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Abstract. This paper aims to gain more insight into the implications of information provision 
to drivers on the performance of road transport networks with recurrent congestion. For this 
purpose, a simulation program consisting of three components has been written. The first 
component is the traffic simulation model, the second component is the information provision 
mechanism, and the third component mon!tors the behavioural decision-making process of the 
drivers, which is modelled using a utility-based satisficing principle. 

Three types of information provision mechanisms will be considered: information based upon 
own-experience, after-trip information and real-time en route information. 

The findings in this paper, obtained in a hypothetical context, underline the important 
relationship between overreaction, the level of  market penetration and the quality of  the infor- 
mation. High quality information allows a high level of market penetration, while low quality 
information, even when provided at low levels of market penetration, induces overreaction. 
Furthermore, real-time en route information is in particular beneficial during the process leading 
to a steady state; it reduces the variance in travel time considerably. The paper concludes with 
a discussion on the market potential of motorist information systems when commercially 
marketed. 

1. Introduct ion  

Conges t ion  is one o f  the mos t  p ress ing  p rob l ems  for  t ranspor ta t ion  research.  

Today, road  ne tworks  o f  ma jo r  ci ty centres  are heav i ly  congested.  Fur thermore ,  

the conges t ion  p r o b l e m  is not  conf ined  to the t ranspor ta t ion  sector ,  but  has  a 

subs tant ia l  impac t  on the e c o n o m y  as a whole .  The  Confede ra t ion  o f  Br i t i sh  

I n d u s t r y  (CBI) ,  for  e x a m p l e ,  e s t i m a t e s  that  r oad  c o n g e s t i o n  cos t s  Br i t i sh  

indus t ry  a p p r o x i m a t e l y  15 b i l l ion  pounds  a year.  E x p a n s i o n  o f  the ex i s t ing  

road  ne twork  to mee t  the ex i s t ing  and future  m o b i l i t y  d e m a n d  is gene ra l l y  

r ega rded  as be ing  in feas ib le ,  as the soc ia l  and env i ronmen ta l  c o n s e q u e n c e s  
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of building new roads could be far more severe than the beneficial effects to 
motorists (Boyce 1988). Moreover, in some urban areas it is physically impos- 
sible to enlarge the current road infrastructure with undue expense. As a 
consequence, transportation research is giving more emphasis to using existing 
road networks as efficiently as possible. It is envisaged that the introduction 
of new advanced technologies, Road Transport Informatics (RTI), 1 will help 
by increasing the road capacity and network efficiency (Stergiou & 
Stathopoulos 1989). In addition, these technologies have a potential of 
increasing road safety and decreasing pollution (Shladover 1993). However, 
in this paper attention will be focused on network efficiency, thus leaving aside 
the other potential beneficial effects of RTI. 

One of the approaches in the RTI set, and addressed in this paper, is to 
provide drivers with information on the situation on the road network, z It is 
hoped that supplying information will affect key elements of travellers' 
journeys (speed, route, cost, accessibility) and the relative attractiveness of 
different travel modes, which in turn will have its effect on travel decisions 
and activity patterns (Bonsall, Pickup & Stathopoulos 1991). This is based 
upon the assumption that in general drivers possess little or no reliable infor- 
mation concerning travel and route alternatives and may be uninformed of road 
conditions on any specific day. Such lack of awareness leads to misperceptions 
on the part of the drivers as to the relative desirability of alternative travel 
decisions. Information provision thus has the potential of reducing or elimi- 
nating poor route choices and consequently diminishing excess travel time 
(Ben-Akiva, de Palma & Kaysi 1991). This is underscored by the empirical 
evidence that, according to a sample of trips in the United Kingdom, the 
inefficiency of trips taken over unfamiliar roads is about 20 to 25 per cent 
(Jeffery 1988). However, some researchers have addressed potential negative 
effects of providing information to drivers and argued that the implementa- 
tion of motorist information systems does not necessarily generate benefits 
(Arnott, de Palma & Lindsey 1991; De Palma 1992; Emmerink, Axhausen, 
Nijkamp & Rietveld 1993b). 

In this paper a simulation approach is used to analyse the potential effects 
of information provision to drivers. The work follows Mahmassani and co- 
authors, summarised in Mahmassani and Herman (1990). Attention is confined 
to one specific mode of travel: the private car. However, rather than analysing 
either the day-to-day dynamics (cf. Mahmassani & Chang (1985)) or the 
within-day travel dynamics (cf. Mahmassani &Chen (1991), Mahmassani & 
Jayakrishnan (1991)), this paper attempts to integrate these processes. A greater 
understanding of the interaction of these processes taking place at different 
levels is important, in particular with respect to the application of informa- 
tion provision to drivers in road transport networks. 

The simulation model built consists of the three components, driver behav- 
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iour, control system and network model, suggested in Watling & Van Vuren 
(1993). In this paper, the control system component reflects the information 
collecting and information supplying process, which is described in Section 
2. The driver behaviour component is incorporated in our simulation model 
by a number of simple behavioural models 3 and is addressed in Section 3, while 
the network model component represents the traffic flow which, combined with 
the simulation model, is presented in Section 4. Section 5 presents the results 
of the simulation experiments conducted. The experiments focus upon the 
following issues: 

�9 Performance of boundedly rational model for driver's behaviour in an 
environment without information. 

�9 Effectiveness of the provision of after-trip and real-time en route infor- 
mation in relation to the level of market penetration. 

The first issue expands the current literature on bounded!y rational behav- 
iour. The implications on the overall network performance of different values 
for the bound are assessed in a combined day-to-day and within-day context, 
while past research concentrated on modelling and estimating the boundedly 
rational model seen from an individual perspective. The second issue expands 
the literature in that it focuses upon both after-trip and en route information, 
and links the day-to-day dynamics and the travel dynamics within a day. Past 
research concentrated either on after-trip information in a day-to-day travel 
environment (Iida, Akiyama & Uchida 1992; Mahmassani & Herman 1990) 
or en route information within a day (Mahmassani & Chen 1991; Mahmassani 
& Jayakrishnan 1991; Mahmassani & Peeta 1993). 

The experiments are conducted in a network with recurrent congestion. This 
is a network congested due to under-capacity or, phrased differently, due to 
too much demand for mobility. Situations in which congestion is caused by 
accidents, bad weather or other incidents, i.e. non-recurrent congestion, is 
not addressed. 4 The paper concludes with a summary in Section 6. 

2. Information provision 

In this section the different kinds of information provision are presented. 
The four kinds of information provision shown in Table 1 are implemented. 
Throughout the paper, the code given will be used to refer to the specific 
types of information provision. 

Information provision type A assumes that information on different routes 
is acquired solely through own experience. After a trip has been made, the 
expected travel time of the chosen route is updated, while the expectations 
of the other routes remain unchanged. 
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Information provision type B provides drivers with information on the 
unchosen routes after their trips have been completed. One could think of radio 
or TV reports that describe in detail the day's situation on the roads, or of 
in-home traffic information systems, for instance the Prestel or Minitel services. 
In the simulation model, the information given is based upon the densities 
realised on the links during the last travel period. These are the input for the 
travel time calculations of not chosen routes by a driver. 

Table 1. Information provision types. 

Code Information 

A own experience 
B after-trip 
C real-time pre-trip 
D real-time en route 

Information provision type C supplies drivers with real-time pre-trip infor- 
mation. This is information based upon the actual situation in the network 
just before the start of a trip, enabling drivers to change route before the trip 
according to the current situation in the network. As with type B, the infor- 
mation is based upon the prevailing densities on the links in the network. 
No attempt is being made to provide predictive information. Research in this 
direction is still in its infancy. Useful references are Ishtiaq & Hounsell (1993), 
Koutsopoulos & Xu (1993) and Lindveld, Kroes & de Ruiter (1992). 

Finally, information provision type D is real-time en route information on 
the current situation in the network, enabling drivers to switch routes during 
the trip based upon the most recent information available. As with informa- 
tion types B and C, the information is based upon the prevailing link densities. 5 
A prototype of such an advanced information providing system is currently 
being implemented in Illinois (ADVANCE 1990). In Europe research in this 
direction has been carried out within the LISB project in Berlin 6 and cur- 
rently within the EC DRIVE programme. 

New information provision types can be specified by combining the types 
given in Table 1. For instance, information provision type A+B implies that 
drivers base their travel choices upon both their own experiences and supplied 
after-trip information. 

3. Behavioural models 

This section presents the models of driver behaviour used. These models lie 
at the heart of our simulation approach, since they generate the drivers' deci- 
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sions. In addition, these decisions determine the resulting traffic flows in the 
network completely. Section 3.1 addresses the way of updating information, 
while Section 3.2 deals with the decision-making process given the updated 
information. Throughout the section it is assumed that departure times are 
fixed. The only choice open to drivers is the route choice. 

3.1. Updating information 

Drivers' travel time expectations are updated after new information is avail- 
able, and are dependent upon the information provided. Throughout this paper 
the term expectations rather than predictions is used to indicate that predic- 
tive information is not supplied. Subsequently, the updating processes 
associated with information provision schemes A, A+B, A+B+C, A+B+C+D 
and A+D are discussed. 

The updating mechanisms are based upon the following linear equation, 
known as an exponentially weighted moving average. 

ET~ TM = a * NewInformation r + (1 - a) * ETa' [1] 

Here, ETr ~+1 denotes the expected travel time for route r in period n + 1, while 
the new available information on route r is embedded in NewInformationr. The 
parameter a lies in the closed interval [0, 1] and reflects the weight given to 
the last travel experience. An a-value close to 1 implies that the driver's 
expected travel time for the next travel period is largely based upon his last 
experience with a route. On the other hand, a value close to zero means that 
future expectations strongly rely upon past experiences. A similar mecha- 
nism has been applied by Horowitz (1984) and more recently in a sequential 
route choice context by Iida et al. (1992) and Vaughn, Abdel-Aty, Kitamura, 
Jovanis & Yang (1992). 

Iida et al. (1992) estimated the parameter a and found large discrepancies 
among different individuals, ranging fi'om 0.3 to 0.7. Vaughn et al. (1992) 
estimated an equation similar to [1], and it appeared that an a-value of 0.2 
led to the largest log-likelihood. However, the differences in log-likelihood 
for varying a-values were small. 

3.1.1. Informntion provision type A 
Under information provision type A, it is assumed that drivers update the 
chosen route (r) using equation [1], and that the expectations for the other 
routes (j) remain unchanged. In mathematical terms this can be expressed 
by equations [2] and [3] 

ET~ '"+1 = a * ExperiencedTravelTime[ 'n + (1 - a) * ETa'" [2] 
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ETr 'n+l = ET) "n [31 

in which index i refers to the driver. For simplicity it is assumed that ct is 
equal for all drivers. A more realistic approach would have been to assign ot 
randomly. 

3.1.2. Information provision type A +B 
Under information provision type A+B it is assumed that drivers' experience 
is used to update the expected travel time of the chosen route (the driver 
thus ignores the information on this route) while the provided information is 
used to calculate the expected travel times of the unchosen routes for the 
next travel period. The same updating formula as used in information mech- 
anism A, formula [2], is applied if route r was chosen in period n. However, 
the expected travel times of the unchosen routes are now updated following 
[41, 

ET~ "n+l = ~ * AfterTriplnf@" + (1 - (~) * ETj 'n [4] 

in which AfterTripInf@ n denotes driver i 's travel time (according to the 
supplied information) in period n if route j had been chosen. 

It is important to note that in our model drivers regard provided informa- 
tion as reliable as own experience, since equal weights are given to both. 
An extension of the model is to (1) give different weights to own experi- 
ences and supplied information, (2) weigh the information according to its 
(perceived) reliability. A reliability measure could, for instance, be the dif- 
ference between the experienced travel time of the chosen route and the 
information provided for this route. The driver, for instance, could perceive 
the information being reliable if the difference is relatively small. Although 
investigating drivers' attitude and reaction towards information is very impor- 
tant it is far beyond the scope of this paper. 

3.1.3. Information provision type A+B+C 
This mechanism is based upon two sequential phases. The first phase is the 
application of information mechanism A+B after the trip: 

" " i ,  A+B+CETi,, A+BET)'"+I = ct * ExperlencedTravelTlme; + (1 - ct) * [5] 

if route r was chosen in period n by driver i and 

A+SET~'"+I = ct * AflerTriplnf@" + (1 - ~) * A+I3+CETj'" [6] 

for all the remaining routes j. Here, XET}'" denotes driver i's expected travel 
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time for alternative j in period n after information mechanism X has been 
applied. 

In the second phase the pre-trip information is being processed. It is assumed 
that drivers adjust expected travel time according to formula [7]. 

A+B+CETj'n+I - 13 * PreTripInfoj '"+l + (1 - 13) * A+BETj:"+I [7] 

This equation is used for all the available routes j. The parameter 13 lies in 
the closed interval [0, 1] and reflects how much weight is given to the 
pre-trip information. 

3.1.4. Information provision type A+B+C+D 
Pre-trip travel time expectations are made using information mechanism 
A+B+C. During the trip, en route real-time information is given on the 
expected remaining travel time for the different routes. The en route decision- 
making process is discussed in Section 3.2. 

3.1.5. Information provision type A +D 
Pre-trip travel time predictions are made using information mechanism A. 
During the trip, en route real-time information is given on the expected 
remaining travel times for the different routes. The en route decision-making 
process is discussed in Section 3.2. 

3.2. Decision-making 

The previous section dealt with the updating mechanism of information, leading 
to travel time expectations. The current section explores how these expecta- 
tions are used in the decision-making process of drivers. The section consists 
of two parts. In Section 3.2.1 general model principles are presented, while 
in Section 3.2.2 the models for the information provision types described in 
Section 2 are specified. 

3.2.1. General model principles 
In this section different behavioural models for the driver's route choice 
problem are discussed. The discussion is restricted to route choice. 

In the simulation experiments it is assumed that drivers behave according 
to the models described in this section. These models consist of two compo- 
nents, a utility maximisation component and a satisficing component. 7 

Utility maximisation component. The models described in this section, have 
the utility principle as corner stone. The decision-making process of the 
individual consists of comparing utilities associated with the available route 
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options, and choosing the one with highest utility. The utility of a route is 
calculated using a utility function. A general utility function has the 
following form, 

i i i i 
U~  = ~i  1 * X l j  + [~i 2 * x2 j  at- . . . ...b ~ i  n * Xnj  + Uj [8] 

in which Uj denotes the utility individual i associates to alternative j and x~j 
the kth attribute of alternative j of individual i. Furthermore, uj represents 
the random error term of alternative j of individual i. In the simulation exper- 
iments of Section 5, these will be omitted for simplicity. In the simulation 
experiments the [~ are assumed to be equal among the individuals, although 
it is more realistic to assign the values [~ stochastically to the individuals. 

A similar methodology of modelling drivers' behaviour has been applied 
by Van Der Mede & Van Berkum (1991). 

The utility function used in route choice decision-making is generally 
assumed to be dependent upon the following attributes (Bovy & Stern 1990): 
(1) travel time, (2) distance, (3) desired arrival time at destination, (4) schedule 
delay, 8 (5) travel time uncertainty, (6) individual's socio economic character- 
istics. For simplification it is assumed throughout this paper that the utility 
function is dependent upon travel time only. Under this assumption model 
[8] collapses into model [9]. 

Uj = -TravelTime~ [9] 

Since a decision has to be made every period (day) model [9] is expanded 
to 

U~ 'n = -TravelTimej'" [10] 

where n denotes the period. Furthermore, since the travel time in period n is 
unknown at the moment the decision for period n is made, it is estimated. 
The estimated travel time of driver i in period n for alternative j will be denoted 
by ET} "n. Hence, model [10] turns into [11]. 

Uj'" --- -ETj'" [11] 

The travel time is estimated using updating mechanism [12], 

ETj'" --- ot * TravelTimej '"-1 + (1 - ~t) * ETj '"-1 [12] 

which has been explored in Section 3.1. 

Satisficing component. The satisficing principle stems from a paper by Simon 
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(1955) and has been introduced in the literature on route and departure time 
choice by Mahmassani & Chang (1985). Rather than using Wardrop's User 
Equilibrium (UE) principle (Wardrop 1952), they introduced a Boundedly 
Rational User Equilibrium (BRUE) theory. Properties of BRUE have been 
analysed in Mahmassani & Chang (1987). According to BRUE, individuals 
are trying to achieve a satisfactory outcome, rather than maximising utility. An 
intuitive argument backing the satisficing principle is based on costs. It is 
conceivable that an individual would like to avoid the costs (efforts) associ- 
ated with finding the utility maximising solution, especially if a similar decision 
has to be made frequently as in our route choice context. Furthermore, if the 
costs associated with finding the optimal (utility maximising) solution were 
included in the utility function, it could well be true that the satisficing 
alternative coincides with the maximising utility solution. Or in other terms, 
the utility function is not correctly specified if the costs associated with finding 
the optimal solution are omitted. 

The model presented below is an adapted version of the one used by 
Mahmassani and colleagues, for the first time described in Mahmassani & 
Chang (1985). In the present context this model needs to be adapted since 
in our simulation experiments the departure time is assumed to be fixed, so 
that the preferred arrival time is not relevant. In Mahmassani & Chang's model, 
the preferred arrival time and schedule delay are the key variables. 

The boundedly rational model of Mahmassani & Chang (1985) assumes that 
drivers change departure time (and route) only if the schedule delay exceeds 
a certain threshold value, the so-called bound. The route and departure time 
decision at day n + 1 depends upon the schedule delay and bound at day n. 
In turn, the schedule delay is dependent upon the discrepancy between the 
predicted and actual travel time at day n. Therefore, in their model the decision 
of the previous day is altered, only if the difference between the predicted 
and actual travel time on the previous day exceeds the bound. 

In a similar fashion the boundedly rational theory will be applied in our 
model. In this model the bound is an exogenous variable. However, 
Mahmassani and co-authors (see Mahmassani & Herman 1990) found some 
evidence that the bound is in reality dependent upon the past experiences. 
Nevertheless, we will omit these considerations for simplicity, In mathemat- 
ical terms the decision-making process can be described as [13]. 

Assume route r has been chosen by driver i in period n. 
Driver i's decision in period n + 1 is route r if the 
following expression holds: 

ET[ 'n * (1 - bound) < ExperiencedTravelTime~ 'n 
< ETa'" * (1 + bound) 

Otherwise the route with the highest utility will be chosen 
in period n + 1. 

[13] 
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The ExperiencedTravelTime~ 'n denotes the experienced travel time of driver 
i for route r in period n. If the bound is larger than zero, this model does 
not contain a direct utility maximising incentive. The alternative having highest 
utility is chosen only if the individual is not satisfied with the previously 
made decision. Otherwise the driver sticks to his previous choice. If the 
bound is zero, however, this model collapses to a utility maximising model. 
Therefore, a satisficing model can be regarded as an extension of a utility 
maximising model. Model [13] will be used in the simulation experiments 
in Section 5. 9 

3.2.2. Decision-making with information 
Decision-making with information provision types A, A+B and A+B+C is 
straightforward because route switching during the trip is not allowed. This 
implies that the route choice decision is made before the trip. Since it was 
assumed that the utility function has the form given in [10], decision-making 
consists of applying model [13] before departure. The decision-making process 
gets slightly more complicated if route switching during the route is allowed, 
which is the case for information provision types A+B+C+D, and A+D. 

Below the decision-making mechanism corresponding to both information 
provision type A+B+C+D and A+D are discussed. However, the simulation 
experiments in Section 5 only make use of mechanism A+D for the following 
reasons: 

�9 Applying mechanism A+B+C+D requires the estimation of an additional 
parameter, the [3-parameter in equation [7], of which less is known in the 
literature. 

�9 Interpreting the results obtained with mechanism A+B+C+D is extremely 
difficult, since they follow from the application of three (!) information 
provision types consecutively. 

There are different ways to model route switching based upon real-time en 
route information provision of type A+B+C+D. The most logical way is to 
extend the sequential two-phase mechanism of information provision type 
A+B+C (see Section 3.1.3) with a third phase. Then, all the information 
acquired in the past is used during en route route switching. However, from 
a computational point of view this approach is very demanding. Since it is 
not correct to compare pre-trip expected travel time with en route expected 
remaining travel time, it would require to have, in addition to the expected 
travel time from the origin to the destination, the expected travel time from 
every link in the network to the destination. This in turn implies that the ET 
variable would need to have the form given in [14], 

XI:?TI, n [ 14]  
" ~ j ,  k 
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which defines driver i's expected travel time from link k to the destination 
(after having processed information X) in period n, if route j will be followed. 
It can be easily seen that the models previously described are encapsulated 
in this model; they follow by restricting the number of links k to one, the 
first link. 

A, from a computational point of view, less demanding model is described 
below. Here, it is assumed that a driver regards pre-trip and en route deci- 
sions as being independent of each other. More precisely, en route decisions 
are made "";thout taking into account travel time expectations made before 
the start ~ ae trip. This approach has to be adopted with care, since in the 
extreme case it would imply that pre-trip decisions are of no importance at 
all, since if the driver starts the actual trip, the route switching decisions are 
completely based upon the current situation in the network. Therefore, the 
following modification is suggested. During the trip, route switching is carried 
out only if the improvement in expected remaining travel time compared to 
the expected remaining travel time of the route currently chosen exceeds a 
certain threshold value, and is in absolute value larger than the parameter "c. 
As Mahmassani & Jayakrishnan (1991) point out, plausibility is the main 
justification for this rule. The threshold values bound and x may reflect 
perceptual factors, preferential indifference, or persistence and aversion to 
switching. The value bound is taken to be decreasing in time, dependent 
upon the remaining travel distance, to model a slowly decaying influence of 
the pre-trip decision during the trip. The specification of bound used in the 
simulation experiments is given in equation [18]. In mathematical terms the 
model is given in [15] 

Start driver i's trip according to the pre-trip decision. Calculate 
before entering a new link the expected remaining travel time 
of all the available routes k based upon the en route information. 
These travel times will be denoted by RTT~. Calculate min k RTT~ 
and suppose this occurs for k = m. Assume further that the 
current route is route r. If RTT~, < RTT~ * (1 - bound) and 
RTTir - RTT~ > "c driver i will switch to route m. Otherwise 
driver i will continue on route r. 

[151 

The en route switching process in model [15] can be found in Mahmassani 
& Jayakrishnan (1991) and has recently been proposed by Bonsall (1992). 

The decision-making model used for information mechanism A+D in 
Section 5 can almost be copied from model [15]. The only difference being 
that the driver's trip will be started according to information gathered by 
own-experience rather than pre-trip information. For clarity, the model is given 
in [16]. 
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Start driver i's trip according to the decision based upon own 
;xperience. Calculate before entering a new link the expected 
remaining travel time of all the available routes k based upon 
the en route information. These travel times will be "denoted 
by RTT~. Calculate mink RTT~ and suppose this occurs for 
k -- m. Assume further that the current route is route r. 
If RTT~ < RTTir * (1 - bound) and RTT~. - RTT~ > x 
driver i will switch to route m. Otherwise driver i will 
continue on route r. 

[16] 

4 .  S i m u l a t i o n  f r a m e w o r k  

This section presents the set-up for the simulation experiments conducted in 
Section 5. Section 4.1 discusses methodological  issues, while Section 4.2 
describes the structure of the simulation model. 

4.1. Simulation methodology 

4.1.1. Vehicle movement 
Following the MPSM model of Chang, Mahmassani & Herman (1985) traffic 
flows are modelled using a modified form of Greenshield 's  speed-density 
model.  The speed of  a vehicle on a link is calculated just before entering 
the link using formula [17]. 

= - - + vj  [ 1 7 ]  

v i and vj denote the free flow and jam speed; k and kj denote the current and 
jam density. Two additional restrictions are imposed: 

�9 Overtaking does not take place. 
�9 The jam density cannot be exceeded. 

With respect to the latter point, a driver wanting to move to a link that has 
reached the jam density remains on the current link. A (small) fixed amount 
of time later, A, the driver makes a new attempt to move to the next link. 

4.1.2. Network description 
The road network depicted in Fig. 1 is used for the simulation experiments. 
This network, containing one OD-pair, consists of many routes (25) and 
decision points (10) for providing an interesting framework for the analysis 
of the effects of information supplying. 



l Free I'lm~ speed is 50 k m / h  for o ther  links. 2 
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Fig. 1. Road network used in simulation experiments. 

33 

4.1.3. Simulation parameters 
Number of drivers. The simulation experiments are carried out with 300 
drivers. A larger number is, obviously, more realistic, but currently unman- 
ageable with respect to computing time. An implication is that every driver 
in reality represents a bunch of drivers, or in terms of Chang et al. (1985), 
every simulated driver is a macroparticle of drivers. 

Different levels of congestion. From the speed-density equation [t7] it is 
clear that the speed on a link solely depends upon the ratio of current and 
jam density, or more precisely, upon the current and jam density in macro- 
particles. The size of a macroparticle is irrelevant, only the jam density, 
measured in macroparticles, is relevant. Throughout the paper the jam density 
per kilometre in macroparticles will be denoted by the constant K0. This 
constant then enables us to manipulate the level of congestion in the network. 
A low K0-value, and therefore a low jam density, implies a highly congested 
network since it assumes that only a few of the 300 drivers can occupy a 
link at the same time. On the other hand, a high K0-value implies an almost 
uncongested network. Thus, different K0-values could be interpreted as a 
network with different capacities. In this paper three different levels of con- 
gestion are analysed. These are shown in Table 2. 



34 

Table 2. Three levels of network capacity. 

Level of congestion K0 (macroparticles) 

Practically uncongested 12 
Congested 8 
Very congested 5 

Departure time structure. In the simulation experiments, departure times are 
assumed to be fixed. Hence, route choice is the remaining decision. The 
departure time structure is depicted in Fig. 2 and assumes that all drivers depart 
within one hour. The steeper the slope of the curve in Fig. 2, the higher the 
departure rate. 

This structure assumes that: 

�9 (3/17)th of the drivers departs between minutes 0 and 15. 
�9 (12/17)th of the drivers departs between minutes 15 and 45. 
�9 (2/17)th of the drivers departs between minutes 45 and 60. 

Thus, the rate of departure is two times as high in the interval [15, 45] 
compared to interval [0, 15], and three times as high in [15, 45] compared 
to [45, 60]. A similar approach (using different figures) has recently been 
applied by Mahmassani & Peeta (1993). 
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Stoehasticity of simulation. The initial ET-values of the drivers (see Section 
3) are assumed to correspond to a speed of sixty kilometres per hour, thus 
equalling 12 minutes for every route. To force a route decision in the first travel 
period, a small random number taken from the interval [0, 1] is added to the 
ET-value of every driver for every route. This divides the drivers randomly 
over the available routes in the first period. However, as pointed out by 
Horowitz (1984), different initial distributions can lead to different simula- 
tion processes. Hence, the necessity to repeat each experiment a number of 
times to assess the significance of the results. According to the statistical theory, 
the more repetitions the better, but due to time limitations, the number of 
repetitions has been fixed at ten. 

4.1.4. Market penetration 
In Section 5, among other things, an analysis of the impacts of different 
levels of market penetration will be conducted. The different levels to be 
analysed are 0, 2, 5, 20, 50, 75, and 100 per cent. In all the cases, the drivers 
supplied with information will be spread homogeneously throughout the 
population. For instance, if twenty per cent of the 300 drivers are supplied with 
information, the drivers with information are respectively, driver 1, driver 6, 
driver 11 . . . . .  driver 291, and driver 296 of Fig. 2. 

4.1.5. Simulation run and steady state 
Simulation run. One simulation run consists of several subsequent simu- 
lated periods. A period represents a day of travel, and the words period and 
day will be used interchangeably. Every day, the same number of drivers 
carry out the same trip. The drivers can be considered being commuters. The 
route choice is the only decision open to them. The route choices lead to a 
certain traffic situation. The overall network performance will be measured 
in terms of travel time averaged over all drivers. During the next period, drivers 
will incorporate the experience gained during their last travel period in the next 
day's route choice decision which in turn will lead to a changed overall network 
performance etc. The overall network performance is taken as the sum of 
the drivers' travel times. This process will be repeated until either the system 
has reached a steady state I~ for at least ten subsequent periods, or the number 
of simulated periods exceeds 400. In the former case, the network performance 
at the end of the simulation process equals the steady state travel time, while 
in the latter case the network performance is taken to be equal to the average 
network travel time over the last twenty simulated travel periods, i.e. the 
average over the periods 381 to 400. Every simulation run will be repeated 
ten times (see Section 4.1.3), which will give an average network perfor- 
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mance over the ten conducted runs. These averages will, unless stated other- 
wise, be used to draw inference from the simulation experiments. 

Steady state. The term steady state is used to indicate a situation (during a 
simulation run) characterised by the fact that none of the drivers has an incen- 
tive to change routes in future periods. The term steady state, rather than 
equilibrium, is employed to underline that a steady state in the simulation 
model does not necessarily coincide with Wardrop's user equilibrium (Wardrop 
1952). It is important to note that if drivers did not change routes in the current 
period (compared to the last one), it does not necessarily imply that a steady 
state is reached. A steady state is reached only if the expected travel time equals 
the experienced travel time. This does not need to be the case if drivers did 
not change routes in the last period, and this is the reason for adopting the 
approach described above, which assumes that a steady state has been reached 
after the drivers did not change routes for ten consecutive periods. After ten 
periods without route choice changes, it is highly unlikely that drivers will 
change routes in future periods, since the difference between expected and 
experienced travel time will have become very small. 11 

4.2. Structure of simulation model 

The simulation model is implemented in the language C and adopts an event 
based simulation approach. In such an approach, the simulation is conducted 
using an ordered list of events, the so-called event list. An event is an occur- 
rence that alters the state of the simulated system. In our road network, an 
event corresponds to the potential movement of a driver (macroparticle) to 
another link. An event based simulation model proceeds by taking the first 
event from the event list, executing this event, and inserting newly gener- 
ated events in their appropriate position in the event list. An empty list 
characterises the end of the simulation process. The flow of control in the 
simulation model is depicted in Fig. 3. 

The model deals with information provision at two different levels. Firstly, 
the box Update knowledge of drivers updates drivers' travel expectations, 
and in addition gives information to drivers prior to their trip. One could 
think of either historic after-trip information, as described in Section 3.1.2, 
or pre-trip information on the current conditions in the network, as described 
in Section 3.1.3. Secondly, box Provide real-time information supplies the 
driver with real-time en route information before entering a new link, thereby 
enabling him to change his route dependent upon the prevailing network 
conditions. 
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In i t ia l ise simulation 

Update knowledge of drivers 

Pre-tr ip route choice 

PrOvide real time information 

Driver chooses next link 

J ~  Link oens/ty ~ tam d e n ~ ' t y ~ ~ i  
Yes ~ ~  ~o ~, 
Move to next link i Wait f o r  
Calculate link travel time dt i dt = delta t t 

Insert driver into event l i s t  at t§ i 

,'Jnt// event / ist /s emoty  ! 

Print end of day stat is t ics i 
! 

Until ,'ast day or Steady state /e rescned _ _ [  

Fig. 3. Flow of control in simulation model. 

5. Results of simulation experiments 

The results of the simulation experiments will be explained in four sections. 
Section 5.1 describes some general characteristics prevailing in all the con- 
ducted experiments. Section 5.2 analyses the performance of the boundedly 
rational model using information based upon own-experience (information 
provision type A). Section 5.3 investigates the implications of providing 
after-trip information (information provision type A+B), while Section 5.4 
focuses on real-time en route information (information provision type A+D). iz 

Before analysing the results, we would like to stress that these are obtained 
in a hypothetical setting: (1) Drivers behave according to a simple decision- 
making model, (2) There is only one OD-pair, (3) Traffic is simulated using 
a linear speed-density relationship, (4) Provided information is never ignored. 
Nevertheless, we think that this is an interesting environment to investigate the 
potential and properties of information provision. 

5.1. General characteristics of simulation experiments 

Throughout this paper, the parameter cc (see equation [1]) is set equal to 0.4. 
Given the empirical evidence in Iida et al. (1992) and Vaughn et al. (1992) this 
seems a reasonable estimate. 13 The decision model used in the simulation 
experiments is model [13]. In Section 5.4 this model is combined with model 
[16]. 

The different congestion levels lead to large discrepancies in steady state 
travel time. Under congestion level K0 = 5, the average travel time is just under 
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40 minutes, implying an average speed of 18 kilometres per hour. Congestion 
level K0 = 8 leads to a travel time slightly over 20 minutes (average speed 
of 36 kilometres per hour), while congestion level K0 = 12 causes a travel time 
of approximately 15 minutes, reflecting an average speed of  48 kilometres 
per hour. The congestion level K0 = 5 leads to a heavily congested network, 
while congestion level K0 = 12 leaves the network relatively uncongested. 

Different runs of the same experiment (differing only in starting values) 
lead to different steady state values. These findings underline the theoretical 
arguments given in Horowitz (1984). 

A typical average travel time pattern (travel time averaged over all the 
drivers) during one simulation run is depicted in Fig. 4. Two conclusions 
can be drawn: 

�9 The average travel time is a highly sensitive performance measure. A 
relatively small number of drivers taking the same route in a small time 
interval can cause a highly congested link, while at the same time the 
other links will be relatively uncongested,  but nevertheless leaving the 
average travel time in the network excessively large. 

�9 Figure 4 indicates that the particular simulation run depicted reaches a steady 
state. This is the case for most of  the experiments. However, the number 
of days needed to reach a steady state varies strongly, depending upon the 
parameters chosen in the behavioural model and the kind of information 
provided. 
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Fig. 4. Evolution of daily average travel time during a simulation run. KO = 8, bound = 0. 
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5.2. Comparison of models with different bound 

In this section the influence of the bound on the network performance is 
analysed under information provision type A (information based upon own 
experience). Model [13] is used and the bound varies between 0 and 0.4 in 
steps of 0.1. Combined with the three congestion levels of Table 2 this gives 
15 different experiments. 

Figure 5 depicts the travel time as a percentage of the travel time under 
the model with bound equal to zero, which is used as base case throughout this 
section. It can be seen that the models with bound generally outperform the 
base case, especially if the level of congestion is equal to 8. These results 
suggest a steady state travel time reduction of 7 per cent compared to the 
base case. 

The number of routes u s e d  TM decreases as the bound increases. This 
intuitively appealing result is shown in Fig. 6. The number of routes chosen 
decreases dramatically if the bound increases to 0.4. Furthermore, Fig. 6 shows 
that a higher level of congestion induces a larger number of routes used. 
This could be explained by noting that it takes longer to reach a steady state 
if the recurrent congestion is more severe, which is underlined by Fig. 7. ~5 

As shown in Fig. 8, the switching propensity (percentage of drivers 
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switching routes from day-to-day) is obviously larger the smaller the bound. 
In addition, it can be seen that the curve gets smoother the larger the 
bound. 

Combining the results in Figs. 6, 7 and 8, Fig. 5 could be explained by 
arguing that drivers use the different route alternatives more efficiently in a 
model with bound. Furthermore, they can better rely on their own expected 
travel time, since the switching propensity of the other drivers is smaller. 
However, if the bound gets too large, the overall network performance 
deteriorates due to too many missed good route opportunities. The optimal 
value for the bound seems to lie, dependent upon the level of congestion, 
between 0.2 and 0.3. 

These results are in agreement with the insights gained by the work of 
Mahmassani and co-authors. They argued that in general better system wide 
performance is attained when path switching behaviour is dampened by an 
indifference band (the bound in our model). Potential negative effects of 
extreme behaviour could occur if drivers' behaviour is modelled with a myopic 
switching rule, i.e. drivers will always select the best path in terms of travel 
time (Mahmassani & Chen 1991). In our model this corresponds to a value 
of the bound equal to zero. 
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5.3. After-trip information 

In this section, the implications of after-trip information provision are inves- 
tigated. Throughout the section it is assumed that drivers provided with 
after-trip information behave as explained in Section 3.1.2, while drivers 
without information follow Section 3.1.1. Furthermore, it is assumed that 
drivers make decisions according to boundedly rational model [13], with the 
bound being equal to 0.2. All combinations of three levels of congestion and 
five levels of market penetration (0, 2, 5, 20, 50%) were investigated. The 
results of the experiments are compared with the no information case. 

Figures 9, 10 and 11 show the results for drivers with and without infor- 
mation for different levels of congestion. It should be noted that the y-axis 
is not scaled equally across these figures. Different scales were needed to 
preserve the information in each figure. The following points can be made: 

�9 Drivers with information benefit compared to the base case as long as the 
level of market penetration is under 20 per cent. In addition, they are best 
off if the level of congestion is not too severe, i.e. if K0 = 8. 

�9 As the level of market penetration exceeds 20 per cent, drivers without 
information perform better than drivers with information. 16 In a different 
context, the same phenomenon can be recognized in some of the experi- 
ments of Mahmassani & Chen (1991) and Mahmassani & Jayakrishnan 
(1991). 17 This could be explained by referring to the phenomenon of over- 
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reaction and the informativeness of the information. The information given 
to the drivers is based upon densities realised during the previous day. If 
too many drivers respond to this historic information, it will not reflect 
the current situation in the network. Thus too many drivers responding to 
old information decreases the informativeness and accuracy of the 
information and causes overreaction. A similar result was obtained by 
Koutsopoulos & Xu (1993). In these situations, Mahmassani & Jayakrishnan 
(1991) argued that coordinated information is necessary. 
After-trip information is most beneficial to everyone if the level of market 
penetration is below 20 per cent. This contradicts the results in Mahmassani 
& Tong (1986). In experiments concerning real commuters they found that 
after-trip information improved the system performance, even at a market 
penetration level of 100 per cent, However, recent research by Emmerink 
et al. (1993b) and Van Vuren & Watling (1991) suggests that the optimal 
level of market penetration is highly dependent upon the kind of informa- 
tion provided. 

The figures presented so far are related to the steady state average travel 
time. However, if after-trip information is provided it is also interesting to 
investigate the process leading to the steady state for both the drivers with 
and without information. Figure 12, shows a typical pattern if the level of 
market penetration is low. It can be seen that drivers with information out- 
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perform the ones without every period. It seems that if drivers with informa- 
tion benefit in the steady state situation, they have been better off during the 
process leading to the steady state as well. 

During some simulation experiments a steady state was not reached after 
400 days. In these cases a cyclical pattern arose. These findings underline 
theoretical work by Horowitz (1984). He argued that even in a two-link network 
under an information mechanism as given by equations [2] and [3] the situ- 
ation in the network could oscillate perpetually. 

Finally, it was observed that drivers with information try a considerable 
smaller number of routes than drivers without information. Summarising the 
results in this section, drivers with information experience shorter travel times 
if the level of market penetration is under 20 per cent. They achieve this 
using a significantly smaller number of routes. If the level of market pene- 
tration exceeds 20 per cent, overreaction takes place and the network 
performance deteriorates. 

5.4. Real-time en route information 

This section analyses the effects of real-time en route information provision. 
It is assumed that all the drivers update their travel time predictions fol- 
lowing Section 3.1.1. However, drivers equipped with an information device 
make their pre-trip route choices according to model [13], and their en route 
decisions following model [16]. In this model the parameter x is set at 1 minute, 
and the bound is specified as in [18]. 

bound -- (# of links remaining) * 0.05 [ ] [18] 

Figure 1, shows that each route consists of 7 links. Therefore, the bound in 
[18] decays from 0.30 (6 links remaining) to 0.05 (1 link remaining). 
Unequipped drivers make their decisions following model [13], in which the 
bound is set equal to 0.2. 

The pattern in Fig. 13 prevailed in all the simulations experiments. Figure 
13 shows that a high level of market penetration has a strongly decreasing 
effect on the variance in travel time, but an increasing effect on the number 
of days to steady state. Furthermore the steady state travel time under infor- 
mation provision does not differ largely from the situation without information 
provision. The gains of information are reached in the process leading to a 
steady state, the gains in steady state travel time itself are marginal. This is 
a result one could expect in a network with only recurrent congestion. 

The results of the simulation experiments are summarised in Figs. 14, 15, 
and 16. TM The numbers plotted are averages over ten simulated runs. The 
following conclusions can be drawn: 
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�9 If K0 -- 12, the gains of providing real-time en route information are very 
small, due to the fact that the network is practically uncongested. 

�9 For K0 = 5 and K0 --- 8, there are considerable gains for the drivers with 
information, up to a level of market penetration of 75 per cent. If K0 = 8, 
a level of market penetration equal to 100 per cent still provides substan- 
tial gains for the drivers. 

�9 There are savings between 3 and 5 per cent in overall travel time for a 
level of market penetration between 10 and 75 per cent. 

�9 Drivers without information benefit as well. Their travel time savings are 
between 1 and 4 per cent)  9 

�9 The difference between the with and without information curve converges 
as the level of market penetration increases and is already relatively small 
at a 75 percentage level. 

The difference between the with and without information curve has an inter- 
esting interpretation. It reflects the benefits to the population of drivers 
equipped with the information providing system. And can therefore, in com- 
bination with the costs of the system, be seen as an indicator of the market 
potential of these new technologies. We could call the difference between these 
two curves the information benefits to equipped drivers. In Figs. 14, 15 and 
16 it can be seen that the information benefits to equipped drivers are high 
at low market penetration levels, but relatively small at a market penetration 
level of 75 per cent. Figures 17 and 18 show two possible shapes of the relative 
size of the information benefits to equipped drivers against the level of market 
penetration for en route information, z~ 

In Fig. 17, between O and A, the curve has a positive slope, implying that 
drivers currently equipped with an information system will benefit  if an 
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additional driver buys an information system. Between A and 100 per cent, 
the slope is negative. In Fig. 18, the slope is negative for all levels of market 
penetration. Hence, a marginal equipped driver adversely affects the equipped 
drivers, but since the information benefits are still positive, it is beneficial 
for the marginal driver himself to buy the equipment. However, if the infor- 
mation benefits are small, the costs of buying the equipment can outweigh 
the savings in travel time. Therefore, these curves shed some light on the 
market potential of motorist information systems. 2~ 
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Fig. 18. En route information benefits to equipped drivers as a function of the level of market 
penetration. Case 2. 

6. Conc luding  c o m m e n t s  

The simulation model presented in this paper integrates the route choice 
dynamics within a day with the day-to-day dynamics. The computer program 
allows us to investigate the implications of these two levels of decision-making 
on the travel time patterns. 

Four different types of information have been described (own-experience, 
after-trip, pre-trip, en route), and information mechanisms based upon com- 
binations of these have been specified using boundedly rational models. 

Before concluding the results, we would like to stress moreover that these 
were obtained in a hypothetical setting and could be network dependent. 
Nevertheless, we believe that they provide useful insights into the potential 
effects of information provision in a network with recurrent congestion under 
different information schemes. 

The results of the simulation experiments concerning the boundedly rational 
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model (in an environment with information based upon own-experience) are 
in agreement with the work by Mahmassani and colleagues, summarised in 
Mahmassani & Herman (1990) and Mahmassani & Chen (1991). A model with 
a bound between 0.2 and 0.3 performs best (in terms of total network travel 
time) in the recurrent congested environment. 

The experiments with information provision were restricted to after-trip 
information and real-time en route information. The results suggested that after- 
trip information is beneficial to all drivers if the level of market penetration 
does not exceed 20 per cent. In this case, the drivers with information benefit 
most; in some cases travel time savings of up to 10 per cent were achieved 
under low levels of market penetration. If real-time en route information is 
provided, there are benefits to all drivers for most levels of market penetra- 
tion. Depending upon the level of congestion, the benefits can be as large as 
15 per cent to equipped drivers under low levels of market penetration. With 
high levels of market penetration the average network travel time savings 
are between 3 and 5 per cent compared to the situation without information. 
It should be emphasised that the percentages mentioned are related to steady 
state travel times. In addition, the process leading to a steady state shows, in 
particular with real-time en route information, a considerable smaller day- 
to-day travel time variance. Real-time en route information seems to stabilise 
the traffic flows, and in our opinion these are the most relevant gains of 
information provision in a network with recurrent congestion. 

Comparing the results obtained with after-trip and real-time en route infor- 
mation it emerges that with the latter high levels of market penetration can 
be achieved without the occurrence of significant overreaction. It can be 
concluded that high quality (actual, accurate and informative) information 
allows a relatively high level of market penetration, possibly close to 100 
per cent, while information of low quality (uninformative and inaccurate) 
causes overreaction taking place already at low levels of market penetration. 
However, given the shape of the information benefits to equipped drivers curve, 
it is unrealistic to expect a 100 per cent level of market penetration when 
these technologies were commercially marketed. 
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Notes 

1. In the US these technologies are known as Intelligent Vehicle-Highway Systems (IVHS). 
2. A list of other technologies, currently under investigation or already in use, can be found 

in the OECD report Intelligent Vehicle Highway Systems: Review of FieM Trials, OECD 
(1992). 

3. The psychological mechanisms leading to the driver's decision are beyond the scope of 
this paper. 

4. Experiments in a network with non-recurrent congestion are carried out in Emmerink 
(1993a). 

5. As with type C, predictive information is not provided, 
6. The results of a survey of drivers equipped with a route guidance system as part of the LISB 

trial can be found in Bonsall and Joint (199l). 
7. A habit component could easily be added to these models (Emmerink 1993a). 
8. Schedule delay is defined as the absolute value of the preferred arrival time minus the actual 

arrival time. The importance of schedule delay for departure time decisions has been pointed 
out by Hendrickson & Kocur (1981). 

9. Although model [13] does not contain an explicit habit component it can be given a habitual 
interpretation One could argue that if the last travel experience does not exceed the bounds, 
the driver is not willing to change alternative because of both satisficing and habit 
considerations. Furthermore, the longer ago the last change in alternative has been made, 
the more likely it is that a driver will stick to the same alternative in the future, due to 
the specification of the updating mechanism of ET. It is likely that the ET component 
will slowly converge to the experienced travel time thereby making the decision a satis- 
factory one. Only a large disturbance in the network, due to route changes by many other 
drivers could cause the driver to change route. 

10. The term steady state will be explained below. 
11. Given the model specification in this paper, a steady state is equivalent with a situation 

in which the ExperiencedTravelTime is equal to ET for all drivers. 
12. Readers interested in the statistical treatment of the results are referred to Emmerink (1993a). 
13. However, we acknowledge that a stochastically assigned e~-parameter (randomly differing 

among the drivers) is more realistic. 
14. Throughout this paper, the performance indicator number of  routes used refers to the number 

of different routes used by a driver during a simulation run averaged over all drivers. 
15. In Fig. 7 one point is missing. In this case a steady state was not reached after 400 days. 
16, One might argue that it is counter intuitive for drivers with information to be worse off 

compared to the situation without information. The argument supporting this case could, 
for instance, be based upon the fact that if the drivers would be worse off by using the 
information, they would ignore it. However, in our model it is assumed that drivers supplied 
with information will always use it, as described in Section 3.1.2. Because of these unre- 
alistic results, no experiments with a level of market penetration higher than 50 per cent 
have been conducted. 

17. Compare in their paper Fig. 2 (p. 299) and Fig. 4 (p. 300) for the model without bound 
and a high level of market penetration. 

18. To preserve informativeness, the y-axis's of these Figures are scaled differently. 
19. In one case (K0 = 5, market penetration = 75%) drivers without information outperform 

the ones with information. The same phenomenon prevailed in some simulation experiments 
in Section 5.3. 

20. The curve is discontinuous in market penetration level zero. At a market penetration level 
of 100 per cent it is assumed that the information benefits to equipped drivers are zero. 
However, this is only the case if we assume the user equilibrium at this level of market 
penetration (Emmerink et al. 1993b). 
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21. See Emmerink, Axhansen, Nijkamp & Rietveld (1994) for a detailed analysis of the 
economic consequences of the shape of these curves. 
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