 

of the models were able to predict more accurately than a 

random precition model, except for oneR. The J48 

algorithm performs best in respect to the preliminary 

warning class (class 1) but it is outperformed by the 

NaivesBayes model for the (class 2). Therefore, if only the 

prediction of the extreme class is of interest, then there lies 

potential within the NaivesBayes mode.  However, as these 

models do not perform identical to their binary 

counterparts, another set of feature manipulation would 

have to be conducted to be able to confirm that 

NaivesBayes algorithm is the best at predicting the class 2 

overloads.  

B. Summary 

The J48 algorithm tends to perform best on exactly half 

of the variations (7/14), with 5 exceptions where it is 

outperformed by the NaivesBayes model and 2 exceptions 

where it is outperformed by the RandomForest algorithm. 

The oneR algorithm always performs significantly worse 

than the rest of the tested algorithms, meaning that the data 

cannot be adequately be classified using one simple rule. 

The performance of the oneR algorithm mostly remains the 

same, since it is often using the same rule to split its root 

node. This rule is based on the feature total overload south. 

Since this is the feature with the highest information gain for 

a tree, it is also expected to be used as the root node for the 

decision trees constructed in the J48 algorithm, which is 

indeed the case. It seems the added randomness in the 

RandomForest model does not help the algorithm 

outperform its' simpler predecessor in most cases. This 

could be due to the imbalance in the importance of the 

variables. Although, one variable is not enough to describe 

the data well, as shown by the oneR algorithm, there is a 

strong tendency, for the J48 to favor the “total overload” 

features and the train information. This shows that these 

features contain a lot of information for the model. It is 

assumed that when a random subset is made for the 

individual trees in the algorithm, and these features are not 

included, this individual tree will reduce the performance of 

the algorithm. Since no exact definition of the trees is given 

in the Weka output, this cannot be confirmed for certain. 

Finally, the NaiveBayes model, outperforms the other 

algorithms in 5 of the cases, however, these models are all 

significantly worse than the best J48 model, except for the 

evening peak model. 

C. Choice 

The best performing variation is the J48 model with the 

summarized weather data and the weather data removed, 

with an MCC  = 0.403 and AuPRC = 0.198.  The resulting 

confusion matrix can be seen in “Table IV”.  

TABLE IV.  CONFUSION MATRIX J48 FINAL 

Actual Class 
Predicted Class 
Overload 

 

No Overload 

Overload 29.6 %  70.4 % 

No Overload 0.07 % 99.3 % 

 

 

TABLE V.  CONFUSION MATRIX J48 FINAL 

Actual Class 
Predicted Class 
Overload 

 

No Overload 

Overload 40.4 %  59.6 % 

No Overload 1.9  % 98.1 % 

 

To further increase the number of true positives, the cost 

difference was increase, by decreasing the cost of 

misclassifying an overload to 1, resulting in a 10:1 cost 

matrix. The resulting confusion matrix is shown in “Table 

V”. The most effective way to affect the performance of the 

model was discovered to be adjusting the cost matrix. Based 

on this an economically justified cost matrix could be 

beneficial to the interpretability of the results. Finding the 

best balance between the four metrics shown in the 

confusion matrix is a highly practically oriented problem. 

This depends on what the model is to be used for. The 

resulting MCC and AuPRC for these models are lower, i.e. 

their theoretical performance might be worse, but their 

practical performance or usability is higher. This practical 

performance or usability depends highly on the exact use of 

the model, i.e. what action will be taken based on the 

model’s prediction. 



VI. CONCLUSION 

The new availability of large amount of precise pedestrian 

data by ASE’s PAS [3] combined with additional data 

sources provides input data for new and detailed 

evaluations.  The PAS provides input data on precise spatial 

and temporal scale, enabling machine learning algorithms 

specifically suitable for “big data”. The challenge of 

predicting train station platform overloads in the short-term 

remains pertinent. This paper has shown that a basic set of 

machine learning algorithms, more specifically those based 

on the concepts of statistical modeling and decision trees, 

have trouble learning what leads to a platform overload at a 

high enough accuracy to be implemented in practice. The 

practical implications of not being able to predict high 

densities on the platform effects the operations of a train 

station are directly relevant for the safety and comfort of 

railway service users and for capacity of railway operators. 

Due to the cyclic patterns of pedestrian flows, these high 

peaks are often localized in the morning and evening peaks. 

In order to try and minimize the difference between the 

required dimensions between peak hours and non-peak 

hours, stations need to be able to safely operate near their 

capacity limits. In the extreme case, where platform or 

station overloads cannot be predicted with a high enough 

accuracy, higher infrastructure costs would result since 

stations would need to be constantly upgraded/extended to 

be able to handle the large pedestrian flows experienced 

during the peak hours. Therefore, the benefit in achieving 

these accurate predictions, lies in the maximal use of a 

station’s capacity, and thus the reduced need for 

infrastructure expansions. The more accurately these 

overloads can be predicted, the closer to capacity station can 

be operated without the risk of dangerous situations 

occurring.  

 

This paper also showed the significant effect the cost matrix 

for cost-sensitive learning had on the prediction models. 

Instead of applying arbitrary cost ratios between the possible 

misclassification, an in-depth analysis of the economic cost 

of a misclassification would be an interesting component to 

include in such a model. This cost would again be very 

dependent on which actions are taken as a result of the given 

prediction.  

VII.  OUTLOOK 

A. Defining platform overloads 

Defining the platform overloads was done using the 
widely used LoS scheme for dimensioning railway stations. 
This is a very theoretical approach. The benefit of using a 
theoretical approach lies in the possibility to create a 
universal model that could be applied for any given train 
station, so long as operation data, platform data, and 
descriptive data are available. Most importantly, pedestrian 
tracking data on the platform which can be converted into 
density readings are required using sophisticated 
technologies such as the PAS developed by ASE AG [3]. 
Another important part of this theoretical platform overload 
definition is its time component. This time should potentially 
be defined in correlation with the zone size, where smaller 
zones could have higher densities since the pedestrian will 
experience them for shorter periods of time. If data of the 

individual trajectories are available, it would be beneficial to 
try and use the average density experienced by one 
pedestrian during their time on the platform, instead of the 
density of a zone, since the high zone densities are likely 
experienced by different people.  

This theoretical definition of platform overloads could 
potentially lead to many random overloads where, although 
high densities in a zone were noted, no dangerous situation 
occurred. An example that could lead to this is a small group 
standing in a zone together. An alternative approach to 
attempt to create a more practical definition of overloads 
would be to have an operator closely monitor the situation on 
a platform and define the platform overload based on his 
expert opinion. This would mean that no direct link between 
the features and the output and no specific classification rule 
could be given. Instead, the expert opinion of a train station 
operator would be used, creating a more practical definition 
of a platform overload. Ideally, these experts would judge the 
situation in a similar manner, however, this cannot be 
guaranteed. There would be an increased bias due to the 
human factor added, where not every train operator would 
necessarily have the same expert opinion. This could either 
be done with video footage of historical events or the 
collection of this information could begin with new 
situations. This would, however, be a very station-specific, 
or even platform-specific approach, and would not allow for 
an general model for all train station platforms.  

B. Machine Learning 

As this was one of the first attempts at using machine 

learning in a platform overload prediction, the focus was set 

on basic algorithms. It has often been shown that these basic 

algorithms tend to be overlooked even though they can 

produce comparable results. However, with the best model a 

true positive rate of 40.4%, can be achieved. It remains 

unclear if an improvement can be achieved using more 

complex algorithms, or even ensembles of complex 

algorithms. However, it is believed that these should be 

explored further, especially with the introduction of larger 

quantities of data. No guarantee can be made that more data 

will lead to better results in this specific case but either way 

it would allow the model to have more examples of the 

concept it is trying to learn.  

 

Finally, the ability to accurately predict dangerous situations 

on train stations is important in order to provide a safe and 

attractive railway service. As the availability of data 

continues to increase, machine learning algorithms can and 

should be utilized to take advantage of these large quantities 

of data and evaluation possibilities provided through new 

technologies such as the PAS developed by ASE AG [3].  
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