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Abstract

The reliability of public transportation is,unquestionably, of paramount importance in driving a
shift in the use of transportation modes. In this respect, innovation in improving the prediction
of delays has a major role to play. In the last decade, machine learning and artificial intelligence
has been widely deployed in various field, and transportation science is no exception. In view of
the importance of the objective, it is not surprising to see data driven model for delays prediction.
This project contributes to this effort.

This project proposes a data driven model using a new kind of LSTM, capturing both temporal
and spatial aspect to predict the delays of buses using their past delays, boarding/alighting time
and travel time. It has been tested for the case of Ziirich. This new model, implementing a bus
based multi features analysis at a network scale has shown encouraging results. It succeeded
to improved the medium-long term predictions for the city of Ziirich, even though the network

exhibits a high punctuality.
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1 Introduction

Public transportation has a major part to play in responding to increasing demand for mobility
and achieving sustainable mobility. In this respect, it is important to shift travellers away from

private motorized modes and towards public transportation.

To prompt this shift, it is essential to enhance user’s perception of quality. A key aspect of quality

concerns the reliability of the network Jenelius (2018). Even though disruptions and delays can
potentially decrease the reliability of a system, seeking ways of mitigating their impacts lie on
the forefront of transport research. To that end, the importance of real time information and
accurate service time predictions can be emphasized as they can allow both users and operators

to plan accordingly.

To achieve these, it is essential to understand the function of a transport network and the
interactions between its different actors, especially during peak hours where the demand and
normally the delays are higher. In this project, a new method to predict delays of buses is
proposed. More specifically, the application of a Machine Learning ( henceforth denoted as ML)
algorithm is explored, which is trained on historical data in order to capture the different levels
of network complexities that arise. The ML approach is tested in terms of its ability to predict
buses’ delays in real time. Subsequently, the results could be utilised for enhancing the reliability

of the public transport service.

In summary, the objective of this work is to create a data driven model to improve the quality of

delay predictions significantly ahead of time.
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2 Review of Relevant Literature

ML has become widely used in the last decade, mainly as a result of the explosion of computation
power. This has also occurred in the the case of transport systems where ML has been increasingly
deployed as passenger and travel data started to be more widely recorded. The most popular

algorithm is the Long Short-Term Memory (LSTM). It has been applied to various matters in

route of a single bus line in Copenhagen. Their approach employs a link-level analysis allowing
to make statements about the delay based on the corresponding travel time predictions. More
specifically, they proposed a combination of LSTM and convolution models in order to capture
the temporal and spatial correlations. A comparison against different prediction methods showed

that their approach outperformed them.

higher number of potential variables. In particular, their data set involved a combination of
Origin-Destination data based on personalised card logs, and Automated Vehicle Location (AVL)
system records for the whole network. The implemented model contains variables describing
the travel time and the number of boarding and alighting passengers per stop. In addition, some
sub-variables have been added as well, such as weather conditions, day of the week, and whether
or not school was taking place at a specific day. In summary, they succeeded to drastically
improve the accuracy of the predictions, but at the cost of a high data load, making it difficult to

implement everywhere.

detailed bus GPS probe data, including speed and localisation. In this model, the respective bus
travel routes are not analysed as line segments between successive stops but between network
intersections. Subsequently, the traffic conditions on those link are predicted and then used
to predict the bus delays. Once again they succeed to improve the prediction compared to the

system in place.
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3 Long short-term memory algorithm

The Long Short-Term Memory (LSTM) is an ML algorithm from the class of Recurrent Neural
Network (RNN), which belongs itself to the class of Artificial Neural Networks (ANN). It is
largely used for translation and speech recognition purposes but also have found application in

transportation(e.g. Huang et al. (2019)).

In figure 1, the simplest form of a neural network is presented. It can have multiple inputs and
outputs; in the example the model has 4 inputs and 1 output. Each link has a weight which
indicates how much information should be transferred to the next node. Once in the node, a
function merges all the incoming links and creates a new value that is transferred further on.
A large number of functions exist with the simplest one being a linear activation. At the end,
the output is compared to the expected value. Then the model is fed backwards, adjusting the

weights in order to get closer to the expected value.

Figure 1: Schema of traditional Artificial Neural Networks (ANN).
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Source : http://www.texample.net/tikz/examples/neural-network/
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A major limitation of the traditional ANN is the complexity to implement time relations. For
instance, one could train a model with the delays of the bus in order to predict the futures delays
but the model will not be recursive. RNN overcomes this inherent limitation. Figure 2 illustrates
this idea which includes training the model for different time steps, while taking into account

information from the past.

) ®  ®
re = S S A
6 & &

Source : https://colah.github.io/posts/2015-08-Understanding-LSTMs
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T
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In this RNN, a time window is selected where the information to predict the output 4, is coming
from time step Xo — X; and not further backwards. The number of weights, as depicted in
1 can however be very large. If applied to the case study using a simple RNN network to
predict the delays of Ny, using the 3 selected features (Total lateness, Travel time lateness and
boarding/alighting delays) using the time windows W;., of 10 time step behind, one would need
an astonishing 2.91¢12 number of weights (equation 1). Here lies the major advantages of the
LSTM.

Nyeight = (Nous * Nteatures * Wsize)® = (476 % 3 % 10)* = 2.91e12 (1)
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Figure 3: Schema of Long short-term memory.
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Source : https://colah.github.io/posts/2015-08-Understanding-LSTMs

In figure 3 a basic LSTM model is presented. As one could notice, there is no information
travelling through neurons, and therefore through time. Unlike the RNN, the LSTM has two flows
of information between cells. The first one, similar to the ANN, is the output of the previous
time step. The second one is called the memory, which is independent of the inputs window’s
size. For example, if a text is given to the LSTM, the memory will keep important information

throughout the text, allowing it to understand pronoun referring to object or people defined well

In addition, a modification can be made to the LSTM to capture spatial effects. The idea is to
feed the model not merely with an input including a single value but to add a convolution layer
just before. The figure 4 shows an example for a one dimension convolutional layer. In the cell

A, a weighing of the n-inputs is made and given to the LSTM.

Figure 4: Illustration of the conventional layer.

Source : https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
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The idea behind the implementation of this convolutional layer is to allow the model to look
at the buses behind and ahead of that for which the prediction is performed. To illustrate it
conceptually, if a road accident happened ahead, the model will not be trained to this particular
scenario, but it might still learn about large delays from the bus(ses) ahead. The ConvLSTM

also uses a convolution step inside each gate of LSTM model.

Each step of the ConvLSTM is mathematically defined mathematically below (equation 2:to 7))

and schematically in figure 5.

Figure 5: Illustration of the conventional long short-term memory model.
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Source : https://medium.com/neuronio/an-introduction-to-convlstm-55¢9025563a7

There are 4 different gates in the convLSTM cell. First, the forget gate (equation 2), f; is
computed by passing to as simgoid function ( see figure 6) the combination of the previous
output H;_, the memory C,_; and the input X; plus a bias . Every W matrix contains the
weights that are going to be updated along the process. The idea of this gate is to select ( from O

to 1) the information to be passed to the memory C;.

fi=0 (Wep s Xi+ Wiy s Hioy + Wep o Gy + by) (2



Short-term travel time prediction for public transport 2020

Figure 6: simgoid function Figure 7: tanh function

sigma(x) tanh(x)
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tanh(x) =
1 + e_x ( ) ex + e—x

o(x) =

The second gate, called update gate, update the candidates. First, (equation 1) selects the
candidates to be updated; similarly to the forget gate, a combination of the previous output H;_1,
the memory C;_; and the input X; plus a bias b is made using once again the sigmoid function.

Then, the selected candidates from the previous equation are updated using a tanh function (see

figure 7).
=0 Wy Xi+Wpyix Hi_1 + Wei0Cioy + b;) 3)
C, = tanh (Wye * X, + Wie * Hy_1 + b,) (4)

Then the memory is filled with the updated candidates in equation 5.

Ci=fioC.i+i0C (5)

Oy = O-(on *Xt"'Who >’<7‘{t—1 + Weo Oct"'bo) (6)

Afterwards, a final sigmoid function selects parts of the previous output H;_; and the input X;
(equation 6) to be fed into the final equation 7. This final equation combines a piece of memory
C, using a hyperbolic tangent (tanh) function and the last output o, to finally compute the output

H,.

7_{[ =0t ©° tanh (C[) (7)
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4 Implementation of the algorithm

As mentioned before, the objective of this work is to achieve a more accurate prediction of delays.
In order to capture the bus delays patterns across a network, a deep model is implemented. A

model, is referred to as deep when the information goes through multiple layers before reaching

encoders convolutional LSTM and n decoding. Note that the internal memory of the LSTM is
reset every day, i.e. the model remembers information only from the same day as that for which

the prediction is made and no further.

The data has been shaped as depicted in figure 8. For each sample, the model is fed with a three
dimensions’ matrix, containing for all the buses the features for all selected previous time step.
It is selected according to the size of the windows used. The 3 selected features are the total

delays of the bus, the delays due to travel time and the increased delays due to boarding and

In order to train the model, it should be fed with the same data multiple times; each time is
referred to as an epoch. The number of epochs is important; if there are too few, the model is
stopped before capturing the complexity. If there are too many, the model will present really
good performance, but it will only be due to over-fitting of the data. Essentially ,an over-fitted
model makes no prediction, but just copies what he learns. To reduce this over-fitting risk, a
dropout is implemented ( discussed below) and the error is calculated on another data set, called
validation. Seven random days have been selected as validation data set. It is important to select
entire day as the validation data and not random sample from different days. Indeed, the internal

memory needs to have a complete day to perform at its best.

In order to select the optimal model, an optimisation needs to be performed on different criteria

Table 1: Tuning and range of the different hyper-parameters.

Parameter Range Best
Number of encoders (n) [123] 1
Size of filters [16 32 64] 32
Convolution window [1510] 10
Dropout [0.050.10.20.350.5] 0.5
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Figure 8: Representation of the shape of the data.
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4.1 Parameter Tuning

In order to find the best model, multiple models have been trained with different hyper parameters
and only for the line 32. The mean absolute error ( see equation 8) on the validation data and the
computational time to perform 30 iterations have been used as metrics and a combination of the

metrics will be used to select the model.

The hyper parameters are, the kernel size, which is the number of neighbouring bus taken into
account; the filter size, that defines for the convulotional layer the number of kernels used in the
gate. Last, the dropout rate is a factor, randomly dropping nodes in order to prevent over-fitting

by droping some random node at each iteration.

er'lzl |ypred,- — Ytrue;
n

MAE = (8)

10


https://github.com/elingenior/LSTM_for_bus_lateness_prediction
https://github.com/elingenior/LSTM_for_bus_lateness_prediction

Short-term travel time prediction for public transport 2020

The numbers of layers n have been selected between 1 and 3 .The number of layers is limited to

3, since increasing the number of layers has negative impact on computation time.

The kernel is another name for the window. The range has been selected from 1 to 10.

Computationally, it make more sense to have a filter as a power of 2.

In light of the results of figure 9, the dropout indeed reduces the error. As some nodes are
dropped it also reduce the computation time, but on a really small scale. For later calculation
a dropout of 0.5 is selected. Due to risk of instability in the model it is conventionally rare to

select a dropout above 0.5.

Figure 9: Tuning of the dropout.
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The optimisation takes place as follow; first all possible models for n = 1 have been trained
on 30 epochs and then the Mean Absolute Error (MAE) for the validation data set has been

computed.

the computation time as the number of filters decrease can be observed. It is not really surprising,

as less computation effort is needed.

Unlike the first hyper-parameters, it seems that the Filter and Kernel size have a very strong
influence on the Time as well as on the MAE. The best combination seems to be a Kernel size of
10 and a Filter size of 32.

11



Short-term travel time prediction for public transport 2020

Figure 10: Dependency of the Kernel and Filter size.
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From those results, deeper models have also been computed. However, as shown in table 2, the

model with a unique layer performs better. It was expected to be faster but is also surprisingly

Table 2: Error and time for the best of each n.

Model MAE  Time [s]

Number of layers (n) =1 0.697 2.798e+03
Number of layers (n) =2 0.723 1.493e+03
Number of layers (n) =3 0.704 8.655e+03

The question about the time step also has to be discussed, as well as the number of previous
time steps used to predict the next one. These two parameters depend on the horizon of the
prediction. Indeed, different time steps are needed to predict 2 or 20 minutes ahead. Once again

different model have been computed to select the best parameters. The objective was getting the

window size of 10 is much better than any other time step. This surprising results can be difficult
to explain; it would appear that 2 minutes is enough to captures the important behaviours without
actually be overloaded by information. If the models would have been trained with more epochs

maybe the results would have been different.

12
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It has to be noted that for each prediction time different time step are optimal. It is also true
for every hyper parameters. This make the tuning of the model really demanding and time

consuming.

Figure 11: Performance for the different time step.
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4.2 Features relevance

features increase the accuracy of the model. It is still interesting to note that the 1 feature model

converges faster. The reduced number of variables is the most likely explanation.

Figure 12: Relevance of 3 features compared to the literature.
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5 Case study

In order to test the ability of the proposed model to provide short-term delay predictions, a case

study is designed. More specifically, publicly available AVL data for the city of Ziirich (2020)

are used for that purpose. The data contains the arrival and departure time at each stop for every

bus in Ziirich. Consequently, from this raw data the delay of each trip can be inferred.

The data set is made of 35 working day from the 1st of January to the 21st of February. The
weekend days and holidays are discarded as the focus lies on typical weekdays. Only the peak
hours are selected when the delays are the most likely to occur. The model has been trained on

29 working day and 6 days have been used as a validation set to prevent over-fitting.

Figure 13: Map of the Ziirich’s network.
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5.1 Description of data set

The data set corresponds to the lines of the greater Ziirich area, namely, 663 stops serviced by 69

Figure 14: Probability distribution function (PDF)

10°

103

101 Bom

-75 -50 -25 0 25 50 75 100 125
Timing variation[min]

Number of incident

In figure 14 the delays in the network are presented. Taking note of the log scale, it appears that
small delays dominate. Indeed, if one counts a time difference between the actual and planned
arrival time of more than 2 minutes as a delay, in our data only 0.009% of all the trips are subject

to delay (where a trip is defined as a route between two stops).

Concerning the observed large delay values, they can be attributed to either reporting error, or
technical problems with the vehicle. Nevertheless, given the very sparse existence of such events,

it is not necessary to discard them as the model will recognize them as such.

of some lines, highlighted in white.

The majority of those underrepresented lines correspond to lines leaving the study area and
therefore stop recorded data, and as such incomplete information concerning their trips may
resolved in model malfunctioning. Therefore, those lines are discarded from the respective data

sets.

15
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Figure 15: Distribution of the line set and their delays.
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5.2 Data processing

Some modifications have been made to the data set, prior to the model estimation. First, all the
runs to the depot have been deleted. Then a unique run ID has been created; according to the

following equation;

uniquel D = 100 = line;p + lineyursip 9)

Subsequently, a normalisation on all 3 features is performed. The model is surprisingly sensible
to the chosen normalisation. In this regard, a min-max normalisation was tested, i.e. value
between -1 and 1 only. However, this type of normalisation yields models with unreasonable

results. To overcome this issue, the following normalisation has been chosen instead:

D-D

10
Voo (10

D

With D being the data set, D its mean and /oo its standard deviation.

16
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5.3 Time prediction performance

In this section, the performance of the proposed model is compared to 3 different delay prediction
approaches. The first approach involves no prediction,i.e. the buses are assumed to be always on
time. In the second approach, the delay of a bus is assumed to be equal to the mean delay of all
the previous days, i.e. the bus always has the same delay everyday. Last, in the third approach
that is presumed to be the one utilized currently by the operator, no adaptation of the delays
through time is considered, i.e. it is assumed the bus will have the same delays in the future time

steps without any correction.

The predictions for the next 20 minutes with a time step of 2 minutes are compared in figure 16

Figure 16: Time prediction for different time step.
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First, it is interesting to notice the performance of the method currently used. Indeed, for short
prediction, Ziirich’s model is performing far better than our model. However, for medium to long
term prediction, our model could improve the accuracy of the predictions. It is also interesting
to notice that the LSTM performed better than the no prediction case, even in the case of Zurich

which features so few delays. .

varies substantially between the lines. For some lines the prediction for ¢ + 20 [min] is better
than for # + 2 [min]. Those line are lines leaving the central area, therefore the delays become
stable once the vehicle has left the zone. It is then rather easy for the model to predict that the

delay will be constant.

17
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for the tram lines (from 2-14). Indeed, the prediction is rather constant while increasing the
prediction lead time. As trams are the backbone of the urban transportation, having a good

reliability on those lines is important.

Figure 17: Model performance per line.
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5.4 Performance under extreme condition

verification, it appeared that it snowed that day. It is a good opportunity to see how the model

reacts in that kind of more extreme situations.

Figure 18: Distribution of lateness for each day of the full data set.
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circumstances the mean techniques is by far the worst, even worse than the "no prediction". An
explanation might be that some buses have a mean negative delays (so that they are on average
in advance on the schedule), explaining why the mean technique is even worst than the "no

prediction” one.

Figure 19: Time prediction under extreme condition.
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5.5 Discussion

The methodology that we have developed leads to an improvement in the accuracy of delay
predictions for the case study. However, due to the punctuality of public transport in the
city of Zurich, the improvement is not huge. Indeed, as most of the trips are on-time the
model has trouble to identify a pattern of delays. A solution to further test the potential of the
methodology could be to select another network as case study ( which has not been done due
to time restrictions), or to perform an unbalanced data set correction. The idea would be to
either create some realistic high delays from the few one already collected, or delete a range

of really low delays. By doing so, the data will not be overwhelmed anymore by the majority

issues. Another solution could be to simply train the model where days with high delays are as
represented as "normal" day. With either of these approaches, the model could then be used
as an emergency model, i.e. when the network does not follow an every day routine but was

affected by some external factors like snow or public demonstrations.
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6 Conclusion

The results that have been shown in this study provide some insights about the functionality
of the proposed methodologies. The multi-features analysis manages to overcome previous
methodology from the literature. It also confirmed that LSTM models can be applied for delays

prediction not only by inferring them from congestion but directly from the delays themselves.

However, due to its sensitivity, each prediction time have different optimal parameters, making it
difficult to have a single model for a large time prediction. Having one model per time prediction

would be feasible and interesting but will require a higher computational effort.

The case study in Ziirich also shows the possibility to implement the model in a well performing

network. Indeed, the upside compared to easier methods is not very large but still significant.

For future work, a comparison between a stop based model and a bus based model could be
performed on the same data set . A development relevant for machine learning, could be to
run the model backwards, i.e. to understand on what basis is the model making prediction.
Indeed, the lack of information about its actual understanding is one of the biggest weakness of

machine learning algorithms. Some research have already been done to try to solve this black
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A Appendix

A.1 Tuning for deeper network

Figure 20: Tuning of the hyper parameters for 2 layers.
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Figure 21: Tuning of the hyper parameters for 3 layers.
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