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Abstract—This thesis applies a new procedure to accurately
detect train trips from GPS-traces. It uses the pre-elaboration
(cleaning, trip detection and trip segmentation) introduced in [1]
and implements a new train detection method. The new method
uses the railway track network to detect train stages. Within
such a stage, possible vehicles are searched and the correct one
is then selected. The approach was tested on self-collected data.
It achieves an accuracy of over 72.8% for long-distance train
trips. It improves the accuracy of detection by 53.3% compared
to the old algorithm.

I. INTRODUCTION

UNDERSTANDING and predicting transport behaviour
has been a goal of transport engineers for decades.

Predicting where the costly investment in the infrastructure
leads to the most significant benefit is one of the reasons
behind it. In recent years, global problems such as climate
change and air pollution became more prominent. Thus, the
transport sector is trying to move into a direction where it does
not rely on non-renewable energy anymore.

Traditionally, travel diaries were the primary source of
information for travel behaviour [2]. With the advancement
of mobile and information technology, other possibilities to
collect data were introduced. These new data sources include,
amongst other things, GPS tracking. The cost of the new
methods is relatively cheap and not labour intensive compared
to travel diaries [3].

Today, GPS-tracking is mainly done by smartphones. How-
ever, continuous tracking of the location through GPS places a
heavy strain on the battery of mobile phones. For this reason,
new systems with low battery consumption were developed.
An example of such a system using passive GPS tracking
(for long term travel behaviour tracking) is shown in [1]. The
algorithm specially developed for this application can detect
activities, trips, and transport modes.

This thesis improves the long-distance train detection ca-
pabilities of the algorithm introduced in [1]. Firstly, the
existing algorithm was studied with a self-collected dataset.
By identifying the opportunities and challenges of the existing
method, a new sequence specializing in train detection was
added.

II. LITERATURE REVIEW

For mode detection, there are four different data sources.
The first source is GPS log data, a source that is easily
available as with the uprise in smartphones, everyone owns
a device capable of logging GPS data. The second one, is the
passive tracking data from mobile phone data. The position
of mobile phones is tracked every time a call is made or a
connection to a new towers is established. The third source
is smart card data for automatic fare collection, and the last
group is formed by geotagged social media posts. Each of
these sources has its own advantages and disadvantages [4].

An analyses on which spatial accuracy and sampling in-
tervals perform best is given in [5]. The initial sampling
frequency is 1 Hz. Step by step, the sampling intervals are
increased to identify which frequency performs best when
applying it to several mode detection schemes. The sampling
frequency that works best lies within an interval of 30 s to
one minute.The same process was repeated for the spacial
accuracy, is less critical compared to the sampling frequency.

Geographic Information System (GIS) can increase the
accuracy of a mode detection algorithm by including transport
network information. With the live position of buses, bus stop
location and rail line network an accuracy of over 93.5% can
be achieved. It improves the accuracy by 17% compared to
the approach only using GPS [6].

What makes tracking train trips so tricky? A train carriage
is, when simplified, a metal box. For better insulation, the
windows of modern trains are coated with a thin metallic
film. Inside the train, the radio waves are attenuated as in
a Faraday cage [7], leading to a poor performance of GPS
tracking inside of trains. For mobile phones, several repeaters
inside the carriage help by transmitting the electromagnetic
waves used for telecommunications from outside [8].

Overall, many different papers present different approaches
of mode detection. Unfortunately, only very few fall into the
restricted boundary condition of this thesis, which are given
by [1] and the research question.

III. METHODOLOGY

For pre-elaboration of the GPS data in this thesis, a pre-
viously developed tool was provided [1]. Figure 1 shows the



2

full sequence of the tool; from the raw data on the left to the
fully detected stages on the right.

The first part of this section quickly summarises each step
of the existing process. This is followed by an explanation of
the newly added algorithms, including how they interact with
the provided ones and the differences between them. In this
thesis, the process is followed up to the fourth algorithm, mode
detection (partial). The last part of the private mode detection
is ignored. In the following sections, the author assumes that
the reader is familiar with the process and definitions described
in [1].

A. Train Detection

To improve the detection of long-distance train trips, an
extensive analysis of the existing algorithm was carried out.
By studying the shortcomings of the current solution, valuable
information was gathered to find possible approaches for a
new solution. A summary of the results of this analysis is
found in Chapter IV-B. Before implementing a new method,
the existing parameters were modified. The goal was to find
better values, especially for train trips. However, the downside
of using values streamlined for train travel is a decreased
accuracy for all other trip types.

After completing the analysis of the existing model, a new
method for train trips was added. As shown in [6], additional
geographic information can significantly increase the accuracy
of a mode detection. Therefore, the goal is to import not just
the position of the stops but also the location of the rails or
lines. A method which calculates the rail closeness helps with
the identification of all stages travelled by train. The search
for train stations is not limited to only the first and last point
of a given stage, therefore increasing the chance of finding the
right vehicle even with falsely split up stages.

1) Train Network: The network of all rail tracks in Switzer-
land is extracted from Open Street Map [9] on a daily basis.
However, as there is not much addition to the existing network,
even less so within the time frame of this thesis, the same
dump is used for the entire thesis. In Open Street Map (OSM)
the tag ”railway” contains all information related to railways.
It includes any type of railway including mainlines, metros,
monorails and sometimes even model railways. Additionally,
it also includes any railway infrastructure (stations, platforms
etc.). During the import, the data is cleaned up and only the
necessary geographic information is kept.

2) Train Stage: For the detection of journeys, a new stage is
added to the existing two. With the newly gathered positioning
of the rail network, stages travelled by train can be identified.
A new function calculates the Euclidean distance of each point
to the closest rail. Several methods were then considered to
determine if a stage is labelled as a train-stage.

The simplest method used is the average distance to rails
over the stage. If the average is below a set train distance
threshold, it is considered a train-stage. The second method
uses quartiles (percentage) over the stage instead of the aver-
age. Several quartiles were tested to find the optimal solution.
The results of the analysis are shown in Section IV-C. Due to
the bad performance of stages with minimal points, the train

distance threshold was increased for these cases. Because of
the way the train-stages are implemented, a stage can be a
train-stage in addition to the two existing stages.

3) Train Vehicle Detection: A special train detection algo-
rithm analyses each continuous block of train-stages. With this,
falsely split stages can be overcome. Each point is checked
for a close-by train station, any station within the distance
threshold is considered a match. For each matched station,
only the earliest and latest time point is kept, as that is when
a train theoretically arrives or departs said station.

Starting with the first station, each station gets paired with
each following one. As in the existing algorithm, the actual
data is used to find any railway vehicles in a time window
around the time point. The intersection of the two lists forms
all the possible connections in between the two points. This
process is repeated for each train station up until the second
last railway station.

At this point, the right vehicle must be selected based on
a list of possible trips. The first assumption for the selection
process is that, if there is a direct connection from the first
to the last station, it is seen as the correct one. When several
vehicles are found, a likelihood function is used to asses the
options. Where no direct connection exists, indirect ones with
transfers are considered. For a change of train to be possible,
another train must stop at the same place. Therefore, any trains
in the list starting at a station where no other train stops are
ignored. From the starting point of the stage, the train with the
longest possible duration is selected. If several are found, the
likelihood function is considered once more for the decision.
At the end of the first trip, the process is repeated until the
destination of a vehicle is the same as the last train station on
the list. If no such connection from the beginning to the end is
possible, the longest overall trip within the stage is selected.

B. Zürich Main Station

Zürich Main Station provided an additional challenge, as
it has a total of eight platforms underground. Many long-
distance trains depart from the lowest section on platforms 31
to 34. This decreased the accuracy of the GPS-points further.
Therefore, a particular case for Zürich HB was implemented.
The time match threshold for vehicles between Zürich Main
Station and any other station further away than 20 km is
increased. The supplementary time is up to 150 s and increases
linearly between 20 km and 90 km. Trips longer than 90 km
from Zürich HB now have a time match threshold of 450 s.

C. Train Station Stop Points

The dataset used for the position of all public transport
(PT) stop points is called Location documentation PT-Swiss
(DiDok). It includes a single GPS location for each stop. The
positioning of the point for train stations is usually at the
ticket counter. For the points, any PT stop within 250 m is
considered. When arriving at a train station, the official DiDok-
point can be further away than 250 m, especially considering
the longest trains are 400 m long.
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Fig. 1. Sequence of algorithms used for mode detection. Rectangles indicate algorithms; ovals indicate data; red ovals represent the output. [1]

After checking the position of several stops, some were
updated with an additional point to better represent the po-
sitioning of the platforms instead of the ticket counter. The
two stops concerned were Zürich Main Station and Bern.

IV. RESULTS

In this section, the different results are presented. First, some
details about the data used for the mode detection is shown.
It consists of the data collected by the users and the actual
public transport operation data. Then the results of the tuning
of the input parameters for the old model. They are followed
by the same process for the proposed solutions. In the end,
the accuracy of the new model with included rail network is
compared to the old algorithm.

A. Data

In total, five different users offered their help to collect data.
Next to tracking their activities via the phone application, each
user wrote down all journeys in a travel diary for validation
purposes. Overall, the dataset consists of 170 days. Four train
journeys leading outside of Switzerland were ignored.

Unfortunately, due to the Covid-19 pandemic, travel be-
haviour changed dramatically. During the lockdown, many
days were spent at home. Therefore, for the second part of
the data collection from the middle of March onwards, very
few journeys with public transport were made. The data set
was split up in two different sets. The first half was used as a
training set and the second one for validation purposes.

Table I shows the number of journeys made for each dataset
by mode. Although both datasets feature a similar amount
of days, the consequences of the lockdown can be seen.
However, not all differences are due to the lockdown. Part of
the reduction is also a result of tracking of different users with
other travel behaviour. Additionally, a substantial decrease in
journeys on buses and trams is also due to the seasonal change.
In good weather, many of those five users use a bicycle as their
primary mode of transport.

1) Data Quality: A comparison of point size before and
after the cleaning process by mode measures how accurate
the tracking of each mode is. For train journeys, on average
65% of all points get removed. Whereas for bus and tram
rides, only 15% are eliminated. It clearly shows the difficulty
of tracking a user on a train.

TABLE I
NUMBER OF TRIPS PER MODE

Train Bus/
Tramtotal long short

training 62 41 21 174
validation 23 21 2 17

B. Tuning of the different input parameters

Different input parameters were tested on a ten-day data
sample including train journeys. The goal was to find better
parameters, which are specially tuned for identifying and
splitting up trips that include a stage on a train.

1) Cleaning: Before starting with the identification and
segmentation of the trips, the data is cleaned. Within the clean-
ing process, one parameter has an impact on train journeys
during the filtering of the data. It is the maximum allowed
speed. The speed of Intercity trains, on the high-speed tracks,
is significantly larger than the maximum achievable speed on
rails or highway inside cities. Therefore, the default value of
150 km/h used in [1] is too low. To account for the higher
speed, an alternative maximum allowed speed of 220 km/h
was tested. This is 10% higher than the maximum speed of
trains within Switzerland while running under ETCS Level 2
supervision [10].

Looking at an example train journey from Bern to Zürich
HB. For the slower allowed speed, a total of 60 valid points
remain of the 164 measured points during this stage. The
higher allowed speed left 78 data points.

2) Trip Segmentation: Analysing the results showed that
for trips with good data points, the trips were split up at each
longer stop. In between was a walk-stage for the dwelling time
at the train station.

At this point, it was not yet clear if such a walk-stage
included a transfer between two different trains or is just
a stop. Transfer times of three minutes are not unusual for
mid-sized train stations. Therefore, joining too many stages
together might lead to a loss of valuable information.

The values of the minimum time for a walk, the time under
which small groups between large ones are merged and the
time to consider near points to adjust their label were tweaked.
No real improvement to the default values was achieved.
Therefore, the same parameters as presented in [1] are used
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Fig. 2. Accuracy of different rail closeness methods expressed as percentage
of correct detected rail stages

for this thesis. The main reason behind the sometimes wrong
segmentation is the bad quality of the raw data.

C. Tuning of Rail Closeness Metric

For the rail closeness of a stage, five different metrics
are tested on the same ten days as above. The accuracy of
each approach is measured by the percentage of correctly
identified train stages. For all of them, the distance threshold
to be considered a train-stage is 200 m. Figure 2 presents the
accuracy of the tuning. There is no difference between the
average, median and 60% quartile. The accuracy decreases
with higher quartiles, first slightly for the 70% quartile but
then drastically for the 80% quartile.

In the given test data set, an additional disadvantage of the
current process to detect train stages was found. For stages
with few points, even a small number of wrongly placed points
have a significant impact on the rail closeness. Therefore,
for stages with eight points or less, the distance threshold
was increased to 400 m. This results in a further increase of
accuracy by two per cent to almost 98% (60% quartile plus).
In the following sections, the ‘60% quartile plus’ method is
used to calculate the rail closeness over a stage.

D. Time Difference

While studying the shortcomings of the previous algorithm,
a difficulty in the correct detection at Zürich Main Station
was noticed. Figure 3 shows the distribution of the time
difference for the different modes. The train trips are split
up into three different sections. One section includes all trips
except those arriving or departing at Zürich Main Station. The
other sections include stages from Zürich Main Station which
are split up into two groups, one leaving from platform 31 to
34 and the other for all other platforms. Not included in the
Zürich Main Station set are the trains leaving from Zürich HB
SZU (platform 21 and 22) as it is classified as a separate train
station.

The time difference for Bahnhof Löwenstrasse (platform
31-34) is significantly larger than any other. In contrast, all
other platforms in Zürich Main Station only have a slightly

higher time difference compared to the other train stages.
This result can be expected, as it also includes four platforms
(41-44) below ground. Platform 31-34 are even further below
ground compared to the tracks 41 through 44. Additionally,
the Zürich Main Station excluding 31-34 group only includes
seven stages. Therefore, the results do not adequately represent
the time difference.

Reference [1] presents the same graph, however only over
all stages. The mean value in [1] is 91 s and the median
values 62 s. The dataset here has an overall mean value of
101 s and a median value of 65 s. Without including Bahnhof
Löwenstrasse the two results are almost identical.

E. Accuracy of the Mode Detection Algorithm

Table II shows the results of the mode detection for the
algorithm presented in [1] and with the proposed solution.
The accuracy of train trips is higher by 45.2% and 43.5% for
the training and validation set respectively. Only looking at
long-distance train rides the increase is even more significant
with 53.6% and 52.4%.

The accuracy of the tram and bus rides remains unchanged.
Over all days, only one less trip for each mode was detected
with the new algorithm. However, there are now some false
positive train trips detected. In each dataset, three incorrect
train vehicles are present.

V. DISCUSSION

The dataset for the testing includes many different long-
distance train trips. Almost every major train station within
Switzerland is represented at least once. Unfortunately, due to
the circumstances, the validation set is smaller. Luckily the
decrease in train trips is not as significant than the one for
tram and bus rides. Due to the few journeys in the second
dataset, proper validation of the new process is only limitedly
possible.

The parameters of the old models remained unchanged. The
results from [1] and the ones presented here are therefore
comparable, as the same process is used just on a different
dataset. The reason for keeping the same parameters for the
trip segmentation and identification is that no better solution
was found. It also made the process easier as the first part of
the algorithm could remain unchanged.

The only room for improvement is by increasing the max-
imum allowed speed. A speed of only 150 km/h filters too
many points on the high-speed rail lines. Therefore, changing
the value to 220 km/h would have been the better option.
Unfortunately, the discovery of this fact occurred after all data
sets were already identified.

The higher allowed speed would not have increased the
mode detection accuracy of the proposed solution. Currently
the way the solution is implemented, it does not matter how
many points are between two stops. The old model, on the
other hand, would profit from the additional points along the
railway line. The splitting up of train journeys into too many
small stages could mean that the algorithm is not able not find
the right vehicle. Currently, only two adjacent non-matched
stages are merged into a single stage for a second try at
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Fig. 3. Distribution of the time difference for the detected stages (grouped each 20 s)

TABLE II
MODE DETECTION ACCURACY FOR EACH DATASET, EXPRESSED AS PERCENTAGE OF CORRECT DETECTION

[1] proposed solution
Train Bus/

Tram
Train Bus/

Tram[%] total long short total long short

tr
ai

ni
ng

correct 32.26 21.95 52.38 56.9 77.42 75.61 80.95 56.32
partly correct 14.52 14.63 14.29 16.09 6.45 7.32 4.76 16.09
not found 53.23 65.85 28.57 27.01 16.13 17.07 14.29 27.59
false positive 0.0 0.0 0.0 - 4.84 4.88 4.76 -

va
lid

at
io

n correct 21.74 14.29 0.0 58.82 65.22 66.67 50.50 58.82
partly correct 34.78 38.1 0.0 29.41 26.09 23.81 50.50 29.41
not found 52.17 47.62 10.00 11.76 4.35 4.76 0.0 11.76
false positive 0.0 0.0 0.0 - 13.04 14.29 0.0 -

matching. Train trips divided into three or more other-stages
will therefore remain undetected.

Tuning the new metric for the detection of train stages
resulted in equally accurate solutions. Comparing the accuracy
of the chosen subset of the testing data, no difference was
seen between the first three options (average, median and 60%
quartile). Therefore, none of them is clearly a better choice. In
the end, the 60% quartile plus was used for all subsequent tests
and validation. However, using an average metric adapted with
the plus would have most likely resulted in the same outcomes.

The additional points added to the service point-data for
Zürich Main Station and Bern make a considerable difference
for the detection of the arrival and departure at both these
stations. For both train stations, the official point only covers
roughly 50% of the platform area. With the new points, all
platforms are covered by the detection radius of 250 m.

Zürich Main Station itself remains a challenge, especially
Bahnhof Löwenstrasse. Adding together the bad reception
inside the wagon and the tunnel of the train station, the data
quality decreases drastically. In the most extreme cases, the
GPS points are up to 900 m away from the actual position of
the user, while sitting in a train waiting for departure.

By increasing the time match threshold, especially for long-

distance trips, the poor quality of the data can be counteracted.
Figure 3 clearly shows the distinction between the time
difference. Generally, the impact is seen on all train trips.
Nevertheless, not to the same extent as trips which depart from
Bahnhof Löwenstrasse in Zürich. As the increase is tied to
the distance to Zürich Main station, false positives on short S-
Bahn trips can be avoided. The added time threshold of 150 s
is set to include the longest dwelling time of an intercity train
at the station.

Including the rail network as an additional method to
detect train stages leads to a significant increase in train
detection accuracy. In total, 77.4% are identified correctly for
the training dataset and 65.2% for the validation dataset. In
addition to the entirely correct identified train journeys, there
are another 6.4% and 26% partly identified trips. Here most
of the time, the last or first stop are not recognised. Overall,
only 16.1% during the training and 4.3% during the validation
phases remain unidentified. Comparing the results to the one
achieved in [1], it is an increase in train detection accuracy
form 68.8% to 78.2%, but now including long-distance trips.
This has been done without affecting the accuracy of the other
modes.
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For each of the two dataset, three false positive matches
have been identified. Out these six, four are short train trips
at the start or end of a long-distance trip where either the
departure or arrival train station is not found. Such false
positives could be avoided by adding a check at the end, where
the selected vehicles need to serve at least over 60% of the
total train stage. The two other false-positive trips are ones
that the old model correctly identified as bus or tram trip, but
then the train detection overwrote the trip with a train trip.
Unfortunately, this can currently happen. The reason why the
proposed algorithm can overwrite already matched stages is
that testing was only done with operational data of train trips.
The performance for searching through a couple ten thousand
train trips rather than hundreds of thousands of PT trips was a
lot better and thus used for implementing and testing the new
method.

Adding together the partly detected and fully detected train
trips gives a better performance for the validation dataset.
One reason being the slightly better quality of the data for
the second part. Also, there were fewer trips involving Zürich
HB, which made the detection slightly easier. The proposed
solution performs better on long-distance trips than short-
distance ones. A possible explanation of this is the longer
transfer times at larger stations. Therefore, more time is
available for a GPS point within the radius of the train station.

Something that has not yet been talked about, is the time
it takes to compute the mode detection. Calculating the train
closeness takes under a second for each day, which is barely
noticeable. Searching for the close-by train station is also done
quickly as the PT stop file can be filtered for only train stations.
It leaves only 1700 points to compare to, which also takes
less than a second for each train-stage. However, where the
time drastically increases, is searching for vehicles within the
time distance threshold at each stop. There is no shortened
train vehicle list, and thus the search goes through millions
of vehicle stops in Switzerland. Depending on the number of
stations along a train stage, looking for vehicles can take up
to ten times as long as the previous algorithm did.

VI. CONCLUSION AND OUTLOOK

The new approach significantly increased the accuracy of
the long-distance train trips, while still keeping the accuracy
for all other modes the same. It shows that by using additional
GIS information of the rail network, the detection of train
stages can be improved. Thus making it easier to detect the
origin and destination of a train journey.

The proposed solution was only tested on a small self-
collected dataset. Nevertheless, the five users taking part in the
study managed to travel to almost all larger train stations in
Switzerland. The most significant amount of data was collected
on the intercity between Zürich and Bern. This is inconvenient,
as Zürich Main Station proved to be the biggest challenge for
the mode detection.

The biggest downside is the long computation time. This is
because a significant increase in searches through the actual
data is necessary to match the exact vehicle. By pre-sorting
the train stations, the process could be sped up. Any railway

station apart from the initial one where no vehicle has stopped
can be ignored for the matching. However, it still assumes that
the exact origin is detected.

The presented approach also has its downsides for detecting
connecting trains in specific situations. This is the case, when
a railway station is split up into two parts, even though they
are physically at the same location. An easy solution to this
problem is to run the train detection a second time with the
remaining train stage.

The quality of the GPS data currently makes it unfeasible
to reach an accuracy of over 90% with this approach. Not
finding the correct destination, origin or a too significant
time difference makes the matching with the operational data
impossible. Currently, a new type of train window is being
research. The goal is to combine mobile reception and thermal
insulation [11]. Radio waves from GPS satellites operate in the
same range as mobile telephone signals; these would then be
able to pass through the windows as well. Thus, the tracking
quality of users on board trains would increase.
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