Anforderungen an zukünftige Mobilitätserhebungen

Exigences relatives à de futures enquêtes de mobilité

Specifications for future mobility measurements

büro widmer ag
Paul Widmer
Philippe Aemisegger

Rapp Trans AG
Martin Ruesch
Gianni Moreni

IVT ETH
Matthias Wagner
Kay W. Axhausen

Forschungsprojekt SVI 2011/015 auf Antrag der Schweizerischen Vereinigung der Verkehringenieure und Verkehrsexperten (SVI)

Januar 2016
Der Inhalt dieses Berichtes verpflichtet nur den (die) vom Bundesamt für Strassen unterstützten Autor(en). Dies gilt nicht für das Formular 3 «Projektabschluss», welches die Meinung der Begleitkommission darstellt und deshalb nur diese verpflichtet.

Bezug: Schweizerischer Verband der Strassen- und Verkehrsfachleute (VSS)

Le contenu de ce rapport n'engage que les auteurs ayant obtenu l'appui de l'Office fédéral des routes. Cela ne s'applique pas au formulaire 3 «Clôture du projet», qui représente l'avis de la commission de suivi et qui n'engage que cette dernière.

Diffusion: Association suisse des professionnels de la route et des transports (VSS)

La responsabilità per il contenuto di questo rapporto spetta unicamente agli autori sostenuti dall’Ufficio federale delle strade. Tale indicazione non si applica al modulo 3 «conclusione del progetto», che esprime l'opinione della commissione d’accompagnamento e di cui risponde solo quest’ultima.

Ordinazione: Associazione svizzera dei professionisti della strada e dei trasporti (VSS)

The content of this report engages only the author(s) supported by the Federal Roads Office. This does not apply to Form 3 «Project Conclusion» which presents the view of the monitoring committee.

Distribution: Swiss Association of Road and Transportation Experts (VSS)
Anforderungen an zukünftige Mobilitätserhebungen

Exigences relatives à de futures enquêtes de mobilité

Specifications for future mobility measurements

büro widmer ag
Paul Widmer
Philippe Aemisegger

Rapp Trans AG
Martin Ruesch
Gianni Moreni

IVT ETH
Matthias Wagner
Kay W. Axhausen

Forschungsprojekt SVI 2011/015 auf Antrag der Schweizerischen Vereinigung der Verkehrsingenieure und Verkehrsexperten (SVI)

Januar 2016
Impressum

Forschungsstelle und Projektteam
Projektleitung
Paul Widmer

Mitglieder
Martin Ruesch
Philippe Aemisegger
Matthias Wagner
Gianni Moreni
Kay W. Axhausen

Begleitkommission
Präsident
Kurt Infanger, dipl. Ing. ETH SVI

Mitglieder
Michael Arendt, Arendt Consulting
Jonas Bubenhofer, Metron AG
Robert Dorbritz, Tiefbauamt der Stadt Zürich
Urs Eichenberger, Roland Müller Küsnacht AG
Roman Frick, Infras
Ueli Haefeli, INTERFACE Politikstudien Forschung Beratung GmbH
Thomas Hettinger, SBB
Olga Janssens, Dienstabteilung Verkehr Stadt Zürich
Matthias Kowald, Bundesamt für Raumentwicklung
Tobias Meyer, Verband öffentlicher Verkehr
Mark Reinhard, Bundesamt für Statistik
Roland Ribi, dipl. Ing. ETH

Antragsteller
Schweizerische Vereinigung der Verkehrsingenieure und Verkehrsexperten (SVI)

Bezugsquelle
Inhaltsverzeichnis

- **Impressum**: 4
- **Zusammenfassung**: 9
- **Résumé**: 11
- **Summary**: 13

1 Einleitung
- 1.1 Ausgangslage: 15
- 1.2 Projektziele: 16
- 1.3 Abgrenzung des Untersuchungsgegenstandes: 16
- 1.4 Vorgehen und Aufbau des Berichtes: 17

2 Bedürfnisse nach Mobilitäts- und Verkehrsdaten
- 2.1 Einleitung: 19
- 2.1.1 Anwendungsbereiche und -zwecke: 19
- 2.1.2 Strukturierung von Mobilitäts- und Verkehrsdaten: 20
- 2.1.3 Methode zur Beurteilung der Datenbedürfnisse aus der Sicht der Forschungsstelle: 21
- 2.1.4 Ergebnisse der Bedürfnisanalyse: 21
- 2.2 Beurteilung der Bedürfnisse aus der Sicht der Forschungsstelle: 22
- 2.2.1 Erhobene Mobilitäts- und Verkehrsdaten: 22
- 2.2.2 Ergebnisse der Expertengespräche: Verwendete Kennwerte: 25
- 2.2.3 Ergebnisse der Expertengespräche: Eingesetzte (neue) Technologien: 26
- 2.2.4 Ergebnisse der Expertengespräche: Bedürfnisse: 28
- 2.2.5 Ergebnisse der Expertengespräche: Erfahrungen mit Erhebungstechnologien: 30
- 2.2.6 Ergebnisse der Expertengespräche: Heute bewusst nicht eingesetzte Technologien: 34
- 2.2.7 Folgerungen aus den Expertengesprächen: 35

3 Technologieübersicht
- 3.1 Einleitung: 37
- 3.2 Kurzbeschrieb: 38
- 3.2.1 Global Positioning System (GPS): 38
- 3.2.2 Erhebungsmethoden: 38
- 3.2.3 Erhobene Mobilitäts- und Verkehrsdaten: 40
- 3.3 Mobilfunkortung: 40
- 3.3.1 Kurzbeschrieb: 40
- 3.3.2 Erhebungsmethoden: 40
- 3.3.3 Erhobene Mobilitäts- und Verkehrsdaten: 41
- 3.4 Big Data: 41
- 3.4.1 Kurzbeschrieb: 41
- 3.4.2 Datengeneratoren: 41
- 3.4.3 Anwendungsbeispiele: 41
- 3.5 Radio Frequency Identification: 42
- 3.5.1 Kurzbeschrieb: 42
- 3.5.2 Erhebungsmethoden: 42
- 3.5.3 Erhobene Mobilitäts- und Verkehrsdaten: 43
- 3.6 Smart Card: 43
- 3.6.1 Kurzbeschrieb: 43
- 3.6.2 Erhebungsmethoden: 43
- 3.6.3 Erhobene Mobilitäts- und Verkehrsdaten: 43
- 3.7 Near Field Communication: 44
- 3.7.1 Kurzbeschrieb: 44
- 3.7.2 Erhebungsmethoden: 44
- 3.7.3 Erhobene Mobilitäts- und Verkehrsdaten: 44
- 3.8 Barcode: 44
- 3.8.1 Kurzbeschrieb: 44
- 3.8.2 Erhebungsmethoden: 45
4.3.2 Erhobene Mobilitäts- und Verkehrsdaten ... 45
3.9 Wi-Fi ... 45
3.9.1 Kurzbeschrieb .. 45
3.9.2 Erhebungsmethoden ... 45
3.9.3 Erhobene Mobilitäts- und Verkehrsdaten ... 45
3.10 Bluetooth .. 46
3.10.1 Kurzbeschrieb ... 46
3.10.2 Erhebungsmethoden .. 46
3.10.3 Erhobene Mobilitäts- und Verkehrsdaten .. 46
3.11 Digitales Video/Foto .. 46
3.11.1 Kurzbeschrieb .. 46
3.11.2 Erhebungsmethoden ... 47
3.11.3 Erhobene Mobilitäts- und Verkehrsdaten .. 48
3.12 Passives Infrarot ... 48
3.12.1 Kurzbeschrieb .. 48
3.12.2 Erhebungsmethoden ... 49
3.12.3 Erhobene Mobilitäts- und Verkehrsdaten .. 49
3.13 Laser ... 49
3.13.1 Kurzbeschrieb .. 49
3.13.2 Erhebungsmethoden ... 49
3.13.3 Erhobene Mobilitäts- und Verkehrsdaten .. 50
3.14 Ultraschall .. 50
3.14.1 Kurzbeschrieb .. 50
3.14.2 Erhebungsmethoden ... 50
3.14.3 Erhobene Mobilitäts- und Verkehrsdaten .. 50
3.15 Radiowellen ... 51
3.15.1 Kurzbeschrieb .. 51
3.15.2 Erhebungsmethoden ... 51
3.15.3 Erhobene Mobilitäts- und Verkehrsdaten .. 51
3.16 Magnetometer ... 51
3.16.1 Kurzbeschrieb .. 51
3.16.2 Erhebungsmethoden ... 51
3.16.3 Erhobene Mobilitäts- und Verkehrsdaten .. 52
3.17 Glasfaserkabel ... 52
3.17.1 Kurzbeschrieb .. 52
3.17.2 Erhebungsmethoden ... 52
3.17.3 Erhobene Mobilitäts- und Verkehrsdaten .. 52
3.18 Personenzählmatte ... 53
3.18.1 Kurzbeschrieb .. 53
3.18.2 Erhebungsmethoden ... 53
3.18.3 Erhobene Mobilitäts- und Verkehrsdaten .. 53
3.19 Synopsis .. 54

4 Anwendungspotenzial neuer Technologien ... 57
4.1 Einleitung ... 57
4.2 SWOT Analyse .. 57
4.2.1 GPS unterstützte Mobilitätserhebungen .. 57
4.2.2 Fallbeispiel .. 58
4.2.3 Floating Car Data .. 61
4.2.4 Floating Phone Data ... 62
4.2.5 Big Data .. 63
4.2.6 Wi-Fi ... 65
4.3 Bluetooth ... 66
4.3.1 Radio Frequency Identification ... 68
4.3.2 Smart Card / Near Field Communication ... 69
4.3.3 Barcode .. 70
4.3.4 Digitales Foto / Video .. 71
4.3.5 Automatische Kontrollschilderfassung ... 72
4.3.6 Passives Infrarot ... 73
4.3.7 Laser .. 74
Zusammenfassung

In einem ersten Schritt werden in der Studie die Bedürfnisse nach Mobilitäts- und Verkehrsdaten, u.a. auch mittels Interviews mit Fachleuten aus der Verkehrsplanung, ermittelt. Es zeigt sich, dass sich die Bedürfnisse nach Kennwerten je nach Aufgabenbereich (Grundlagen und Instrumente, Planung, Bau und Unterhalt, Betrieb/Management und Monitoring/Controlling) stark unterscheiden. Diverse neue Technologien und Erhebungsmethoden werden in der Schweiz bereits angewendet. Ein flächendeckender Einsatz wird aber erst erwartet, wenn die Qualität und die Effizienz der Erhebungen gesteigert oder wenn neue Kennwerte erhoben werden können.

In einem vierten Schritt werden die Anforderungen an neue Technologien resp. Erhebungsmethoden aus planerischer Sicht untersucht. Experteninterviews und ein Expertenworkshop zeigten, dass für die Anwendung neuer Technologien resp. Erhebungsmethoden spezifische Anforderungen zu beachten sind, z.B. verbesserte Datenqualität, erhöhte Effizienz und Transparenz, Sicherstellung des Datenschutzes, ausreichende Dokumentation und Archivierung der Erhebungsergebnisse. Unterschiedliche Anforderungen gibt es hinsichtlich der angestrebten Datenqualität und der Erhebungseffizienz. Im Vergleich zu den herkömmlichen Mobilitäts- und Verkehrserhebungsmethoden ist aus planerischer Sicht zu beachten, dass es sich um komplexe Technologien handelt (Plau-

Résumé

La planification des transports nécessite des données de base fiables en ce qui concerne le comportement et la demande en matière de mobilité aussi bien pour les déplacements de personnes que de marchandises. La récolte de ces données est souvent exigeante et coûteuse. La présente recherche examine comment les nouvelles technologies et méthodes d’enquêtes peuvent contribuer à acquérir plus simplement et complètement des données de mobilité et de transport. Les systèmes de vente des transports publics, générant des données de mobilité et de trafic ne font pas l’objet de cette étude.

Dans le transport des personnes, les données de mobilité décrivent le comportement individuel en matière de déplacement (p. ex. choix de la destination, heure de départ, moyen de transport, itinéraire). Les données de transport incluent les caractéristiques de la circulation (p. ex. charge, densité et composition du trafic dans une section). Dans le transport des marchandises, les données de mobilité comprennent le comportement en matière de déplacement tant individuel (p. ex. temps de parcours, itinéraire, genre de fret) qu’agrégé (p. ex. volume de trafic, prestations, flux de demande), alors que les données de transport sont les mêmes que pour le transport des personnes.

Dans une première phase d’étude, les besoins de données en matière de mobilité et de circulation sont identifiés, notamment au moyen d’entretiens avec des spécialistes de la planification des transports. Il en ressort que les besoins en caractéristiques divergent selon les domaines (bases et instruments, planification, construction et entretien, exploitation et gestion, suivi et contrôle). Diverses technologies et méthodes de récolte nouvelles sont déjà appliquées en Suisse. Une utilisation à large échelle n’est cependant attendue que lorsque la qualité et l’efficacité de telles enquêtes seront augmentées ou lorsque de nouvelles caractéristiques pourront être récoltées.

Dans une deuxième phase d’étude, sont décrites les technologies auxquelles recourent les nouvelles méthodes de récolte. Les technologies suivantes ont été traitées: GPS, localisation par téléphone portable, Big Data, identification par fréquence radio, Smart Card, near field contact, code barre, Wi-Fi, Bluetooth, photos et vidéos numériques, infrarouge passif, laser, ultrasons, ondes radio, magnétomètre, câble à fibre optique, tapis de comptage de personnes. Ces technologies sont appliquées à différentes méthodes de récolte qui sont décrites dans le rapport, par exemple enquêtes de mobilité à l’aide de GPS, Floating Car Data, Floating Phone Data, identification par code ID, photos aériennes, identification automatique de particularités optiques, correspondance de signature et de groupe. Les nouvelles méthodes de récolte sont avant tout appropriées pour les comptages d’objets en circulation et les mesures de leurs propriétés (lieu, heure, vitesse etc.).

Dans une quatrième phase d’étude, les exigences posées aux nouvelles technologies et méthodes de récolte sont examinées du point de vue de la planification. Des entretiens et ateliers avec des experts ont montré que des exigences spécifiques doivent être respectées lors de leur application comme par exemple une qualité améliorée des données, une efficacité et une transparence plus grande, une garantie de la protection des données, une documentation suffisante et un archivage des résultats. Les exigences sont différentes au niveau de la qualité visée pour les données et de l’efficacité de leur récolte. Comparativement aux méthodes traditionnelles d’enquêtes de mobilité et de circulation, il faut tenir compte du point de vue de la planification qu’il s’agit de technologies complexes (plausibilisation de la qualité des données, transparence, identification d’erreurs de mesure ou de pannes d’appareil) et que les données potentiellement sensibles posent de hautes exigences pour leur protection. Les grandes quantités de données résultantes exigent des transmissions et des sauvegardes performantes ainsi que des routines efficaces pour la mise au point des données et le calcul des caractéristiques. La disponibilité à long terme est un aspect important dans le choix des méthodes en raison de l’obsolescence rapide de certaines technologies.

La dernière partie confronte le potentiel d’application avec les exigences de la planification. Il en ressort qu’aucune des méthodes n’est en tout point meilleure que les méthodes traditionnelles. Par exemple, les enquêtes à l’aide de GPS remplissent en général relativement bien les exigences souhaitées, aussi bien du point de vue exhaustivité et précision des données que de la bonne volonté des personnes à participer. En revanche, la lourdeur du traitement et du dépouillement des données est relativement importante. L’utilisation du Big Data pose encore des problèmes considérables en raison des déficits existants au niveau du dépouillement ainsi que de l’acceptation générale. Lors de la décision de recourir ou non à de nouvelles technologies ou méthodes pour récolter des données de transport, il faut chaque fois considérer les coûts totaux (investissement, récolte, dépouillement etc.). Des affirmations de portée générale ne sont pas possibles en termes de coûts sur les avantages et inconvénients des nouvelles technologies.

La recherche permet de conclure que les nouvelles technologies et méthodes d’enquête présentées offrent de multiples possibilités de récolter des données nouvelles, plus nombreuses et plus exactes pour la planification des transports. L’analyse des nouvelles technologies et méthodes pour la récolte de données de mobilité et de circulation a cependant montré que la plupart de ces méthodes n’ont été ni conçues ni appliquées pour leur utilisation dans le transport des personnes et encore moins dans celui des marchandises. Sans pour autant que les méthodes fondamentales de la planification des transports en soient modifiées, on peut s’attendre à des résultats plus rapidement disponibles et plus approfondis. Les exigences posées aux enquêtes de mobilité demeurent inchangées : les données récoltées doivent être actuelles, complètes, exactes et accessibles. Les méthodes permettant de récolter des données personnalisées (p. ex. spécimen de déplacements) débouchent sur des exigences élevées de protection des données. Les possibilités toujours plus nombreuses de récolter des données de mobilité et de circulation en temps réel ouvrent de nouvelles opportunités à des procédures conduites par ces données, par exemple dans la régulation du trafic. Les obstacles au recours plus fréquent aux nouvelles technologies dans les méthodes d’enquêtes de mobilité et de circulation sont la représentativité encore insuffisante des données récoltées, le manque de transparence et plus particulièrement la protection des données.
Summary

Transport planning needs reliable data on mobility and travel demand for passenger and freight traffic. Data collection is often demanding and complex. This study investigates the potential of new technologies and survey methods to obtain more comprehensive and accurate data.

Mobility data describes the individual mobility behavior (e.g. choice of destination, departure time, mode and route). Traffic data includes information on the traffic situation (e.g. traffic volume, traffic density, traffic mix at a cross section). In freight transportation mobility data describe the individual transport behavior (e.g. runtime, route and type of cargo) as well as the aggregated transport behavior (e.g. traffic volume, traffic capacity, demand flows). The traffic data describe similar information as in passenger transportation.

In a first step the study evaluates the needs for mobility and traffic data. The results of interviews with transport planning experts show that the requirements for information vary depending on the field of activity (e.g. research, planning, monitoring) of the interviewed person. The interviewees provide information on several new technologies and survey methods they use. They expect to use these new technologies more regularly once the quality and the efficiency of the data collection has increased or additional types of information can be obtained.

In the second part of the study the technologies which are used with new survey methods are introduced. The following technologies are described: GPS, Network Based Mobile Phone Tracking, Big Data, Radio Frequency Identification, Smart Card, Near Field Contact, Barcode, Wi-Fi, Bluetooth, digital Photo/Video, Passive Infrared, Laser, Ultrasound, Radio wave, Magnetometer, Optical Fiber, People Counting Mats. The study describes different survey methods which use these technologies, e.g. GPS-supported mobility surveys, Floating Car Data, Floating Phone Data, identification with ID-Code, Aerial Photography, Automatic Identification of Optical Features, Signature and Platoon Matching. The new survey methods are best suited for counting of traffic objects and measuring their characteristics (e.g. place, time, speed).

In the third step of the study the new technologies and survey methods are assessed using SWOT-analyses. The following strengths are identified repeatedly: fast availability of data, completeness of data as well as automatic and relatively inexpensive data collection. The increasing large scale use of certain technologies (e.g. Bluetooth) is seen as an opportunity. There exists, depending on the technology or survey method, a conflict potential with data protection laws. A case study conducted outside of this study shows that the data gained with a GPS-supported mobility survey is comparable to the results of the Swiss Microcensus on Mobility and Traffic.

The fourth part of the study focuses on the requirements to new technologies and survey methods from a transportation planer’s point of view. Interviews and a workshop with experts show several aspects to be important, e.g. improved data quality, increased efficiency and transparency, compliance with data protection laws, comprehensive documentation and archiving of the survey results. There exist diverging requirements regarding the level of data quality and survey efficiency. Compared to contemporary mobility- and transportation survey methods the new survey methods are complex (validation of data quality, transparency, detection of measurement errors and technical failure respectively). Several technologies collect sensitive personal data which requires a very careful handling of the data protection law. Since large amounts of data are produced, efficient storage, transmission as well as mechanisms for data cleansing and processing are required. Due to the ephemerality of technologies their long-term availability is an important aspect for choosing a new method.

In the final part of the study the application potential is compared with the planer’s requirements. The result shows that none of the new methods is better in all respects than contemporary methods. GPS-supported mobility surveys generally meet the require-
ments, especially concerning completeness and precision of the data as well as the willingness of people to participate in the survey. However, the effort for data cleansing and processing is relatively high. The use of Big Data generates momentarily considerable problems as there are deficits with data processing and the acceptance of the method. When considering the use of new technologies and survey methods respectively, all costs (e.g. investment, survey and data processing costs) have to be taken into account. A universal statement concerning the costs of using the new technologies for transport surveys is not possible.

In summary, the use of new technologies and survey methods bear many opportunities for collecting new, more comprehensive and more precise data. The new technologies and survey methods are predominantly designed for and used in passenger traffic. Even if the general methodology of transportation planning has not to be changed when using new technologies and methods, results can be available faster and on a sounder basis. The requirements for mobility surveys do not change; the data has to be up date, complete, precise and accessible. Survey methods that collect personal data (e.g. movement profile) require special attendance of data protection laws. The increasing possibilities to collect real-time mobility and traffic data open new opportunities for "data-driven" processes, e.g. in traffic control. Obstacles against an increasing use of new technologies in mobility and traffic survey methods are the partial lack of information on the representativeness of the collected data, the missing transparency and especially the potential problems due to data protection laws.
1 Einleitung

1.1 Ausgangslage

Bei Befragungen zum Mobilitätsverhalten, bei denen durchgeführte Wege rapportiert werden müssen, stellt man fest, dass Wege nicht oder z.B. hinsichtlich Abfahrtszeit, gewähltem Verkehrsmittel, gewählter Route, Wegzeit und -distanz nur ungenau angegeben werden.

Neue Technologien, welche bereits heute eingesetzt werden, wie GPS, Bluetooth, GSM, RFID, Wi-Fi, Big Data usw. bieten die Möglichkeit, die oben genannten Informationen zum Mobilitäts- und Verkehrsverhalten einfacher und umfassender zu gewinnen, wenn evtl. auch mit anderen Fehlern. Auch bei den so gewonnenen Erhebungsresultaten handelt es sich um Stichproben (z.B. gibt es nicht in allen Fahrzeugen eine aktive Bluetooth-Quelle) und sie sind mit Unsicherheiten behaftet (z.B. mehrere Bluetooth-Quellen in einem Fahrzeug). Zudem stellt sich die Frage nach weiteren sinnvollen Einsatzgebieten neuer Technologien für die Gewinnung von Daten für die kurz- und längerfristige Planung des Personen- und Güterverkehrs.

Aus der Sicht des Personenverkehrs präsentiert sich die Ausgangslage wie folgt:
- Für zahlreiche Aufgaben in der Verkehrs- und Mobilitätsplanung (Verkehrsanalysen, Mobilitätsanalysen, Planung von Verkehrsanlagen, Netzplanungen, Umweltstudien etc.) werden Mobilitäts- und Verkehrsdaten benötigt. Teilweise werden diese permanent (z.B. Induktionsschlaufen) oder periodisch (z.B. Mikrozensus Mobilität und Verkehr) erhoben.
- Für die Erreichung der gewünschten Qualität der erhobenen Mobilitäts- und Verkehrsdaten ist der Erhebungsaufwand mittels herkömmlicher Methoden und Instrumente in der Regel gross.
- Schwächen bei Erhebungen bestehen vor allem bei der kombinierten Mobilität (Umschieverhalten) sowie bei der Beobachtung des Langsamverkehrs, wo insbesondere verlässliche Daten zu Fussgängerströmen, Geh- und Aufenthaltsverhalten, Gruppengrössen, Fussgängerdichten, Wegezwecken usw. fehlen.

Aus der Sicht des Güterverkehrs präsentiert sich die Ausgangslage wie folgt:
- Die heutigen Güterverkehrserhebungen sind auf nationale statistische Bedürfnisse ausgerichtet (Rapp Trans AG/ProgTrans AG/LOG HSG 2013). Schwächen der heutigen Güterverkehrsstatistik liegen unter anderem bei der Erfassung des städtischen Lieferverkehrs, bei der Abdeckung von multimodalen Transportketten und bei der geringen feinräumlichen Differenzierung.
- Erhebungen zum Güterverkehr mit herkömmlichen Instrumenten (Papierfragebogen, Hand-Zählungen, Induktionsschlaufen etc.) sind in der Regel mit einem grossen Aufwand verbunden und die Belastung wird von den Logistik- und Transportunternehmen als hoch empfunden.
- Neue Technologien (GPS-Logger, Bluetooth, FCD, FPD, Luftbilder, etc.) können dazu beitragen, Erhebungen zu vereinfachen, bestehende Datenlücken zu schliessen und die Qualität der erhobenen Kennwerte zu verbessern sowie die Belastung der befragten Unternehmen/Personen zu reduzieren.

1 Das Abkürzungsverzeichnis befindet sich im Glossar.
2 MZMV
Die Nutzung von firmeninternen Berichtssystemen wäre als Alternative zu Erhebungen von Güterverkehrsdaten zu klären (RFID, "tracking and tracing systems", Dispositionssysteme, etc.).

1.2 Projektziele

Das Ziel des Forschungsprojektes ist die Beantwortung der folgenden Fragen:

- Welche Datenbedürfnisse hat die Verkehrsplanung und -steuerung resp. -statistik heute (MIV, ÖV, Langsamverkehr und Güterverkehr) und welche Anforderungen ergeben sich an Mobilitäts- und Verkehrserhebungen?
- Welche Anwendungspotenziale haben neue Technologien für Mobilitäts- und Verkehrserhebungen?
- Welche Anforderungen werden an den Einsatz neuer Technologien für Mobilitäts- und Verkehrserhebungen gestellt?
- Welche allgemeinen Vor- und Nachteile sowie Stärken und Schwächen, Chancen und Risiken weisen neue Mobilitäts- und Verkehrserhebungstechnologien im Vergleich zu herkömmlichen auf?
- Welches sind die Einsatzmöglichkeiten und -grenzen neuer Mobilitäts- und Verkehrserhebungstechnologien?
- Welche Einsatzgrenzen und Anforderungen ergeben sich aus den heutigen Datenschutzgesetzen?
- Könnte man die Verfahren der Verkehrstechnik und -planung anpassen oder ergänzen, um die neuen Datenquellen nutzbar zu machen?

1.3 Abgrenzung des Untersuchungsgegenstandes

1.4 Vorgehen und Aufbau des Berichtes

Das Vorgehen gliedert sich in die folgenden sechs Arbeitsschritte (Abbildung 1):

- Zusammenstellung der Bedürfnisse der öffentlichen Hand nach Mobilitäts- und Verkehrsdaten
- Zusammenstellung und Kurzbeschrieb der neuen Technologien und deren Anwendung in Erhebungsmethoden
- Beschreibung der Anwendungspotenziale neuer Technologien
- Formulierung der Anforderungen an die Mobilitäts- und Verkehrserhebungsmethoden, bei denen neue Technologien zum Einsatz gelangen, aus planerischer Sicht
- Beurteilung der neuen Mobilitäts- und Verkehrserhebungsmethoden bezüglich Einsatzmöglichkeiten und -grenzen sowie Vor- und Nachteilen gegenüber herkömmlichen Methoden. Entwicklung von Empfehlungen für den Einsatz der neuen Erhebungsmethoden in der Praxis
- Schlussfolgerung und Empfehlung

Jedem dieser Arbeitsschritte ist in diesem Bericht ein Kapitel gewidmet.

Abbildung 1: Arbeitsschritte der Forschungsarbeit
2 Bedürfnisse nach Mobilitäts- und Verkehrsdaten

2.1 Einleitung

Dieses Kapitel fasst die Ergebnisse der Analyse der Bedürfnisse nach Mobilitäts- und Verkehrsdaten zusammen, welche sich auf Literaturrecherchen, Experteninterviews und Erfahrungen der Forschungsstelle abstützt.3

Im Personenverkehr werden unter Mobilitätsdaten Daten zum individuellen und aggregierten Mobilitätsverhalten (z.B. Wahl von Ziel, Abfahrtszeit, Verkehrsmittel, Route) verstanden. Verkehrsdaten umfassen Daten zum Verkehrsgeschehen (z.B. Verkehrsbelastung, Verkehrsichte, Verkehrszusammensetzung an einem Querschnitt).

Im Güterverkehr beschreiben die Mobilitätsdaten das individuelle Transportverhalten (z.B. Laufzeit, Route, Frachtart) und das aggregierte Transportverhalten (z.B. Verkehrsaufkommen, Verkehrsleistung, Nachfrageströme), während die Verkehrsdaten die analogen Kennwerte wie im Personenverkehr umfassen.

2.1.1 Anwendungsbereiche und -zwecke

Mobilitäts- und Verkehrsdaten werden für verschiedene Anwendungsbereiche und -zwecke benötigt. Je nach Anwendungszweck werden bestimmte Kenngrössen benötigt und spezifische Anforderungen an deren Genauigkeit, räumliche Auflösung etc. gestellt. Es können die folgenden Anwendungsbereiche unterschieden werden:

- Grundlagen und Instrumente
- Planung
- Bau und Unterhalt
- Betrieb
- Monitoring/Controlling

Eine mögliche Kategorisierung der Anwendungszwecke zeigt folgende Tabelle.

3 Beschreibungen der "neuen" Technologien und Erhebungsmethoden finden sich in Kapitel 3.
Tabelle 1: Grobübersicht über Anwendungszwecke von Mobilitäts- und Verkehrsdaten

<p>| Anwendungs- | Anwendungszwecke | Mobilitätsdaten | Verkehrsdaten |</p>
<table>
<thead>
<tr>
<th>bereich</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen und Instrumente</td>
<td>• Mobilitäts-/Verkehrsstatistik</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Mobilitäts-/Verkehrsanalysen</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Nachfrage- und Marktanalysen</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Verkehrsmodellierung</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Verkehrssimulation</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Verkehrsprognosen</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Verkehrsszenarien</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Verkehrssicherheitsanalysen</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Planung</td>
<td>• Erstellung von Verkehrskonzepten/-strategien (Agglo-Programme)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Angebotsplanungen (ÖV)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Netz- und Massnahmenplanungen</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Parkraumplanung</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Betriebsplanung (ÖV)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Erschliessungsplanung</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Raumplanung (Sach-, Richt- und Nutzungsplanung)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Standortplanung</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Umweltstudien/UVP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verbundplanung</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Machbarkeits- und Zweckmässigkeitsbeurteilungen</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verkehrsberuhigung/Strassenraumgestaltung</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dimensionierung von Verkehrsanlagen</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bau und Unterhalt</td>
<td>• Dimensionierung Infrastruktur</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Zustandsschätzung und -überwachung</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Erhaltungsplanung/-management</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Baustellenplanung</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Betrieb</td>
<td>• Verkehrszustandserfassung/-überwachung</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Verkehrssteuerung oder Betriebssteuerung</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Verkehrsmanagement (Lenken, Leiten, Steuern, Informieren)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Betriebslenkung im öffentlichen Verkehr</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Einnahmenverteilung in Verkehrsverbünden</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>• Störungs-/Ereignismanagement</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Monitoring / Controlling</td>
<td>• Monitoring Verkehrsentwicklung</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wirkungskontrollen</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Evaluationen von Programmen/Konzepten/Massnahmen</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Mobilitätsdaten werden für den Bau und Unterhalt sowie den Betrieb nicht benötigt, da diese Daten keinen direkten Netzbezug aufweisen.

2.1.2 Strukturierung von Mobilitäts- und Verkehrsdaten

2.1.3 Methode zur Beurteilung der Datenbedürfnisse aus der Sicht der Forschungsstelle

Die Mitglieder des Forschungsteams haben die Wichtigkeit der identifizierten Kennwerte (56 für Personenverkehr, 57 für Güterverkehr) anhand einer 3-Stufigen Punkteskala (1 = wenig wichtig, 2 = wichtig, 3 = sehr wichtig) für die 35 Anwendungszwecke (vgl. Tabelle 1) beurteilt und klassiert. Eine detaillierte Übersicht über die Kennwerte findet sich im Anhang III.

Weiter wurde die Gesamtpunktzahl der Wichtigkeit durch die max. mögliche Gesamtpunktzahl (wenn alle mit 3 bewertet) dividiert. Dies entspricht einer Art Erfüllungs- oder Wichtigkeitsgrad in Prozent. Dies erfolgte pro Kennwert, pro Anwendungszweck und aggregiert pro Kennwertgruppe (individuelles Mobilitäts- bzw. individuelles Transportverhalten, aggregiertes Mobilitäts- bzw. aggregiertes Transportverhalten, mikroskopisches bzw. makroskopisches Verkehrsgeschehen) und pro Anwendungsbereich (Grundlagen und Instrumente, Planung, Bau- und Unterhalt, Betrieb/Management, Monitoring/Controlling).

Diese Auswertungen erlaubten eine grobe Einschätzung der Bedeutung der Kennwerte aus der Sicht der Forschungsstelle. Die Ergebnisse werden in Kapitel 2.2 vorgestellt.

2.1.4 Expertengespräche

Insgesamt wurden 14 Interviews mit Vertretern von Verwaltungen, Infrastrukturbetreibern und Transportunternehmen durchgeführt. Die Liste der befragten Experten findet sich im Anhang II.

2.2 Ergebnisse der Bedürfnisanalyse

2.2.1 Beurteilung der Bedürfnisse aus der Sicht der Forschungsstelle

Es wurden die Auswertungen gemäß Kapitel 2.1.3 vorgenommen. Es ist zu beachten, dass die Tendenz besteht, Kennwerte für die eigenen Tätigkeitsbereiche als wichtiger zu beurteilen als jene für andere Anwendungsbereiche. Das Haupttätigkeitsfeld der beteiligten Firmen/Institutionen liegt in den Anwendungsbereichen Grundlagen und Instrumente, Planung, Monitoring/Controlling und Betrieb/Management (Reihenfolge mit abnehmender Bedeutung). Der Bereich Bau und Unterhalt wird durch die Forschungsstelle nicht direkt abgedeckt.

Im Folgenden sind die Ergebnisse in aggregierter Form dargestellt; zuerst für den Personenverkehr und dann für den Güterverkehr.

a) Personenverkehr

Aus Tabelle 3 geht der Wichtigkeitsgrad der Kennwerte nach Anwendungsbereich und Kategorie hervor. Die Tabelle zeigt die aggregierte Darstellung für die Personenmobilität bzw. den Personenverkehr. Für den Vergleich ist die relative Beurteilung relevanter als die absolute Beurteilung.

<p>| Anwendungs- | Mobilitätsdaten | Verkehrsdaten |</p>
<table>
<thead>
<tr>
<th>bereiche</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individuelles Mobilitätsverhalten (Etappenkonzept) (N=33)</td>
<td>Aggregiertes Mobilitätsverhalten (N=10)</td>
</tr>
<tr>
<td>Grundlagen und Instrumente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bau und Unterhalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betrieb / Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring / Controlling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende:

<table>
<thead>
<tr>
<th>Wichtigkeitsgrad</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>tief</td>
<td><50%</td>
</tr>
<tr>
<td>mittel</td>
<td>50-60%</td>
</tr>
<tr>
<td>hoch</td>
<td>60-70%</td>
</tr>
<tr>
<td>Sehr hoch</td>
<td>>70%</td>
</tr>
</tbody>
</table>

N=Anzahl Kennwerte

Methodik zur Bestimmung des Wichtigkeitsgrad siehe Kap. 2.1.3.
Aus der Tabelle können folgende Erkenntnisse abgeleitet werden:

- Für Grundlagen und Instrumente sind Kennwerte für das individuelle und für das aggregierte Mobilitätsverhalten wichtiger als das makroskopische und insbesondere das mikroskopische Verkehrsgeschehen. Beim mikroskopischen Verkehrsgeschehen sind die Kennwerte nur für wenige Aufgaben von Bedeutung (z.B. Verkehrssimulation, Verkehrssicherheitsanalysen).

Tabelle 4: Beispiele von Kennwerten nach Wichtigkeitsgradklassen

<table>
<thead>
<tr>
<th>Hoher bis sehr hoher Wichtigkeitsgrad (>60%)</th>
<th>Äggregiertes Mobilitätsverhalten</th>
<th>Mikroskopisches Verkehrsgeschehen</th>
<th>Makroskopisches Verkehrsgeschehen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Verwendetes Verkehrsmittel</td>
<td>- Verkehrsaufkommen</td>
<td>- keine</td>
<td>- Verkehrsbelastung (Strom/Querschnitt)</td>
</tr>
<tr>
<td>- Quelle/Ziel</td>
<td>- Nachfrageströme</td>
<td></td>
<td>- Verkehrs zusammensetzung</td>
</tr>
<tr>
<td>- Weghäufigkeit</td>
<td>- Modal Split</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Route</td>
<td>- Anzahl Ausgänge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Wegekette</td>
<td>- Etappen pro Ausgang</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Wegzweck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefer bis mittlerer Wichtigkeitsgrad (<60%)</td>
<td>- Luftliniendistanz</td>
<td>- Lokalere Geschwindigkeit</td>
<td>- Lokalere Geschwindigkeitsverteilung</td>
</tr>
<tr>
<td></td>
<td>- Umsteighäufigkeit</td>
<td>- Beschleunigung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Umsteigezeit</td>
<td>- Verzögerung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Umsteigevorgänge</td>
<td>- Weglücken</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Umsteigegeghstanz</td>
<td>- Zeitlücken</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Güterverkehr

Tabelle 5: Wichtigkeitsgrad von Kennwerten nach Aufgabenbereich und Datenkategorie

<table>
<thead>
<tr>
<th>Anwendungs-bereiche</th>
<th>Transportdaten</th>
<th>Verkehrsdaten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individuelles Transportverhalten (Etappenkonzept) (N=34)</td>
<td>Aggregiertes Transportverhalten (N=10)</td>
</tr>
<tr>
<td>Grundlagen und Instrumente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bau und Unterhalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betrieb / Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring / Controlling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende:

Wichtigkeitsgrad

<table>
<thead>
<tr>
<th>Wichtigkeitsgrad</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>tief</td>
<td><50% (Verwendbarkeit und Bedeutung)</td>
</tr>
<tr>
<td>mittel</td>
<td>50-60%</td>
</tr>
<tr>
<td>hoch</td>
<td>60-70%</td>
</tr>
<tr>
<td>Sehr hoch</td>
<td>>70%</td>
</tr>
</tbody>
</table>

N=Anzahl Kennwerte

Methodik zur Bestimmung des Wichtigkeitsgrad siehe Kap. 2.1.3.

Aus der Tabelle können folgende Erkenntnisse abgeleitet werden:

- Grundsätzlich zeigt sich über die Anwendungsbereiche und Datenkategorien ein ähnliches Bild wie beim Personenverkehr. Aufgrund der Beurteilung durch teilweise andere Personen wurde insgesamt die Wichtigkeit etwas höher eingestuft als beim Personenverkehr.
- Für Grundlagen und Instrumente sind Kennwerte für das individuelle und das aggregierte Transportverhalten wichtiger als das makroskopische Verkehrsgeschehen und insbesondere das mikroskopische Verkehrsgeschehen. Beim mikroskopischen Verkehrsgeschehen sind die Kennwerte nur für wenige Aufgaben von Bedeutung (z.B. Verkehrssimulation, Verkehrssicherheitsanalysen); es ergibt sich darum ein eher tiefer Wichtigkeitsgrad.
2.2.2 Ergebnisse der Expertengespräche: Verwendete Kennwerte

In den Expertengesprächen wurde auch nach den heute verwendeten Kennwerten gefragt. Die Antworten lassen sich wie folgt zusammenfassen:

a) Verwendete Kennwerte im Personenverkehr
 • Die Verwendung von Kennwerten zum aggregierten Mobilitätsverhalten ist etwas ausgeglichener. Am meisten werden Kennwerte zum Verkehrsaufkommen, zur Verkehrsleistung und zur Fahrleistung verwendet. Wichtig sind aber auch die Nachfrageströme, die Fahrzwecke oder der Modal Split. Am wenigsten genutzt werden die Anzahl Ausgänge, die Etappen pro Ausgang sowie die Wegeketten,
 • Kennwerte zum mikroskopischen Verkehrsgeschehen werden nur von wenigen der Interviewten verwendet. Die lokale Geschwindigkeit findet eine breitere Verwendung als Zeitlücken, Beschleunigungen oder Verzögerungen.
 • Kennwerte zum makroskopischen Verkehrsgeschehen werden demgegenüber deutlich mehr verwendet. Am meisten genutzt werden Kennwerte wie Verkehrsbelastungen im Querschnitt resp. in einem Strom oder die Verkehrs zusammensetzung. Am wenigsten genutzt werden die streckenbezogene und die lokale Geschwindigkeitsverteilung sowie die Reisezeitverteilung.

b) Verwendete Kennwerte im Güterverkehr
 Bezüglich der heute verwendeten Kennwerte für den Güterverkehr bzw. den Gütertransport können folgende Schlüsse gezogen werden:
 • Kennwerte zum aggregierten Transportverhalten werden von rund der Hälfte der interviewten Personen verwendet. Besonders häufig verwendet werden der Modal Split, Nachfrageströme und Warengruppen. Weniger häufig verwendet werden Stops pro Tour und Transportkettenverteilungen.
 • Wie beim Personenverkehr verwenden die interviewten Personen auch beim Güterverkehr nur selten Kennwerte zum mikroskopischen Verkehrsgeschehen. Wenn solche Kennwerte genutzt werden ist der Nutzungsgrad hoch. Am häufigsten verwendet
wird die lokale Geschwindigkeit. Auch häufig verwendet werden Zeitlücken, Beschleunigungen und Verzögerungen.

- Kennwerte des makroskopischen Verkehrsgeschehens verwendet rund die Hälfte der interviewten Personen. Im Vordergrund stehen die Verkehrsbelastung im Querschnitt resp. Strom sowie die Verkehrszusammensetzung. Weniger häufig werden die Geschwindigkeits- und Laufzeitverteilung verwendet.

2.2.3 Ergebnisse der Expertengespräche: Eingesetzte (neue) Technologien

Tabelle 7: Heutiger/geplanter Einsatz von neuen Technologien

<table>
<thead>
<tr>
<th>Interviewpartner</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technologie</td>
<td></td>
</tr>
<tr>
<td>GPS Logger</td>
<td>(E)</td>
<td>(E)</td>
<td></td>
<td></td>
<td>E/G</td>
<td>(G)</td>
<td>(E)</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS Logger in Taxi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(G)</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSVA-Geräte</td>
<td>E</td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navigationsgeräte</td>
<td>E</td>
<td>E</td>
<td>(E)</td>
<td>E</td>
<td>(E)</td>
<td>(E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smartphone mit App</td>
<td>G</td>
<td>E</td>
<td>(E)</td>
<td>E</td>
<td>(E)</td>
<td>G</td>
<td>G</td>
<td>E/G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobilfunktelefon</td>
<td>G</td>
<td>(E)</td>
<td></td>
<td></td>
<td>(G)</td>
<td>E/G</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Floating Car Data</td>
<td></td>
<td></td>
<td>(G)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>E</td>
<td>(E)</td>
<td>E</td>
<td>G</td>
<td>(G)</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>(G)</td>
<td></td>
<td>G</td>
<td>(G)</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID</td>
<td>(G)</td>
<td></td>
</tr>
<tr>
<td>NFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SmartCards</td>
<td>(E)</td>
<td></td>
</tr>
<tr>
<td>Barcode</td>
<td>(E)</td>
<td></td>
</tr>
<tr>
<td>Foto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Foto mit Schriftkennung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E/G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video mit Schriftkennung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>(E)</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video mit Personenerkennung</td>
<td>E</td>
<td>(E)</td>
<td></td>
</tr>
<tr>
<td>Luftaufnahmen mit Satellit</td>
<td></td>
</tr>
<tr>
<td>Luftaufnahmen mit Flugzeugen</td>
<td>E</td>
<td>(E)</td>
<td>E</td>
<td>E</td>
<td>E/G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luftaufnahmen mit Drohnen</td>
<td></td>
</tr>
<tr>
<td>Big Data</td>
<td>G</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive Infrarot</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Ultraschall</td>
<td></td>
</tr>
<tr>
<td>Radar</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td></td>
<td>E</td>
<td>E/G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiowellen</td>
<td></td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
</tr>
<tr>
<td>Lichtwellen</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Drucksensoren (z.B. Personenzählmatte, EcoCounter)</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>(G)</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: E: heute im Einsatz, G: Einsatz geplant, E/G: heute im Einsatz/Ausweitung geplant; ():Test/Feldversuche

Der heutige resp. geplante Einsatz neuer Technologien für die Erhebung von Mobilitäts- und Verkehrsdaten kann aufgrund der Interviews wie folgt beurteilt werden:

\(^4\) Die Beschreibung der Technologien findet sich in Kapitel 3.
• Daten aus LSVA-Geräten werden für statistische Zwecke und für die Plausibilisierung von Verkehrsmodellen auf nationaler Ebene genutzt. Auf regionaler Ebene wird mit diesen Daten erst in einem Feldversuch gearbeitet.

• Daten aus Navigationsgeräten werden sowohl national als auch regional genutzt (z.B. für die Erfassung von Geschwindigkeiten und Routen).

• Mobilfunkdaten werden auf lokaler und nationaler Ebene verwendet (z.B. für die Geschwindigkeitsmessung).

• Extended Floating Car Data fähige Fahrzeuge sind erst vereinzelt im Einsatz.

• Bluetooth gestützte Erhebungen werden auf allen Ebenen durchgeführt (z.B. für die Erhebung von Reisezeiten). Punktuell, zeitlich beschränkte Erhebungen sind häufiger als permanente Erhebungen. Für die Reisezeitermittlung wird eine Erfassungsrate von 12 bis 18 % als ausreichend betrachtet. Für zahlreiche Kennwerte (z.B. Verkehrs mengen) ist jedoch eine Hochrechnung erforderlich, was bei tiefen Erfassungs- raten bezüglich Qualität kritisch sein kann. Ein vermehrter Einsatz von Bluetooth ist geplant.

• Wi-Fi kommt bei lokalen, in der Regel temporären, Erhebungen mehrfach zum Einsatz. Für regionale und nationale Erhebungen ist der Einsatz geplant.

• RFID kommt bei den interviewten Institutionen/Unternehmen noch nicht zum Einsatz.

• NFC ist nur bei einer interviewten Institution im Einsatz.

• Smart Cards und Barcode sind im Rahmen von Feldversuchen im Einsatz (z.B. für Check-in/Check-out Systeme im öffentlichen Verkehr).

• Foto gestützte Erhebungen werden vor allem auf lokaler Ebene durchgeführt. Foto mit automatischer Schrifterkennung ist im Rahmen eines Feldversuchs im Einsatz.

• Video kommt auf allen drei Ebenen zum Einsatz, teilweise auch mit automatischer Schrift- oder Personenerkennung. Es handelt sich dabei um permanente (z.B. Verkehrsüberwachung, Velozählungen) oder um temporäre Erhebungen (z.B. Erhebung von Personenströmen mit Personenerkennung).

• Luftaufnahmen (Satellit, Flugzeuge) werden nur vereinzelt genutzt, insbesondere für lokale Erhebungen (z.B. Erfassung von Personendichten und -flüssen bei Grossanlässen). Der Einsatz von Dronen ist geplant.

5 Wie in Kapitel 3.4 beschrieben wird, handelt es sich bei "Big Data" nicht um eine Technologie im engeren Sinne.
Der Einsatz neuer Technologien sollte durch Erhebungsspezialisten erfolgen, welche sich mit den Technologien gut auskennen. Dieses Wissen ist bei den Auftraggebern häufig nicht vorhanden (asymmetrische Verteilung der Information resp. des Wissens). Wichtig ist auch eine Visualisierung und Plausibilisierung sowie die Nachvollziehbarkeit der erhebenen Daten (welche Daten wurden überhaupt erhoben? Wer konnte potenziell an der Erhebung teilnehmen?).

2.2.4 Ergebnisse der Expertengespräche: Bedürfnisse
a) Personenverkehr

Aus der folgenden Tabelle gehen die prioritär genutzten Kennwerte sowie die zusätzlich benötigten Kennwerte hervor. Bei den zusätzlich benötigten Kennwerten ist zu beachten, dass diese teilweise im MZMV erhoben werden, aber nicht im gewünschten Detailierungsgrad.

Tabelle 8: Prioritäre Kennwerte und zusätzlich benötigte Kennwerte

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Hauptanwendungs- zwecke</th>
<th>Kennwerte von besonders hoher Priorität</th>
<th>Zusätzlich benötigte Kennwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuelles Mobilitätsverhalten</td>
<td>• Grundlagen und Instrumente (inkl. Inputdaten für Modelle)</td>
<td>• Reisezeiten • Wegdistanzen • Routenwahl • Mobilitätswerkzeuge • Start- und Zielpunkte • Wegehäufigkeit</td>
<td>• Kombination von Verkehrsmitteln • Routen • Ausgänge • Umsteigegehdistanz • Umsteigevorgänge • Umsteigezeiten • Aktivitätenmuster • Bahnzugangsmerkmale • Anzahl Mitreisende • Wegeketten • Wegehäufigkeiten • Mobilitätswerkzeuge</td>
</tr>
<tr>
<td>(Etappenkonzept)</td>
<td>• Monitoring/Controlling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregiertes Mobilitätsverhalten</td>
<td>• Planung • Monitoring/Controlling</td>
<td>• Verkehrsaufkommen • Modal Split • Verkehrsleistung • Nutzungshäufigkeit von Verkehrsmitteln • Nachfrageströme</td>
<td>• Verkehrserzeugungsraten • Wahl Abfahrtszeit, Route</td>
</tr>
<tr>
<td>Mikroskopisches Verkehrsgeschehen</td>
<td>• Grundlagen und Instrumente • Betrieb/Management</td>
<td>• Einzelfahrzeugdaten in Echtzeit (Quelle, Ziel, Standort, Fz-Typ) • Geschwindigkeiten • Gewicht</td>
<td>• Personenverhalten (als Input für Simulationsmodelle)</td>
</tr>
<tr>
<td>Makroskopisches Verkehrsgeschehen</td>
<td>• Planung • Betrieb/Management</td>
<td>• Verkehrsbelastung/-frequenzen • Verkehrsdichten • Verkehrszusammensetzung • Geschwindigkeiten • Reisezeitverluste • Stauängen</td>
<td>• Reisezeitverteilung • Geschwindigkeitsverteilungen • Reisezeitverluste • Stauängen • Stauzeiten • Auslastungen/Belegungen</td>
</tr>
</tbody>
</table>
b) Güterverkehr

Aus der folgenden Tabelle gehen die prioritären Kennwerte sowie die zusätzlich benötigten Kennwerte hervor.

Tabelle 9: Prioritäre Kennwerte und zusätzlich benötigte Kennwerte

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Hauptanwendungs-zwecke</th>
<th>Kennwerte von besonders hoher Priorität</th>
<th>Zusätzlich benötigte Kennwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuelles Transportverhalten (Etappenkonzept)</td>
<td>• Grundlagen und Instrumente (inkl Inputdaten für Modelle) • Monitoring/Controlling</td>
<td>• Standzeiten • Touren • Warengruppen • Branchen • Verkehrsmittel • Transportketten • Sendungsgrössen</td>
<td>• Fahrzeiten, Standzeiten, Umladezeiten • Touren • Stopps pro Tour • Logistikmarksegment, Branche • Standzeiten • Transportketten • Lieferhäufigkeiten am Lieferpunkt • Akteurtyp • Laufzeiten</td>
</tr>
<tr>
<td>Aggregiertes Transportverhalten</td>
<td>• Planung • Monitoring/Controlling</td>
<td>• Verkehrsaufkommen • Güterströme • Modal Split • Verkehrslast • Fahrleistung • Direktfahrten/Touren • Werkverkehr/Gewerbeverkehr • Fahrzeugtypen • Behältertypen • Emissionsklassen • Weitere aggregierte Werte des individuellen Transportverhaltens</td>
<td>• Aggregierte Werte des individuellen Transportverhaltens (vgl. oben) • Wahl Abfahrtszeit, Ziel, Verkehrsmittel, Route (Verteilungen)</td>
</tr>
<tr>
<td>Mikroskopisches Verkehrsgeschehen</td>
<td>• Grundlagen und Instrumente • Betrieb/Management</td>
<td>• Einzelfahrzeugdaten in Echtzeit (Quelle, Ziel, Standort, Fz-Typ) • Geschwindigkeiten • Gefahrgut</td>
<td>• Lokale Geschwindigkeiten</td>
</tr>
<tr>
<td>Makroskopisches Verkehrsgeschehen</td>
<td>• Planung • Monitoring/Controlling</td>
<td>• Tagesganglinien • Anteil Schwerverkehr</td>
<td>• Lokale Geschwindigkeitsverteilungen • Laufzeitenverteilungen</td>
</tr>
</tbody>
</table>
2.2.5 Ergebnisse der Expertengespräche: Erfahrungen mit Erhebungstechnologien

Die folgende Tabelle zeigt die gemachten Erfahrungen mit GPS, FCD, FPD und Bluetooth.
Tabelle 10: Erfahrungen mit Erhebungen mit GPS, FCD, FPD und Bluetooth

<table>
<thead>
<tr>
<th>Anwendungszweck</th>
<th>Stärken</th>
<th>Schwächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>• Insgesamt positiv</td>
<td>• Differenzen zum effektiven Aufkommen</td>
</tr>
<tr>
<td></td>
<td>• Verifizierung von Beobachtungen</td>
<td></td>
</tr>
<tr>
<td>Erhebung des Schleichverkehrs</td>
<td>• Hohe Genauigkeit (auch bezüglich Routenerfassung)</td>
<td>• Grosser Initialaufwand</td>
</tr>
<tr>
<td></td>
<td>• Geringer Batteriaufwand</td>
<td>• Schulungsbedarf</td>
</tr>
<tr>
<td>Ermittlung der Verkehrsallage für Verkehrsmanagement</td>
<td>• Grobe Problem-/Stauerkennung</td>
<td>• Datenschutz</td>
</tr>
<tr>
<td>(Test)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ermittlung von streckenbezogenen Reisezeiten und Geschwindigkeiten</td>
<td>• Gute Qualität auf stärker belasteten Strassen (wo Ausrüstungsgrad stimmt)</td>
<td>• Geringe Stichprobe für untergeordnetes Strassennetz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hohe Kosten</td>
</tr>
<tr>
<td>Ermittlung von Fahr- und Stauzeiten (für die Staukostenermittlung)</td>
<td>• Noch keine Erfahrungen</td>
<td>• Noch keine Erfahrungen</td>
</tr>
<tr>
<td>Identifizierung von Quell-Ziel-Relationen und Routenwahl</td>
<td>• Noch keine Erfahrungen</td>
<td>• Noch sehr eingeschränkte Erfahrungen</td>
</tr>
<tr>
<td>(Fallbeispiel)</td>
<td>• Grosses Potenzial erwartet</td>
<td>• Teilweise noch ungenügende Qualität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erkennung von Verkehrsmitteln</td>
</tr>
<tr>
<td>FPD</td>
<td>• Kostengünstig</td>
<td>• Räumliche Abdeckung noch ungenügend</td>
</tr>
<tr>
<td></td>
<td>• Gute Qualität der Ergebnisse</td>
<td>• Zuordnung zu Strassentyp und Verkehrsmittel</td>
</tr>
<tr>
<td>Messung von Reisegeschwindigkeiten und Reisezeitverlusten</td>
<td>• Insgesamt positiv</td>
<td>• Keine Gesamtmenge</td>
</tr>
<tr>
<td></td>
<td>• Zuverlässigkeit</td>
<td>• Keine Fahrzeug-Klassen</td>
</tr>
<tr>
<td></td>
<td>• Auch Messung der Fahrtrichtung (mit zwei Sensoren) und von Geschwindigkeiten möglich</td>
<td></td>
</tr>
<tr>
<td>Reisezeitermittlung MIV (jährlich im September)</td>
<td>• Erfassung von Gebieten/Strömen/Routen</td>
<td>• Hoher Geräteaufwand (Netz)</td>
</tr>
<tr>
<td></td>
<td>• Hohe Effizienz</td>
<td>• Herausfiltern von Personen, welche unterwegs Aktivitäten ausgeübt haben</td>
</tr>
<tr>
<td></td>
<td>• Kostengünstig</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Umfassende Erhebung möglich</td>
<td></td>
</tr>
<tr>
<td>Erhebung von Personenflüssen an/um Bahnhöfen</td>
<td>• Erfassung von Gebieten/Strömen/Routen</td>
<td>• Repräsentativität ist methodisch anspruchsvoll</td>
</tr>
<tr>
<td></td>
<td>• Hohe Effizienz</td>
<td>• Ungenügende Transparenz</td>
</tr>
<tr>
<td></td>
<td>• Kostengünstig</td>
<td>• Interpretationsschärfe heikel</td>
</tr>
<tr>
<td></td>
<td>• Umfassende Erhebung möglich</td>
<td></td>
</tr>
<tr>
<td>Erhebung des Durchgangsverkehr von innerstädtischen Hauptverkehrsstrasse</td>
<td>• Räumlich und zeitliche Erfassung der Ströme</td>
<td>• Erhebungsnetz notwendig</td>
</tr>
<tr>
<td></td>
<td>• Nachträgliche Auswertungsmöglichkeiten</td>
<td>• Repräsentativität ist methodisch anspruchsvoll</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Datenschutz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hoher Aufwand wegen Störsignalen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Relativ teuer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unterscheidung Verkehrsmittel</td>
</tr>
<tr>
<td>Messung von Reisezeiten und Geschwindigkeiten auf dem Nationalstrassenetz</td>
<td>• Kostengünstig</td>
<td>• Kleine Grundgesamtheit</td>
</tr>
</tbody>
</table>
Die folgende Tabelle zeigt die gemachten Erfahrungen mit Video gestützten Erhebungen.

Tabelle 11: Erfahrungen mit Erhebungen mit Video

<table>
<thead>
<tr>
<th>Anwendungszweck</th>
<th>Stärken</th>
<th>Schwächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrslageermittlung / Ereignisdetektion auf dem Straßenetz</td>
<td>Erfahrungen positiv, Hohe Akzeptanz durch Visualisierung</td>
<td>Probleme bei schlechter Witterung, Ungenügende räumliche Abdeckung, Ausfälle von Kameras</td>
</tr>
<tr>
<td>Velozählstellen</td>
<td>Einfach Erfassung, Kostengünstige Erfassung</td>
<td>Zeitaufwand für manuelle Auswertung</td>
</tr>
<tr>
<td>Technologietest für Erhebung von Fussgängerfrequenzen</td>
<td>Hohe Zählgenauigkeit, Automatisierte Auswertung, Dateneinsicht in Echtzeit</td>
<td>Hohe Installationsanforderungen, Hohe Kosten/hoher Aufwand, Stromzufuhr, Einhaltung des Datenschutzes</td>
</tr>
<tr>
<td>Video mit automatischer Erkennung der Knotenströme (MIV, FG, Velo)</td>
<td>Hohe Genauigkeit, Gute Visualisierung, Automatisierte Auswertung, Geringe Kosten, Nachträgliche Analysen möglich</td>
<td>Hohe Installationsanforderungen, Witterungsabhängigkeit, Aufwendige Abklärungen für Einhaltung Datenschutz</td>
</tr>
</tbody>
</table>

Die folgende Tabelle zeigt die gemachten Erfahrungen mit Erhebungen mittels Sensoren.

Tabelle 12: Erfahrungen mit Erhebungen mit Sensoren

<table>
<thead>
<tr>
<th>Anwendungszweck</th>
<th>Stärken</th>
<th>Schwächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhebung des Fussverkehrs</td>
<td>Witterungsunabhängig, Mobil einsetzbar, Tiefe Kosten, Datenschutz, Keine Stromzufuhr notwendig, Tiefe Kosten, Automatische Datenübertragung, Einfach montierbar</td>
<td>Abfallende Genauigkeit bei hohen Frequenzen, Keine Filterung nach Verkehrsmittel, Anfällig auf Vandalismus, Kurzzeitige Datenausfälle, Braucht sorgfältige Standortwahl, Ortsspezifische Kontrollen und Korrekturen notwendig</td>
</tr>
<tr>
<td>Fahrgastzählung im städtischen öffentlichen Verkehr</td>
<td>Sehr hohe Qualität</td>
<td>Mittelwerte über längere Perioden, Abweichungen vom Regelbetrieb werden nicht erfasst (z.B. Events)</td>
</tr>
<tr>
<td>Automatische Fahrgastzählungen im öffentlichen Regionalverkehr</td>
<td>Hohe Qualität, Zeитliche und räumliche Abdeckung, Auswertungsmöglichkeiten</td>
<td>Software-Upgrade teilweise mit Fehlern behaftet</td>
</tr>
<tr>
<td>Erfassung Stop&Go-Situationen mittels Lasersensoren, insbesondere bei Tunneleintritten</td>
<td>Genauigkeit, Einfache Wartung/Unterhalt, Kontaktnahe Zählung</td>
<td>Einstellung Messwinkel schwierig, Gefahr von Doppelzählungen, Witterungsbedingungen, Hohe Kosten</td>
</tr>
<tr>
<td>Periodische Kurzzeitzählungen, Geschwindigkeitsmessungen</td>
<td>Einfache Montage</td>
<td>Genauigkeit, Verkehrszusammensetzung, Abgrenzungen MIV / Velo, Standortsuche</td>
</tr>
</tbody>
</table>
Die folgende Tabelle zeigt die mit Big Data gemachten Erfahrungen.

Tabelle 13: Erfahrungen mit Erhebungen mit Big Data

<table>
<thead>
<tr>
<th>Anwendungszweck</th>
<th>Stärken</th>
<th>Schwächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation des Verkehrskonzepts</td>
<td>Kombination von Metadaten zum Mobilitätsverhalten mit anderen Kennwerten</td>
<td>Differenzen zum effektiven Aufkommen</td>
</tr>
<tr>
<td>Euro 08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zum Vergleich werden hier auch Erfahrungen von Erhebungen mit Induktionsschläufen aufgezeigt.

Tabelle 14: Erfahrungen mit Erhebungen mit Induktionsschläufen

<table>
<thead>
<tr>
<th>Anwendungszweck</th>
<th>Stärken</th>
<th>Schwächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanente Velozählung</td>
<td>• Hohe Genauigkeit</td>
<td>• Nicht mobil einsetzbar</td>
</tr>
<tr>
<td></td>
<td>• Witterungsunabhängig</td>
<td>• Hohe Installationsanforderungen</td>
</tr>
<tr>
<td></td>
<td>• Umfassende Datenmenge</td>
<td>• Keine Zählung von Karbonvelos</td>
</tr>
<tr>
<td></td>
<td>• Funktioniert im Mischverkehr</td>
<td>• Reduziert auf einen Querschnitt</td>
</tr>
<tr>
<td></td>
<td>• Keine externe Stromzufuhr notwendig</td>
<td>• Manuelle Kontrollzählungen notwendig</td>
</tr>
<tr>
<td></td>
<td>• Automatische Datenübertragung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Keine Datenschutzprobleme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tiefe Kosten</td>
<td></td>
</tr>
<tr>
<td>Permanente Verkehrszählung auf Nationalstrassennetz</td>
<td>• Hohe Qualität</td>
<td>• Ausfallquoten</td>
</tr>
<tr>
<td>(Belastung, Fz-Typen, Geschwindigkeiten, Ganglinien)</td>
<td>• Erfassung Verkehrszusammensetzung</td>
<td>• Aufwendiger Einbau</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aufwendiger Ersatz der Schläufen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gute Standortwahl sehr wichtig</td>
</tr>
</tbody>
</table>
2.2.6 Ergebnisse der Expertengespräche: Heute bewusst nicht eingesetzte Technologien

In den durchgeführten Interviews wurde auch nach heute bewusst nicht eingesetzten Technologien gefragt. Die Antworten sind in der folgenden Tabelle zusammengestellt. Dabei ist zu beachten, dass es sich um einzelne Erfahrungen handelt und nur beschränkt allgemeingültige Schlüsse gezogen werden können.

Tabelle 15: Bewusst nicht eingesetzte Technologien mit Begründung

<table>
<thead>
<tr>
<th>Technologie</th>
<th>Grund für die Nichteinsetzung</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daten aus Navigationsgeräten</td>
<td>Ungenügende Transparenz der Datengenerierung, -aufbereitung und -hochrechnung</td>
<td>Daten aus Navigationsgeräten werden heute beim Bund und einzelnen Kantonen verwendet</td>
</tr>
<tr>
<td>Floating Car Data, Bluetooth, Wi-Fi</td>
<td>Hoher Preis für die Daten</td>
<td></td>
</tr>
<tr>
<td>Bluetooth</td>
<td>Hohe Kosten für die Daten</td>
<td></td>
</tr>
<tr>
<td>Smartphone Apps (für Erhebungen Langsamverkehr, Güterverkehr)</td>
<td>Momentan nicht genügende Mittel für Durchführung einer Erhebung vorhanden</td>
<td>Grund unabhängig von Datenqualität oder Aufwand</td>
</tr>
<tr>
<td>Videokameras</td>
<td>Schlechte Akzeptanz aufgrund Datenschutz</td>
<td>Videokameras kommen heute beim Bund, Kantonen und zahlreichen Städte zum Einsatz</td>
</tr>
<tr>
<td>Videokameras mit automatischer Fahrzeugerfassung</td>
<td>Genauigkeit ungenügend</td>
<td></td>
</tr>
<tr>
<td>Smart Cards (Check-In, Check-Out im öffentlichen Nahverkehr für Tram und Bus)</td>
<td>Behinderungen beim Ein-/Aussteigen</td>
<td>Solche Systeme sind heute in Amsterdam oder Lyon im Einsatz</td>
</tr>
<tr>
<td>Magnetsensoren</td>
<td>Aufwand</td>
<td></td>
</tr>
<tr>
<td>Radar</td>
<td>Klassifizierung der Verkehrsmittel ist schlecht</td>
<td></td>
</tr>
<tr>
<td>Drohnen</td>
<td>Datenschutz</td>
<td>Teilweise eingesetzt bei Grossveranstaltungen zur Überwachung von Personendichten und -strömen</td>
</tr>
</tbody>
</table>

Hauptgründe für den Nichteinsatz von neuen Technologien sind die mangelnde Repräsentativität, die mangelnde Transparenz und die ungenügende Akzeptanz aufgrund des Datenschutzes.
2.2.7 Folgerungen aus den Expertengesprächen

Aus den durchgeführten Interviews können hinsichtlich der Bedürfnisse nach Mobilitäts- und Verkehrsdaten folgende Folgerungen abgeleitet werden.

- Kennwerte zum Personenverkehr werden heute deutlich stärker genutzt als Kennwerte zum Güterverkehr.

- Für die Erhebung von Mobilitäts- und Verkehrsdaten kommen neue Technologien erst vereinzelt zum Einsatz. Ein breiterer Einsatz ist jedoch in der Zukunft zu erwarten.

- Der Einsatz von neuen Technologien ist dann interessant, wenn die Qualität der Erhebungen und/oder die Effizienz der Erhebungen gesteigert oder wenn neue Kennwerte erhoben werden können.

- Der Einsatz neuer Technologien verlangt nach Spezialisten, welche sich mit den Technologien und ihrem Einsatz gut auskennen.
3 Technologieübersicht

3.1 Einleitung

Bei den Erhebungsmethoden wird zwischen Beobachtungen und Befragungen unterschieden (Widmer et al., 2015). Erhebungsmethoden ohne Interaktion mit dem Erhebungssubjekt gehören zur Kategorie der Beobachtungen, solche mit Interaktion zur Kategorie der Befragungen.

 Neue Technologien und Methoden gelangen vor allem bei Beobachtungen zum Einsatz. Wie in der folgenden Abbildung dargestellt, wird bei diesen nach Messungen (z.B. Zeit, Geschwindigkeit, Gewicht usw.) und Zählungen (z.B. Anzahl Fahrzeuge, Personen) unterschieden.

Bei Befragungen können mit neuen Technologien durchgeführte Beobachtungen ergänzend beigefügt werden, um die Qualität der Befragungsergebnisse zu verbessern oder um den Befragungsaufwand zu reduzieren.

Im Folgenden werden die einzelnen Technologien und Methoden, bei denen sie zum Einsatz gelangen, stichwortartig beschrieben. Beispielsweise wird auf Mobilitäts- und Verkehrsdaten hingewiesen, welche sich mit diesen erheben lassen. Bei der Beschreibung der Technologien beschränken wir uns auf die für die Anwendung bei Mobilitäts- und Verkehrserhebungen wichtigsten Aspekte, ohne auf die teilweise sehr komplexen technischen Details einzugehen.

Die Technologien und Methoden lassen sich in verschiedenster Weise kombinieren. In der "Canadian Vehicle Use Study" beispielsweise wird ein Messgerät mit der Motorsteue-
rung ("Engine Control Unit") verbunden. Das Messgerät verfügt zusätzlich über einen GPS-Empfänger und ein Touchscreen-Display. Vom Messgerät werden während der Fahrt fahrdynamische Parameter, geographische Position und zusätzlich eingegebene Informationen, z.B. Geschlecht des Fahrers, aufgezeichnet (Transport Canada, 2014 a-c; Transport Canada 2012 a-b). Diese Methode wird als Extended Floating Car Data bezeichnet (siehe Kap. 3.2.2).

3.2 Global Positioning System (GPS)

3.2.1 Kurzbeschrieb

3.2.2 Erhebungsmethoden

Die GPS-Technologie gelangt z.B. bei den folgenden Erhebungsmethoden zum Einsatz:

a) GPS-unterstützte Mobilitätserhebungen

Bei GPS-unterstützten Mobilitätserhebungen werden die Trajektorien (Koordinaten des Standortes mit Zeitstempel) von Einzelpersonen registriert. Wenn Erhebungen mit einer

b) Floating Car Data (FCD)

Die Daten von mit GPS-Empfängern ausgerüsteten Fahrzeugen, welche normal im Verkehr mitfahren, werden auf Loggern gespeichert oder mittels Mobilfunk an eine Zentrale übermittelt. Damit lassen sich zu jedem Zeitpunkt die Positionen und die Geschwindigkeiten der Fahrzeuge (Trajektorien) von Fahrzeugen auswerten, woraus sich Hinweise zum Verkehrsfluss, zu den Verkehrsmittelbelastungen, zu Wartezeiten, Stauzeiten usw. auf Netzbereichen sowie zur Routenwahl ableiten lassen.

Die Daten von mit GPS-Empfängern ausgerüsteten Fahrzeugen, welche normal im Verkehr mitfahren, werden auf Loggern gespeichert oder mittels Mobilfunk an eine Zentrale übermittelt. Damit lassen sich zu jedem Zeitpunkt die Positionen und die Geschwindigkeiten der Fahrzeuge (Trajektorien) von Fahrzeugen auswerten, woraus sich Hinweise zum Verkehrsfluss, zu den Verkehrsmittelbelastungen, zu Wartezeiten, Stauzeiten usw. auf Netzbereichen sowie zur Routenwahl ableiten lassen.

3.2.3 Erhobene Mobilitäts- und Verkehrsdaten

Mit der GPS-Technologie werden die Positionen der Empfänger in einstellbaren Zeitintervallen registriert. Damit lassen sich beispielsweise die folgenden Daten ermitteln resp. ableiten:

- Start-, Zwischen- und Endpunkte von Etappen (Koordinaten)
- Start-, Zwischen- und Ankunftszeit von Etappen
- Trajektorien der Fahrzeuge resp. Personen
- Geschwindigkeiten
- Reisezeiten
- Routenwahl
- Verkehrsmittelwahl
- Verkehrszweck
- Rückstauängen
- Wartezeiten
- Stauzeiten
- Streckenbezogene Geschwindigkeiten des Güterverkehrs
- Routenwahl des Güterverkehrs

3.3 Mobilfunkortung

3.3.1 Kurzbeschrieb

Für jede Mobiltelefon-Verbindung wird ein Call Details Record (= Verbindungsnachweise) erstellt. Dieser enthält alle Informationen, die für die Abrechnung im Mobilfunkwesen benötigt werden, d.h. u.a. ID, Position und Zeit einer Aktivität des Telefons (Anrufe, SMS, Datenübertragung) (Çolak, 2014). Mit entsprechenden Auswertungen lassen sich aus diesen Daten Erkenntnisse z.B. zu Bewegungsmustern gewinnen (siehe Kap. 3.4).

3.3.2 Erhebungsmethoden

⁶ Global System for Mobile Communications; erster Standard für volldigitale Mobilfunknetze; weltweit der am meisten verbreitete Standard
⁷ Universal Mobile Telecommunications System; Mobilfunkstandard der dritten Generation
⁸ Long Term Evolution; Mobilfunkstandard der vierten Generation
Fahrzeugen mit eingeschalteten Mobilfunktelefonen die Geschwindigkeiten berechnen (B+S AG/Amstein+Walthert, 2011; B+S AG, 2011; Swisscom Business Engineering, o.J.; Friedrich et al., 2010; Friedrich, 2010; Liu et al., 2008; Airsage, 2014).

3.3.3 Erhobene Mobilitäts- und Verkehrsdaten
Mit der Mobilfunkortung werden die Positionen der Mobilfunktelefone in einstellbaren Zeitintervallen registriert. Die Genauigkeit der Positionsangaben der erhobenen Mobilitätsdaten ist von der Dichte der Mobilfunkzellen abhängig. Damit lassen sich beispielsweise die folgenden Daten ermitteln resp. ableiten:
- Start-, Zwischen- und Endpunkte von Etappen (Koordinaten)
- Start-, Zwischen- und Ankunftszeit von Etappen
- Trajektorien der Fahrzeuge resp. Personen
- Geschwindigkeiten
- Reisezeiten
- Routenwahl

3.4 Big Data

3.4.1 Kurzbeschrieb

3.4.2 Datenquellen
Beispiele von Quellen für Big Data, aus denen sich Informationen zum Mobilitäts- und Verkehrsgeschehen gewinnen lassen, sind:
- Daten elektronischer Kommunikationen, z.B. soziale Netzwerke wie Facebook und Twitter
- Daten von Navigationsgeräten
- Daten von ÖV-Unternehmen (z.B. "Be-In, Be-Out" Daten von Ticketsystemen)
- Daten von Fluggesellschaften
- Daten von Infrastrukturbetreibern
- Daten von Logistik-Unternehmen
- Daten der öffentlichen Hand, z.B. Volkszählungsdaten

3.4.3 Anwendungsbeispiele
Auswertungen von Big Data werden beispielsweise bei den folgenden Anwendungen durchgeführt:
- Floating Car Data und Floating Phone Data werden mit Kunden- oder Volkszählungsdaten verknüpft. Mit Data Mining werden aus diesen Daten Muster des Mobilitätsverhaltens sozialökonomischer Schichten ermittelt (Airsage, 2014; Deshmais und Chapleau, 2013).

9 Es handelt sich also nicht um eine Technologie im engeren Sinne.
• Mittels Daten von SmartCards können Bewegungen von ÖV-Benutzern verfolgt und individuelle Häufigkeitsmuster erkannt werden. Diese Muster geben Aufschluss über die Aktivitäten der Verkehrsteilnehmer an den einzelnen Orten (Home, Work, Freizeit). Damit lassen sich Aktivitätenmuster pro Verkehrsteilnehmer eruieren, welche beispielsweise in Agenten-basierten Modellen, z.B. MATSim, verwendet werden können (Bouman et al., o.J.).

• Die Daten aus dem Traffic Message Channel (= Verkehrsinformationen, welche via UKW an Navigationsgeräte gesendet werden), d.h. die Durchschnittsgeschwindigkeit für einzelne Straßenzüge, welche mittels Floating Car Data oder Floating Phone Data ermittelt wurden, können dazu genutzt werden, den Level of Service auf den Straßenabschnitten zu berechnen (Axer et al., 2012).

• Mittels georeferenzierten Einträgen von Social Networks (z.B. Twitter, Facebook) können Hinweise zur Mobilität von Personen gewonnen werden. Die Daten beinhalten neben dem Ort (Check-In an einem vorgemerkten POI) und der Zeit des Eintrages möglicherweise auch Informationen über die Sozialstruktur (soziales Netzwerk), den Zweck der Mobilität (besuchte POI) und den Gefühlszustand, die Motivation resp. Bedürfnis (über "Status-Meldungen") des Nutzers (Cheng et al., 2011).

• Im Versandhandel konnte ein selbstlernendes Prognosetool entwickelt werden um die Lieferbereitschaft zu steigern. Damit können die Produktion und das Transportwesen optimiert und ein schonender Umgang mit Ressourcen erreicht werden (GS1/HSG, 2014).

3.5 Radio Frequency Identification

3.5.1 Kurzbeschrieb

Radio Frequency Identification (RFID) ist eine funkbasierte Technologie um Objekte automatisch und ohne Berührung zu identifizieren resp. zu lokalisieren. Kommt ein Objekt mit einem RFID-Transponder in die Reichweite eines Lesegeräts, übermittelt resp. empfängt dieser seine Information über Funk. Ein RFID-Transponder kann so klein wie ein Reiskorn sein. Für die Datenübermittlung ist kein Sichtkontakt notwendig. Es wird zwischen passiven (Transponder hat keine Batterie, Reichweite bis 10 m) und aktiven Systemen (Transponder hat eine Batterie, max. Reichweite bis 1000 m, typisch jedoch 50 m) unterschieden. RFID ist sehr verbreitet und wird beispielsweise in der Sendungsverfolgung oder bei fahrerlosen Transportsystemen eingesetzt (Barthel, o.J.; Malik, 2009; RFID ready, 2012; Rapp Trans, 2011; Vossiek und. Gulden, 2006). In Nanjing, China, werden mit RFID ausgestattete Nummernschilder an verschiedenen Querschnitten registriert um die Reisegeschwindigkeiten zu messen, wie Wang et al. (2014b) berichten.

3.5.2 Erhebungsmethoden

Mittels der Identifikation von eindeutigen ID-Codes an einem oder mehreren Standorten kann die Anwesenheit resp. die Bewegung von Objekten erfasst werden (Vossiek und Gulden, 2006; Barthel, o.J.; RFID ready, 2012).
3.5.3 Erhobene Mobilitäts- und Verkehrsdaten

RFID kommt vor allem im Güterverkehr, aber auch im Personenverkehr (z.B. Parkierungsanlagen) zum Einsatz. Es lassen sich beispielsweise die folgenden Mobilitäts- und Verkehrsdaten erheben resp. ableiten:

- Versender und Empfänger
- Start- und Ankunftszeit
- Geschwindigkeiten
- Reisezeiten
- Ladungsverfolgung

3.6 Smart Card

3.6.1 Kurzbeschrieb

3.6.2 Erhebungsmethoden

Mit der Identifikation von eindeutigen ID-Codes an einem oder mehreren Standorten kann die Anwesenheit resp. die Bewegung von Objekten erfasst werden (Vossiek und Gulden, 2006; Barthel, o.J.; RFID ready, 2012).

3.6.3 Erhobene Mobilitäts- und Verkehrsdaten

Potenzielle Einsatzgebiete sind insbesondere Erhebungen von Personenfahrten im ÖV. Mit Smart Cards lassen sich beispielsweise die folgenden Mobilitäts- und Verkehrsdaten erheben resp. ableiten:

- Start- und Endpunkte von ÖV-Etappen (Koordinaten)
- Start- und Ankunftszeit von ÖV-Etappen
- Geschwindigkeiten
- Reisezeiten
- Routenwahl
3.7 Near Field Communication

3.7.1 Kurzbeschrieb

3.7.2 Erhebungsmethoden

3.7.3 Erhobene Mobilitäts- und Verkehrsdaten

Potenzielle Einsatzgebiete sind insbesondere Erhebungen von Personenfahrten im ÖV. Mit NFC lassen sich beispielsweise die folgenden Mobilitäts- und Verkehrsdaten erheben resp. ableiten:

- Start- und Endpunkte von ÖV-Etappen (Koordinaten)
- Start- und Ankunftszeit von ÖV-Etappen
- Geschwindigkeiten
- Reisezeiten
- Routenwahl

3.8 Barcode

3.8.1 Kurzbeschrieb

3.8.2 Erhebungsmethoden

Der Barcode wird an einer Druckstation aufgebracht und an einer Lesestation eingelesen. Damit lassen sich die Zeit zwischen der Ausgabe und dem Einlesen des Barcodes oder die Anwesenheit der mit einem Barcode identifizierbaren Objekte feststellen (GS1 Switzerland, 2014; Rapp Trans AG, 2011).

3.8.3 Erhobene Mobilitäts- und Verkehrsdaten

Neben dem Einsatz in Parkgaragen zur Feststellung der Parkzeit und zur Ausfahrtskontrolle werden Barcodes vornehmlich im Güterverkehr zur Verfolgung von Sendungen verwendet. Mit dem Barcode lassen sich beispielsweise folgende Mobilitäts- und Verkehrsdaten ableiten:

- Versender und Empfänger
- Start- und Ankunftszeit
- Anwesenheit
- Reisezeiten
- Ladungsverfolgung
- Parkdauer

3.9 Wi-Fi

3.9.1 Kurzbeschrieb

Wi-Fi ist der Brand-Name für den WLAN IEEE 802.11 Kommunikationsstandard. Es ist ein funkbasiertes Kommunikationssystem, welches in Smartphones, Computern, Tablets usw. verwendet wird. Die Reichweite der Funksignale ist abhängig von der Sendeleistung und der Bandbreite (im Freien sind bis zu 200 m möglich). Detektoren registrieren die eindeutigen Seriennummern (MAC-Adressen) von Wi-Fi-Sendern/Empfängern und den Erfassungszeitpunkt (Wikipedia, 2014h; Liu et al., 2005).

3.9.2 Erhebungsmethoden

Mit der Identifikation der eindeutigen ID-Codes (MAC-Adressen) an einem Standort kann die Anwesenheit, bei mehreren Standorten auch die Bewegung eines Objektes (Person, Paket, Fahrzeug etc.) erfasst werden (Haghani et al., 2010; Wang et al., 2014a).

3.9.3 Erhobene Mobilitäts- und Verkehrsdaten

Je nach Anordnung der Detektoren lassen sich mit Wi-Fi beispielsweise folgende Verkehrs- und Mobilitätsdaten erheben resp. ableiten:

- Identifikation an einem Standort
- Geschwindigkeiten
- Reise- und Aufenthaltszeiten
- Routenwahl
- Verkehrsarten (Binnen-, Ziel- und Quellverkehr)
- Verkehrsmittel (indirekt)
3.10 Bluetooth

3.10.1 Kurzbeschrieb
Bluetooth ist ein funkbasiertes Kommunikationssystem (IEEE 802.15.1), welches in Smartphones, Computern, Autoradios, Freisprechanlagen, Navigationsgeräten etc. verwendet wird. Die Reichweite hängt von der Sendeleistung ab (typischerweise bis ca. 100 m). Empfänger registrieren die eindeutigen ID-Codes (MAC-Adresse) von Bluetooth-Geräten in Reichweite sowie den Erfassungszeitpunkt (B+S AG, 2011; Liu et al., 2005; Schmietendorf, 2011).

3.10.2 Erhebungsmethoden
Entlang einer Strecke oder an einem Kordon werden Detektoren aufgestellt, welche die ID-Codes (MAC-Adresse) und den Zeitpunkt der passierenden Bluetooth-Geräte (welche sich z.B. in Fahrzeugen befinden) registrieren (Amt für Verkehr Kanton Zürich, 2012; B+S AG, 2011; Barceló et al., 2010; Bullock, 2010; Carpenter et al, 2012; CC.com, o.J.; CC.com, 2014a; CC.com, 2014b; DataCollect, 2014; Haghani et al., 2010; Institut für Strassen- und Verkehrswesen, 2010; Kay und Jackson, 2012; Leitzke, 2012; Malionovskiy et al., 2012; Meier und Breitbarth, 2013; Quayle et al., 2010; Scharenberg-Nuding, 2014; Schmietendorf, 2011; Tiefbauamt Stadt Zürich, 2013; Young und Vallyon, 2013; Voigt, 2011; Wang et al., 2014a; Wetzl, 2014).

3.10.3 Erhobene Mobilitäts- und Verkehrsdaten
Je nach Anordnung der Detektoren lassen sich mit Bluetooth beispielsweise folgende Verkehrs- und Mobilitätsdaten erheben resp. ableiten:
- Identifikation an einem Standort
- Geschwindigkeiten
- Reise- und Aufenthaltszeiten
- Routenwahl
- Verkehrsarten (Binnen-, Ziel- und Quellverkehr)
- Verkehrsmittel (indirekt)

3.11 Digitales Video/Foto

3.11.1 Kurzbeschrieb
3.11.2 Erhebungsmethoden

Bei den folgenden Erhebungsmethoden gelangen digitale Video-/Foto-Kameras zum Einsatz:

a) Erfassung und Vergleich von ID-Codes

Mittels der Identifikation von eindeutigen ID-Codes, z.B. der Kontrollschilder, an einem oder mehreren Standorten kann die Bewegung von Verkehrselementen erfasst werden (ANPR Tutorial, 2014; B+S AG/Amstein+Walthert, 2006; Bundesanstalt für Straßenwesen, 2009; Miovision, 2014; Wang et al., 2014a).

b) Luftaufnahmen

c) Automatische Identifikation von optischen Merkmalen (Signature Matching\footnote{Beim Signature Matching werden an aufeinanderfolgenden Strassenquerschnitten typische Merkmale der einzelnen Fahrzeuge gemessen und zu individuellen Profile aufbereitet. Anhand dieser Profile kann die Bewegung von Einzelfahrzeugen durch das Netz verfolgt werden. Die Messdaten für Signature Matching können mit unterschiedlichen Technologien erhoben werden.})

Mittels der Identifikation von eindeutigen optischen Merkmalen (mittels spezieller Algorithmen) an einem oder mehreren Standorten kann die Bewegung von Objekten, z.B. Personen, erfasst und verfolgt werden. (ASTRA, 2012; B+S AG/Amstein+Walthert AG, 2006; B+S AG, 2011; Gassner, 2011; ORINOKO, 2014; Rapp Trans AG, 2012a; Sauter 2009; Turner et al., 1998, Xovis, 2014)

d) Platoon Matching

e) Lokale Beobachtung

3.11.3 Erhobene Mobilitäts- und Verkehrsdaten

Mit digitalen Foto und Video lassen sich je nach Methode folgende Daten erheben resp. ableiten:

a) Erfassung und Vergleich von ID-Codes (Manuelle oder automatische Kontrollschilderaufnahme)
 - Identifikation an einem Standort
 - Verkehrsbelastung
 - Knotenströme
 - Geschwindigkeiten
 - Routenwahl
 - Reisezeiten

b) Luftpaufnahmen
 - Anwesenheit
 - Parkraumbelegung

c) Automatische Identifikation von optischen Merkmalen (Signature Matching)
 - Identifikation an einem Standort
 - Verkehrsbelastung
 - Geschwindigkeiten
 - Reisezeiten
 - Verkehrsmittel
 - Routenwahl
 - Rückstauverhältnisse

d) Platoon Matching
 - Geschwindigkeiten
 - Reisezeiten

e) Lokale Erhebung
 - Verkehrsbelastungen
 - Anwesenheit
 - Geschwindigkeiten
 - Zeiteinschnitte
 - Fahrzeugart
 - Belegungsdauer

3.12 Passives Infrarot

3.12.1 Kurzbeschreibung

3.12.2 Erhebungsmethoden
Die Technologie kann für die lokale Erhebung von Personen und Fahrzeugen eingesetzt werden. Der Einsatz von Signature Matching, d.h. die Berechnung der Reisezeit aufgrund der Erkennung von Fahrzeugen an zwei Erhebungspunkten anhand eindeutiger Eigenschaften ("Signature") ist ebenfalls möglich (B+S AG, 2011; Listl, 2003; Sauter, 2009; Turner et al., 1998).

3.12.3 Erhobene Mobilitäts- und Verkehrsdaten
Mit passivem Infrarot lassen sich beispielsweise folgende Daten erheben resp. ableiten:

a) Lokale Erhebung
- Verkehrsbelastungen
- Anwesenheit
- Geschwindigkeiten
- Zeitlücken
- Fahrzeugart
- Belegungsdauer

b) Signature Matching
- Geschwindigkeiten
- Reisezeiten

3.13 Laser
3.13.1 Kurzbeschrieb

3.13.2 Erhebungsmethoden
3.13.3 Erhobene Mobilitäts- und Verkehrsdaten
Mit der Lasertechnologie lassen sich beispielsweise folgende Daten erheben resp. ableiten:

a) Lokale Erhebung
- Verkehrsbelastungen
- Anwesenheit
- Geschwindigkeiten
- Zeitlücken
- Fahrzeugart
- Belegungsdauer

b) Signature Matching
- Geschwindigkeiten
- Reisezeiten

3.14 Ultraschall

3.14.1 Kurzbeschrieb

3.14.2 Erhebungsmethoden
Die Technologie kann für lokale Erhebungen benutzt werden. Der Einsatz für Platoon Matching ebenfalls möglich (Listl, 2003; Turner et al., 1998).

3.14.3 Erhobene Mobilitäts- und Verkehrsdaten
Mit Ultraschall lassen sich beispielsweise folgende Daten erheben resp. ableiten:

a) Lokale Erhebung
- Verkehrsbelastungen
- Anwesenheit
- Geschwindigkeiten
- Fahrzeugart
- Belegungsdauer von Parkfeldern

b) Platoon Matching
- Geschwindigkeiten
- Reisezeiten
3.15 Radiowellen

3.15.1 Kurzbeschrieb

3.15.2 Erhebungsmethoden

Die Technologie kann für lokale Erhebungen, z.T. unter Verwendung von zwei Querschnitten, benutzt werden (Sauter; 2009).

3.15.3 Erhobene Mobilitäts- und Verkehrsdaten

Die Technologie kann für lokale Erhebungen benutzt werden.
- Verkehrsbelastung
- Anwesenheit
- Geschwindigkeiten
- Zeitlücken
- Belegungsdauer

3.16 Magnetometer

3.16.1 Kurzbeschrieb

Mit einem Magnetometer werden magnetische Flussdichten gemessen. Der Detektor erfasst Veränderungen im Erdmagnetfeld, welche durch einen eisenhaltigen Gegenstand (z.B. ein Fahrzeug) verursacht werden. Der Magnetometer kann auf der Strassenoberfläche installiert werden und ist als Alternative zur Induktionsschlaufe gedacht. (Chambers Electronics, 2014b; Ernst et al., 2011; Medina et al., 2011)

3.16.2 Erhebungsmethoden

12 Der Einsatz von Platoon Matching wäre vermutlich ebenfalls denkbar, wird jedoch in den Quellen nicht belegt.
3.16.3 Erhobene Mobilitäts- und Verkehrsdaten
Mit dem Magnetometer lassen sich beispielsweise folgende Daten erheben resp. ableiten:

a) Lokale Erhebung
- Verkehrslast
- Anwesenheit
- Geschwindigkeiten
- Zeitlücken
- Belegungsdauer

b) Signature Matching
- Geschwindigkeiten
- Reisezeiten

3.17 Glasfaserkabel

3.17.1 Kurzbeschrieb

3.17.2 Erhebungsmethoden
Die Technologie kann für lokale Erhebungen, z.T. unter Verwendung von zwei Querschnitten, benutzt werden.

3.17.3 Erhobene Mobilitäts- und Verkehrsdaten
Das Glasfaserkabel wird hauptsächlich für die lokale Erhebung von Velofahrern verwendet. Es lassen sich beispielsweise folgende Daten erheben resp. ableiten:
- Verkehrslast
- Geschwindigkeiten
- Zeitlücken
3.18 Personenzählmatte

3.18.1 Kurzbeschrieb

3.18.2 Erhebungsmethoden
Die Matten werden hauptsächlich für die lokale Erhebung von zu Fuss gehenden Personen eingesetzt.

3.18.3 Erhobene Mobilitäts- und Verkehrsdaten
Mit den Matten lassen sich die Anwesenheit und die Anzahl von zu Fuss gehenden Personen erheben.
3.19 Synopsis

Tabelle 16: Synopsis der Technologien und Methoden

<table>
<thead>
<tr>
<th>Technologie und verwendete Geräte</th>
<th>Methoden</th>
<th>Beispiele für erhobene resp. abgeleitete Mobilitäts- und Verkehrsdaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td></td>
<td>Start-, Zwischen- und Endpunkte von Etappen (Koordinaten)</td>
</tr>
<tr>
<td>Smartphone</td>
<td></td>
<td>Trajektorien der Fahrzeuge resp. Personen</td>
</tr>
<tr>
<td>Navigationsgeräte</td>
<td>Floating Car Data</td>
<td>Geschwindigkeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reisezeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routenwahl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verkehrsmittelwahl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rückstau länge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wartezeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streckenbezogene Geschwindigkeiten des Güterverkehrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routenwahl des Güterverkehrs</td>
</tr>
<tr>
<td>Mobilfunk</td>
<td>Floating Phone Data</td>
<td>Start-, Zwischen- und Endpunkte von Etappen (Koordinaten)</td>
</tr>
<tr>
<td>Mobilfunktelefone</td>
<td></td>
<td>Start-, Zwischen- und Ankunftszeit von Etappen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trajektorien der Fahrzeuge resp. Personen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geschwindigkeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reisezeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routenwahl</td>
</tr>
<tr>
<td>Big Data</td>
<td>Daten-Analyse Me-</td>
<td>Mobilitäts muster</td>
</tr>
<tr>
<td>thoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Frequency Identification</td>
<td>Erfassung und Ver-</td>
<td>Versender und Empfänger bei Etappen</td>
</tr>
<tr>
<td>Identification</td>
<td>gleich von ID-Codes</td>
<td>Start- und Ankunftszeit von Etappen</td>
</tr>
<tr>
<td>Near Field Communication</td>
<td>Erfassung und Ver-</td>
<td>Geschwindigkeiten</td>
</tr>
<tr>
<td>Smartphone</td>
<td>gleich von ID-Codes</td>
<td>Reisezeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ladungsverfolgung</td>
</tr>
<tr>
<td>Smart Cards</td>
<td>Erfassung und Ver-</td>
<td>Start- und Endpunkte von ÖV-Etappen (Koordinaten)</td>
</tr>
<tr>
<td>ÖV-Karten</td>
<td>gleich von ID-Codes</td>
<td>Start- und Ankunftszeit von ÖV-Etappen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geschwindigkeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reisezeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routenwahl</td>
</tr>
<tr>
<td>Barcode</td>
<td>Erfassung und Ver-</td>
<td>Versender und Empfänger</td>
</tr>
<tr>
<td></td>
<td>gleich von ID-Codes</td>
<td>Start- und Ankunftszeit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwesenheit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reisezeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ladungsverfolgung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parkierdauer</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Erfassung und Ver-</td>
<td>Identifikation an einem Standort</td>
</tr>
<tr>
<td></td>
<td>gleich von ID-Codes</td>
<td>Geschwindigkeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reisezeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routenwahl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verkehrsmittel</td>
</tr>
<tr>
<td>Technologie und verwendete Geräte</td>
<td>Methoden</td>
<td>Beispiele für erhobene resp. abgeleitete Mobilitäts- und Verkehrsdaten</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Bluetooth | Erfassung und Vergleich von ID-Codes | • Identifikation an einem Standort
• Geschwindigkeiten
• Reisezeiten
• Routenwahl
• Verkehrsmittel |
| | | Digitales Foto/Video (Automatische Kontrollschilderfassung) |• Identifikation an einem Standort
• Verkehrsbelastung
• Knotenströme
• Geschwindigkeiten
• Routenwahl
• Reisezeiten |
| | | Luftaufnahmen mit Satellit, Flugzeug, Drohne | • Anwesenheit
• Parkraumbelegung |
| | | Automatische Identifikation von optischen Merkmalen (Signature Matching) |• Identifikation an einem Standort
• Verkehrsbelastung
• Geschwindigkeiten
• Reisezeiten
• Verkehrsmittel
• Routenwahl
• Rückstauendauer |
| | | Platoon Matching | • Geschwindigkeiten
• Reisezeiten |
| Passives Infrarot Laser Ultraschall Magnetometer | Lokale Erhebung von Fahrzeugen und Personen | • Verkehrsbelastungen
• Anwesenheit
• Geschwindigkeiten
• Zeitlücken (ohne Ultraschall)
• Fahrzeugart
• Belegungsdauer (ohne Ultraschall) |
| | Signature und Platoon Matching (teilweise) | • Geschwindigkeiten
• Reisezeiten |
| Radiowellen Glasfaserkabel | Lokale Erhebung von Fahrzeugen | • Verkehrsbelastung
• Anwesenheit
• Geschwindigkeiten
• Zeitlücken (nur Radiowellen)
• Belegungsdauer (nur Radiowellen) |
| Personenzählmatten | Lokale Erhebung von Personen | • Anwesenheit
• Fussgängerfrequenzen |

Wie die Synopsis zeigt, eignen sich die neuen Erhebungsmethoden primär für Zählungen von Verkehrsobjekten und Messungen von deren Eigenschaften (Ort, Zeit, Geschwindigkeit usw.).
4 Anwendungspotenzial neuer Technologien

4.1 Einleitung

Basierend auf den Grundlagen der bisherigen Ergebnisse werden in diesem Kapitel die Anwendungspotenziale der neuen Technologien mittels SWOT-Analysen untersucht. Als Exkurs wird im Kapitel zur GPS-basierten Mobilitätserhebung ein Fallbeispiel für die Anwendung dieser Methode präsentiert.

4.2 SWOT Analyse

Die Analyse hat zum Ziel, die Wettbewerbsvorteile neuer Technologien im Vergleich zu herkömmlichen Technologien herauszuarbeiten, die Aussichten für Implementation, Qualität und Effizienz zu analysieren sowie Herausforderungen bzw. Probleme der einzelnen Technologien zu identifizieren. Die Ergebnisse der SWOT-Analyse werden nachfolgend für jede Technologie resp. Erhebungsmethode stichwortartig zusammengestellt und anschliessend ausführlicher beschrieben.

4.2.1 GPS unterstützte Mobilitätserhebungen

<table>
<thead>
<tr>
<th>Stärken</th>
<th>Schwächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positiv</td>
<td>Negativ</td>
</tr>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>• Für viele Anwendungsbereiche geeignet</td>
<td>• Datenverlust durch Dauer der Erst-Ortung</td>
</tr>
<tr>
<td>• Verbesserung räumlicher Genauigkeit</td>
<td>• Lagengenauigkeit variabel stark</td>
</tr>
<tr>
<td>• Relativ hohe Genauigkeit der Ortung</td>
<td>• Erfassung ausschließlich mit eingeschalteten</td>
</tr>
<tr>
<td>• Identifikation von Etagen und Aktivitäten</td>
<td>Anwendungs/Geräten möglich</td>
</tr>
<tr>
<td>• Beschildung und Erfassung von nutzten Etagen und unüblichen Orten</td>
<td>• Anfällig für Messprobleme durch schlechte Kommunikation</td>
</tr>
<tr>
<td>• Präzise Informationen zu Zeiten</td>
<td>• Geräte können ausgeschaltet, vergessen, weitergegeben werden</td>
</tr>
<tr>
<td>• Hohe Wahrscheinlichkeit vollständiger Erfassung</td>
<td>• Niederstehung der Anwendungsfähigkeit als Fehlerquelle</td>
</tr>
<tr>
<td>• Zeitnahe Datenübertragung</td>
<td>• Niedriges ist durch schlechtes Sampling</td>
</tr>
<tr>
<td>• Lange Erhebungzeitraume möglich</td>
<td>• Nachbearbeitung mit hohem Aufwand verbunden</td>
</tr>
<tr>
<td>• Einführung von Verkehrmittellist möglich</td>
<td>• Erhöhter Energieverbrauch der Geräte</td>
</tr>
<tr>
<td>• Wenig Aufwand für Probanden</td>
<td>• Fehlende Kompensation und Rekonstruktion fehlender beziehungsweise ungenauer Daten</td>
</tr>
<tr>
<td>• Effektive Reduktion des Stichprobenumfangs</td>
<td>• Schwierigkeiten mit Datensicherung</td>
</tr>
<tr>
<td>• Lichter Import in Verkehrplanungsprogrammen</td>
<td>• Schwierigkeiten mit Datensicherung</td>
</tr>
<tr>
<td>• Einsicht in Schwankung der Alltagsmobilität</td>
<td>• Schwierigkeiten mit Datensicherung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einnahmen</td>
<td>Problem des Datenschutzes (personalisiertes Bewegungsprofil)</td>
</tr>
<tr>
<td>• Einführung des Galileo-Navigationssystems</td>
<td>• Datenschutzschutz (personalisiertes Bewegungsprofil)</td>
</tr>
<tr>
<td>• Nutzung von Smartphone Apps steigt</td>
<td>• Datenschutzschutz (personalisiertes Bewegungsprofil)</td>
</tr>
<tr>
<td>• Gerätekosten sinken</td>
<td>• Datenschutzschutz (personalisiertes Bewegungsprofil)</td>
</tr>
<tr>
<td>• Forschung im Bereich GPS Implementation</td>
<td>• Datenschutzschutz (personalisiertes Bewegungsprofil)</td>
</tr>
</tbody>
</table>

a) Stärken

b) Schwächen

c) Chancen

d) Gefahren
Wenn mit GPS-unterstützten Mobilitätserhebungen Bewegungsprofile erstellt und mit anderen persönlichen Daten verknüpft werden, ist die Gewährleistung des Datenschutzes problematisch.

4.2.2 Fallbeispiel

a) Ablauf
b) Repräsentativität

Insgesamt umfasste die Studie 156 Teilnehmer aus allen Gemeinden innerhalb eines Radius von 22 km um Zürich-Bellevue (inkl. Winterthur und Zug). Daraus resultierten Mobilitätstagebucheinträge für 1'039 Personentage. Insgesamt wurden so 5'284 Wege mit gesamthaft 7'233 Etappen registriert.

c) Räumliche Genauigkeit

Es ist zu erwarten, dass zukünftig vermehrt Datensätze mittels Smartphones gesammelt werden. Dabei wird eine der Hauptherausforderungen sein, eine gute Datenqualität sicherzustellen. Dies gilt insbesondere, wenn verschiedene Smartphones mit GPS-Sensoren benutzt werden.

d) Zeitliche Genauigkeit

Neben der räumlichen Genauigkeit lassen sich aus dem Fallbeispiel im Rahmen des Projektes PEACOX auch Aussagen über die zeitliche Genauigkeit von GPS-basierten Anwendungen treffen.

Anforderungen an zukünftige Mobilitätserhebungen

Abbildung 3: Korrekturen durch Probanden

e) Aufwand für Befragte
Die Studie ergab, dass der Aufwand für Befragte vom Display und dem Handling des online Tagebuchs abhängt. Es zeigte sich, dass viele Möglichkeiten der nachträglichen Bearbeitung (z.B. Anzeigen der Wegepunkte zur Korrektur von Startzeit oder Dauer der Aktivität) allgemein das Ergebnis und die Genauigkeit des Tagebuchs verbessern. Andererseits sind jedoch unerfahrene Nutzer damit oftmals überfordert. Zudem liefern die Verarbeitungsroutinen des Gerätes bei schlechtem Signal nicht immer zuverlässige Ergebnisse, was zur Folge hat, dass die Informationen im Tagebuch nicht mehr den Erinnerungen des Teilnehmers entsprechen.

f) Auswertungsaufwand
Im Rahmen der Peacox-Studie wurden alle Datensätze nochmals nachgeprüft. Dabei erforderten zahlreiche Samples zusätzliche manuelle Nachbearbeitungen. Eine solchermassen notwendige Bearbeitung kann insbesondere bei grossen Befragungen schnell hohe Kosten verursachen.

Es ist möglich, ein unvollständiges Tagebuch mit einigen wenigen berichteten Tagen und vorhandenen ergänzenden Kommentaren mit recht grosser Gewissheit nachträglich zu rekonstruieren. Ohne ergänzende Kommentare erhöht sich der dafür notwendige Aufwand signifikant. Beispielsweise bleibt gerade bei Tagen, an denen keine Wege berichtet werden, völlig unklar, ob das Gerät zu Hause vergessen wurde oder ob der Teilnehmer tatsächlich zuhause geblieben ist.

g) Fazit
Die Studie zeigt, dass eine GPS-basierte Untersuchung bei repräsentativer Teilnehmer schaft Ergebnisse analog zum MZMV liefern kann.

4.2.3 Floating Car Data

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>• Abdeckung des gesamten Verkehrsnetzes möglich</td>
<td>• Grosse Gebiete erfordern lange Erfassungszeiträume</td>
</tr>
<tr>
<td>• Eindrücklicher Zeitbezug möglich</td>
<td>• Datendichte und -qualität nur für häufig frequentierte Strecken im Straßennetz ausreichend</td>
</tr>
<tr>
<td>• Grosse Anzahl direkter und abgeleiteter Messgrössen</td>
<td>• Grosse Anzahl FCD-Fahrzeuge benötigt</td>
</tr>
<tr>
<td>• Gute Erkennung von Verkehrsstörungen durch zeitnahe Datenübertragung</td>
<td>• Geringe Übereinstimmung der Datenerhebung mit herkömmlichen Messdaten</td>
</tr>
<tr>
<td>• Informationen über Reisezeiten und Geschwindigkeiten</td>
<td>• Keine direkten Informationen zu Verkehrsfluss und -ichte</td>
</tr>
<tr>
<td>• Gut geeignet für Anwendungen der Verkehrssteuerung</td>
<td>• Geräte können ausgeschieden werden</td>
</tr>
<tr>
<td>• Gute Eignung für off line Anwendungen</td>
<td>• Berechnung Rückstauzeiten nur gemittelnd und aggregiert</td>
</tr>
<tr>
<td>• Gute Eignung für Ableitung von Indikatoren</td>
<td>• Keine Informationen über vorläufige Aktivitäten, Wege und Routen</td>
</tr>
<tr>
<td>• Realeleche Datenbasis für Verkehrsverläufe</td>
<td>• Validierung mit Referenzgruppen erforderlich</td>
</tr>
<tr>
<td>• Sehr detaillierte Informationen zu Qu/Z-Behandlungen und Routenwahl</td>
<td>• Sammlung über sehr langen Zeitraum möglich</td>
</tr>
<tr>
<td>• Sammlung über sehr langen Zeitraum möglich</td>
<td>• Anonyme Datenübertragung möglich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Anzahl entsprechend ausgestattet Fahrzeuge wird zunehmen</td>
<td>• Potenziellen Nutzerbedarf in den Ergebnissen</td>
</tr>
<tr>
<td>• Forschung im Bereich FCD weiterhin andauernd, Innovationen sind zu erwarten</td>
<td>• Unsicherheit, ob in Zukunft eine ausreichend große Anzahl FCD-Fahrzeuge zur Verfügung steht</td>
</tr>
<tr>
<td>• Zunahme der Wichtigkeit der adaptiven Verkehrssteuerung zu erwarten</td>
<td>• Probleme des Datenschutzes (personalisiertes Bewegungsprofil)</td>
</tr>
</tbody>
</table>

a) Stärken

b) Schwächen

Bei FCD-Erhebungen ist mit Stichprobenfehlern zu rechnen. Die Stichprobe besteht aus den Daten von Fahrzeugen, welche mit einem für die FCD Untersuchung geeigneten
Gefahr für den zünftigen Einsatz von FCD-Daten ist vor allem die Unsicherheit, ob die Anzahl der in den Datenverbund einzubeziehenden Fahrzeuge ausreichend sein wird, um für die Behandlung gewisser Fragestellungen eine ausreichende Datenbasis zu erhalten. Ausserdem können Probleme mit dem Datenschutz entstehen, wenn z.B. die Bewegungsprofile von Fahrzeugen mit Personendaten verknüpft werden.

4.2.4 Floating Phone Data

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>• Relativ genaue Erfassung von Free-Flow-Geschwindigkeiten</td>
<td>• Keine durchgängige Datenerfassung gewährleistet</td>
</tr>
<tr>
<td>• Eignet sich für Ortsbewegungen, größer als Funkzellen</td>
<td>• Bei leichten und mittleren Belastungen gibt es grössere Abweichungen gegenüber Indikationsdaten</td>
</tr>
<tr>
<td>• Liefert Matritzen für Netze mit Verkehrszeilen von der Grösse von Funkzellen</td>
<td>• Aktualität der Messwerte wird durch die Verzögerung zwischen der Erfassung und der Übermittlung der Datensätze</td>
</tr>
<tr>
<td>• Relativ gutes Lagegenauigkeit</td>
<td>• Erfassung nur von mit Mobiltelefon ausgerüsteten Verkehrsteilnehmern</td>
</tr>
<tr>
<td>• Übertragungsintervalle bis zu ca. 0,5 Sekunden</td>
<td>• Keine Informationen über Aktivitäten, Weg, Routen</td>
</tr>
<tr>
<td>• Swisscom-Fingerprinting: 97,5% der Autobahnen abgedeckt; erfüllt Qualitätsanforderungen des ASTRA</td>
<td>• Validierung mit Referenzpfaden erforderlich</td>
</tr>
<tr>
<td>• Gute Eignung für offline Anwendungen</td>
<td>• Gut geeignet für Anwendungen der Verkehrssteuerung</td>
</tr>
<tr>
<td>• Gute Eignung für Ablesung von Indikatoren</td>
<td>• Gut geeignet für Anwendungen der Verkehrssteuerung</td>
</tr>
<tr>
<td>• Realistische Datenbasis für Verkehrsumlegungen</td>
<td>• Keine Informationen über Aktivitäten, Weg, Routen</td>
</tr>
<tr>
<td>• Kleinerer Stichprobenfehler als Floating Car Data, da Mobilfunktelefone weiter verbreitet als GPS in Fahrzeugen</td>
<td>• Validierung mit Referenzpfaden erforderlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>• System der Swisscom im Aufbau</td>
<td>• Problem des Datenschutzes (personalisiertes Bewegungsprofil)</td>
</tr>
</tbody>
</table>

a) Stärken

Die mit der "Fingerprinting"-Methode der Swisscom erfassten Geschwindigkeiten auf dem Autobahnnetz erfüllen die Qualitätsanforderungen des ASTRA, wonach in 75% der Fälle die Abweichung kleiner als 7 km/h sein sollte. Floating Phone Data weisen einen kleineren Stichprobenfehler auf als GPS-basierte Methoden, da Mobilfunktelefone vergleichsweise viel stärker verbreitet sind.

b) Schwächen

c) Chancen
Eine Chance für Floating Phone Data bietet das System "Fingerprinting" der Swisscom, welches sich im Aufbau befindet. Eine Anwendung auf breiter Basis würde einen wichtigen Schub in der Entwicklung bedeuten, sowohl im Hinblick auf die grossflächige Applikation wie auch die grosse Datenbasis.

d) Gefahren
Für Floating Phone Data ist der Datenschutz ein Problem, da über die Erfassung und Verknüpfung von Telefondaten prinzipiell ein persönliches Bewegungsprofil registriert wird.

4.2.5 Big Data

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>• Erheben über grossen geographischen Bereich</td>
<td>• Keine eindeutige Information der benutzten Verkehrsmittel</td>
</tr>
<tr>
<td>• Information über grosse Zeit an Individuen möglich</td>
<td>• Identifikation und Unterscheidung zwischen Aufenthalten und Umrüstgeviertängen</td>
</tr>
<tr>
<td>• Abdichtung der persönlichen Alltags- und Freizeitmobilität</td>
<td>• Keine vertieften socio-demographischen Informationen verfügbar</td>
</tr>
<tr>
<td>• Resultate schnell verfügbar</td>
<td>• Datenaufbereitung zeih- und mitarbeiterintensiv</td>
</tr>
<tr>
<td>• Erfassung aller Personen (Bewohner & Besucher)</td>
<td></td>
</tr>
<tr>
<td>• Daten für alle benutzten Endgeräte verfügbar und keine zusätzlichen Erhebungseigenen-Nötig</td>
<td></td>
</tr>
<tr>
<td>• Disaggregation einfach</td>
<td></td>
</tr>
<tr>
<td>• Kombination mit Haushaltsohfragen möglich</td>
<td></td>
</tr>
<tr>
<td>• Niedrigere Erhebungskosten je Proband</td>
<td></td>
</tr>
<tr>
<td>• Import in Verkehrsmodell möglich</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Forschung reduziert künftigen Auswertungsaufwand</td>
<td>• Datenschutz</td>
</tr>
</tbody>
</table>
a) Stärken
Die Stärke von Big Data liegt in der Möglichkeit, sehr grosse Stichproben über einen
grossen geographischen Bereich und über lange Zeiträume zu erfassen. Solchermassen
erhobene Daten ermöglichen die Vermeidung systematischer Fehler, da sie alle Perso-
nen, Wege, Routen und Aktivitäten über den Erhebungszeitraum beinhalten (z.B. bei der
Analyse von Mobiltelefondaten). In Kombination mit Haushaltsbefragungen können auch
qualitative Aspekte angefügt und vertieft bzw. verifiziert werden. Organisatorisch liegen
die Vorteile im generell niedrigen Erhebungsaufwand und damit verbundenen niedrigen
Kosten, mit denen Stichproben erhoben werden können. Die Datenerfassungen erlauben
zudem eine verkehrsträgerübergreifende bzw. unabhängige Analyse. Die Integration der
Ergebnisse ermöglicht bei vorliegender Geocodierung eine vergleichsweise unkomplizier-
te Integration der Daten in Verkehrsnachfragemodelle.

b) Schwächen
Die eindeutige Identifikation des benutzen Verkehrsmittels ist kaum möglich, wenn die
Analysen auf Mobilfunkdaten basieren. Gleiches gilt für die Identifikation von Aufenthal-
ten und Umsteigevorgängen. Sozio-ökonomische bzw. demografische Informationen zur
Ergebnisinterpretation und -einstufung sind ebenfalls nicht verfügbar, sondern müssen
über weitere Daten erhoben oder geschätzt werden. Daher erfordern Big Data einen ho-
en Personal- und Zeitaufwand bei der Datenaufbereitung. Der Ankauf der Daten (z.B.
aus Navigationsgeräten) ist vergleichsweise teuer. Die Mess- und Stichprobenfehler von
Big Data-Anwendungen sind von den verwendeten Daten abhängig. Allgemein gilt, dass
bei Daten, welche nur von bestimmten Bevölkerungsteilen stammen, z.B. registrierte Be-
nutzer von Social Networks, bei Hochrechnungen auf die Gesamtbevölkerung die Stich-
probenfehler zu berücksichtigen sind.

c) Chancen
Die Durchdringungsrate der Bevölkerung mit Mobilgeräten, welche für Mobilitätserhebun-
gen relevante Daten erfassen, wird sich weiter erhöhen, weshalb sich auch mehr Ein-
satzmöglichkeiten von Big Data bieten werden. Es besteht eine Chance, dass For-
schungsprojekte zukünftig den Aufwand für Aufbereitung und Auswertung reduzieren.
Weiterhin ist zu erwarten, dass sich die Kosten für Datenspeicher weiter reduzieren,
weshalb Speicher für grosse Datenmengen kostengünstiger bereitgestellt werden kön-
nen.

d) Gefahren
Problematisch ist der Datenschutz. Da beispielsweise mit einer SIM-Karte bei Mobilgerä-
ten auch eine Person verknüpft ist, ist die Erstellung von persönlichen Bewegungsprofilen
möglich.
4.2.6 Wi-Fi

<table>
<thead>
<tr>
<th>Stärken</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positiv</td>
<td>Schwächen</td>
</tr>
</tbody>
</table>

Stärken
- Erfassung von Personen und Fahrzeugen
- Zeitnahe Datenübertragung und Verfügbarkeit
- Zweitlief auf ca. 10 Sekunden genau
- Abnahme der Fehlerhäufigkeit mit zunehmender Distanz (zwischen den Erfassungs punkten) und gefahrernder Durchschnittsgeschwindigkeit
- Geeignet für Reisezeitmessung
- Keine Verbindung zwischen Nutzer und Gerät (MAC- Nummer nicht nutzungspezifisch)
- Kosten relativ tief
- Geringer Personalaufwand für Untersuchung
- Geringer Erhebungsaufwand in Dauerbetrieb

Schwächen
- Im städtischen Umfeld starker Einfluss nicht relevanter Wi-Fi-Signale auf die Datenqualität
- Erfassung von Signalen anderer Kommunikationssysteme, Hindernissen (z.B. Gebäude) und Wetter auf Reichweite des Detektors
- Nicht flexibel an Detektoren notwendig
- Erfassung nur von Geräten mit eingeschaltetem Wi-Fi
- Filterung von Mehrfachmessungen von Fahrzeuggestehern mit Abweichungen notwendig
- Keine exakte Lokalisierung der Verkehrsteilnehmer möglich
- Detektion abhängig von Sensorschneide
- Abdeckung Reisezeit zu GPS und ANPR
- Vertretung der Technologie viel geringer als Bluetooth, daher nur wenige Kenntnisse über die Detektionssignale
- Hohe Störannahängigkeit
- Hohe Stichprobenfehleranfälligkeit

Chancen
- Zunahme der Wi-Fi-fähigen Geräte infolge Durchdringung mit Smartphones
- Detektionsrate steigt mit steigendem Anteil an Verkehrsteilnehmern, die mit Wi-Fi-fähigen Geräten ausgerüstet sind
- Reduktion des Auswertungsaufwands

Gefahren
- Durchsetzen anderer Methoden mit vergleichbaren Eigenschaften
- Datenschutz
- Ortungsfunktion von Wi-Fi-Geräten kann zunehmend ausgeschaltet werden

a) Stärken

b) Schwächen

Ergebnisse der Erhebung mit Wi-Fi weichen teilweise signifikant von parallelen Messungen (z.B. ANPR13, GPS) ab. Messfehler treten einerseits bei Störsignalen anderer Kommunikationssysteme, Hindernissen (z.B. Gebäude) und bei bestimmten Wetterverhältnissen auf, welche Einfluss auf die Reichweite der Detektoren haben. Die Detektionsszeit unterliegt immer einem kleinen Messfehler (ca. 5s), da eine gewisse Zeit gebraucht wird, bis ein Gerät erkannt ist.

Nicht zuletzt aus diesem Grund erfordern Messungen mittels Wi-Fi einen hohen nach träglichen Aufwand für die Aufbereitung und die Auswertung der Daten. Zusätzlich erfordert Wi-Fi ein dichtes Erhebungsnetz mit zahlreichen Standorten. Hinzu kommt, dass allgemeingültige Algorithmen bisher nicht hinreichend genau und parametrisierbar zur Verfügung stehen. Im Vergleich zu Bluetooth sind die Ergebnisse bei geringerer Durchdringungsraten ungenau.

Der Stichprobenfehler kann erheblich sein. Zu bedenken ist, dass nur Personen mit eingeschalteten Wi-Fi-Geräten erfasst werden. Auf der anderen Seite können sich in einem Fahrzeug mehrere Wi-Fi-Geräte befinden, was eine Filterung von Mehrfachmessungen notwendig macht. Ausserdem ist der Stichprobenfehler vom Radius der Sende- resp. Empfangsleistung des Detektors, der Durchschnittsgeschwindigkeit und dem Fehler in

13 Automatic number plate recognition: Automatische Kontrollschilderfassung
der Detektionszeit. Je schneller ein Fahrzeug fährt und je kleiner der Sendee- resp. Empfangsradius des Detektors ist, desto größer ist die Wahrscheinlichkeit, dass ein Wi-Fi-Gerät nicht erkannt wird. Mit Detektoren, welche sowohl Bluetooth als auch Wi-Fi erkennen, kann eine grössere Stichprobe (Geräte die mit Bluetooth, Wi-Fi oder beidem ausgestattet sind) erfasst werden als mit Detektoren, die nur Bluetooth oder nur Wi-Fi erkennen.

c) Chancen
Allgemein kann angenommen werden, dass die Durchdringungsrate der Bevölkerung mit entsprechend ausgestatteten Geräten (Smartphones, Mobiltelefon, Tablets, Computer) weiterhin wachsen wird. Zudem ist infolge der zunehmenden Verbreitung von Wi-Fi im öffentlichen Raum eine grössere Abdeckung zu erwarten. Eine Chance für Wi-Fi als Erhebungsmethode bilden Fortschritte in der automatisierten Auswertung.

d) Gefahren
Es ist zum heutigen Zeitpunkt unsicher, wie sich Wi-Fi Standards zukünftig entwickeln und verbreiten. Unabhängig davon besteht auch die Gefahr, dass die Ortungsfunktion bei Wi-Fi Geräten zunehmend ausgeschaltet werden kann. Für Wi-Fi ist ausserdem die Gewährleistung des Datenschutzes problematisch.

4.3 Bluetooth

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>Erfassen von Personen und Fahrzeugen</td>
<td>Im städtischen Umfeld starker Einfluss nicht relevanter Bluetooth-Signale auf die Datenaufnahme</td>
</tr>
<tr>
<td>Erfassen von Routen und Strömen</td>
<td>Erfassung von Signalen anderer Kommunikationssysteme, Hindernissen (z.B. Gebäuden) und Wetter auf Reichweite des Detektors</td>
</tr>
<tr>
<td>Verkehrsermittlung und Fahrtrichtung gut identifizierbar</td>
<td>Dichtes Netz an Detektororte netzwerk notwendig</td>
</tr>
<tr>
<td>Daten stets aktuell und schnell verfügbar</td>
<td>Erfassung nur von Geräten mit eingeschalteter Bluetooth-Verbindung</td>
</tr>
<tr>
<td>Datenaufnahme um circa 10 Sekunden genau</td>
<td>Filterung von Mehrfachmessungen von Verkehrsteilnehmer/Fahrzeugen notwendig</td>
</tr>
<tr>
<td>Hohe Durchdringungsrate</td>
<td>Keine erlaubte Lokalisierung der Verkehrsteilnehmer möglich</td>
</tr>
<tr>
<td>Gut geeignet für Reisezeitmessungen</td>
<td>Detektion abhängig von Sensoreinschränkungen</td>
</tr>
<tr>
<td>Kosten relativ tief</td>
<td>Abweichung Reisezeit zu GPS und ANPR</td>
</tr>
<tr>
<td>Geringer Personalaufwand für Untersuchung</td>
<td>Hohe Störbarkeit</td>
</tr>
<tr>
<td>Geringer Erhebungsaufwand in Dauerbetrieb</td>
<td>Hohe Stichprobenfehleranfälligkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zunahme der Bluetooth-fähigen Endgeräte infolge Durchdringung mit Smartphones</td>
<td>Durchsetzen anderer Methoden mit vergleichbaren Eigenschaften</td>
</tr>
<tr>
<td>Detektionsrate steigt mit steigendem Anteil an Verkehrsteilnehmern, die mit Bluetooth-fähigen Endgeräten ausgestattet sind.</td>
<td>Bluetooth</td>
</tr>
<tr>
<td>Reduktion des Ausreiferaufwands</td>
<td>Datenschutz</td>
</tr>
</tbody>
</table>

a) Stärken
Kosten schnell verfügbar und aktuell. Dies erlaubt Erhebungen über einen längeren Zeitraum, wobei nur ein geringer Anteil der Kosten auf das Erhebungspersonal entfällt. Die Möglichkeit der automatisierten Analyse reduziert den Aufwand für die Auswertung.

b) Schwächen

Es gelten grundsätzlich die gleichen Angaben zu Mess- und Stichprobenfehler wie bei der Wi-Fi Methode. Wang et al. (2014a) haben in einem stark belasteten städtischen Netz von ca. 1.6 km Länge eine Abweichung zur Reisezeitmessung mittels ANPR von ca. 25 bis 40s gemessen.

c) Chancen

d) Gefahren

Zum heutigen Zeitpunkt ist unsicher, wie sich Bluetooth-Standards zukünftig entwickeln und verbreiten. Für Bluetooth ist die Gewährleistung des Datenschutzes problematisch.
4.3.1 Radio Frequency Identification

<table>
<thead>
<tr>
<th>Stärken</th>
<th>Schwächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Stärken</td>
<td></td>
</tr>
<tr>
<td>b) Schwächen</td>
<td></td>
</tr>
<tr>
<td>c) Chancen</td>
<td></td>
</tr>
<tr>
<td>Der Trend zur Umsetzung von kontaktlosen Systemen im öffentlichen Personenverkehr bietet Radio Frequency Identification Systemen eine Chance, sich im Verkehrsbereich dauerhaft als wichtige Technologie zu etablieren.</td>
<td></td>
</tr>
</tbody>
</table>
d) Gefahren
Bei einer zwangsweisen Registrierung der Nutzer ermöglichen RFID-Systeme Rückschlüsse auf die mit der Karte verknüpfte Person (z.B. Erstellung von Bewegungsprofilen), was aus Sicht des Datenschutzes problematisch ist.

4.3.2 Smart Card / Near Field Communication

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
</table>
| Stärken
| Kein Sichtkontakt nötig |
| Unempfindlich gegen Verschmutzung |
| Eindringen durch Zielobjekt möglich |
| Erhalt langen Erfassungszeiträume |
| Große Anzahl direkter Messpunkte |
| Zeitnahe Übertragung und Verfügbarkeit |
| Lange Lebensdauer der Sensors |
| Informationen über Reisezeiten und -geschwindigkeiten |
| Genauere Identifikation des Verkehrsmittels |
| Große Datenbasis möglich |
| Ableitung von Bewegungsprofilen, Ganglinien und Routen |
| Realitätsgerechtigkeit |
| Anonyme Übertragung möglich |
| Stichprobenfehler kann ignoriert werden (bei geschlossenen Systemen) |

| Schwächen |
| Lange Erfassungszeiträume erforderlich |
| Große Datenmengen |
| Vorbehandlung der Ergebnisse |
| Einschluss in geschlossenen Systemen, d.h. Teilnehmer müssen SmartCard besitzen |
| Körperskalierbarkeit der Verkehrsteilnehmer/Cluster |
| Anfällig für Umgehungsmöglichkeiten und Abschirmung |
| Erfassung nur Teilnehmer mit SmartCard in Reichweite |
| Validierung mit Referenzpunkte erforderlich |

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extern</td>
<td></td>
</tr>
<tr>
<td>Zunahme der Nutzung von RFID-Codes als kontaktlose Fahrkarten</td>
<td></td>
</tr>
<tr>
<td>Durchführung des Schweizer Passes</td>
<td></td>
</tr>
</tbody>
</table>

| Gefahren |
| Rückschluss auf Personen bei registriertem Nutzer |
| Datenschutz |

a) Stärken

b) Schwächen

Messfehler entstehen, wenn die Smart Card oder das NFC nicht erkannt wird, z.B. aufgrund von Beschädigung des Lesegeräts oder der Smart Card resp. des Sendegerätes
selbst. Es können nur mit Smart Card oder mit NFC-Geräten ausgestattete Verkehrsteilnehmer erkannt werden.

c) Chancen
Smart Card und Near Field Communication funktionieren ähnlich wie RFID-Systeme und finden mittlerweile in immer mehr Systemen Anwendung, so beispielsweise im öffentlichen Verkehr, wo sie als Ersatz für herkömmliche Papierfahrkarten dienen.

d) Gefahren
Bei einer zwangsweisen Registrierung der Nutzer ermöglichen SmartCard und NFC-Systeme Rückschlüsse auf die mit der Karte verknüpfte Person (z.B. Erstellung von Bewegungsprofilen), was aus Sicht des Datenschutzes problematisch ist.

4.3.3 Barcode

<table>
<thead>
<tr>
<th>Stärken</th>
<th>Schwächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eindeutiger Zeitbezug möglich</td>
<td>Schlechte Lesbarkeit bei schlecht gedruckten, beschädigten oder verschmutzten Codes</td>
</tr>
<tr>
<td>Zeitnahe Detektion und Übertragung</td>
<td>Einsatz in geschlossenen Systemen, d.h. Teilnehmer müssen Code besitzen</td>
</tr>
<tr>
<td>Zeitsichere Genauigkeit hoch</td>
<td></td>
</tr>
<tr>
<td>Ökonomisch</td>
<td></td>
</tr>
<tr>
<td>Zuverlässig</td>
<td></td>
</tr>
<tr>
<td>Code kann bei Ausfall des Sensors alternativ eingeben werden</td>
<td></td>
</tr>
<tr>
<td>Stichprobenfehler kann ignoriert werden</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mögliche Erhebungsdesigns ohne Erfassung von persönlichen Daten (z.B. Personenströme am Bahnhof)</td>
<td>Abbau der Technologie durch RFID</td>
</tr>
</tbody>
</table>

a) Stärken

b) Schwächen
Die Methode ist nur in geschlossenen Systemen anwendbar. Messfehler entstehen, wenn der Barcode nicht gelesen werden kann, z.B. wenn die Codes schlecht gedruckt oder verschmutzt sind oder wenn das Lesegerät defekt ist. Es können nur mit einem Barcode ausgestattete Objekte erkannt werden.

c) Chancen
Barcodes können beispielsweise verwendet werden, um Personenströme (Abgabe von Barcodes und Erfassung an verschiedenen Querschnitten) bei Bahnhöfen, usw. zu erfassen. Im Gegensatz zur Erfassung mittels Wi-Fi, Bluetooth oder Video werden keine persönlichen Daten erfasst.

d) Gefahren
Barcodes werden vermutlich früher oder später durch RFID abgelöst werden.
4.3.4 Digitales Foto / Video

Intern

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>* Erfassung aller Verkehrsmittel</td>
<td>* Hohe Bildfrequenzen führen zu großen Datenmengen</td>
</tr>
<tr>
<td>* Erfassung von Personenfluss und Verhalten</td>
<td>* Messgenauigkeit bei ungünstigen Lichtbedingungen eingeschränkt</td>
</tr>
<tr>
<td>* Eindeutiger Zeitbezugs</td>
<td>* Automatisierte Fahrzeugklassifizierung problematisch</td>
</tr>
<tr>
<td>* Schnelle Datentransferung und -übertragung</td>
<td>* Nur für Messung zur Verkehrsanalyse und -steuerung vorgesehen</td>
</tr>
<tr>
<td>* Bei guten Sichtverhältnissen zuverlässig</td>
<td>* Optimierte Auswertung schwierig</td>
</tr>
<tr>
<td>* Gute Einsatzfähigkeit für operatives Verkehrsmangement</td>
<td>* Hohe Auswertungsaufwand</td>
</tr>
<tr>
<td>* Direkte Vergleichbarkeit von Messwerten mit Kamerabild</td>
<td>* Bestehende Datenschutzbestimmungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Reduzierung des Aufbewahrungsaufwandes</td>
<td>* Verschärfung der Datenschutzbestimmungen</td>
</tr>
<tr>
<td>* Schnellere Erkennung verkehrstechnischer Datenverbindungen</td>
<td></td>
</tr>
</tbody>
</table>

Extern

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Günstiger als Kombination anderer Systeme</td>
<td></td>
</tr>
<tr>
<td>* Flexibilität bei der Installation</td>
<td></td>
</tr>
<tr>
<td>* Montage vergleichsweise preiswert und leicht</td>
<td></td>
</tr>
</tbody>
</table>

a) Stärken

b) Schwächen

Eine weitere Schwäche einer foto- und videobasierten Erhebung ist der Datenschutz, da es sich vielfach um Personendaten handelt.

c) Chancen
Es ist davon auszugehen, dass die automatischen Bildauswertungen, z.B. Personenerkennung, in Zukunft noch effizienter und präziser werden. Obwohl heute die Datenübertragungsgeschwindigkeit deutlich höher ist als noch vor ein paar Jahren, ist ebenfalls davon auszugehen, dass künftig noch leistungsfähigere Leitungen zur Verfügung stehen. Damit kann noch schneller Bild- und Videomaterial in hoher Auflösungsqualität zur Verfügung gestellt werden.

d) Gefahren
Die Gefahr einer foto- und videobasierten Erhebung sind schärfere Datenschutzbestimmungen. Systeme mit Gesichtserkennungen können davon besonders betroffen sein, da mit einer Verbindung ins Internet zusätzliche Informationen über die erkannten Personen in Erfahrung gebracht werden können.

4.3.5 Automatische Kontrollschilderfassung
Als eine verbreitete Anwendung der Video-Technik wird im Folgenden die automatische Kontrollschilderfassung (ANPR) behandelt.

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>Hohe Erkennungsrate</td>
<td>Ergebnisse nur für bestimmte Netzbetrifftre</td>
</tr>
<tr>
<td>Hohe Betriebszuverlässigkeit</td>
<td>Viele negative Einflussfaktoren</td>
</tr>
<tr>
<td>Fahrstraßentelefonen-Detektion möglich</td>
<td>Hohe Anzahl Geräte für flächendeckende Erhebung notwendig (je nach System 1 Gerät pro Fahrspur)</td>
</tr>
<tr>
<td>Aufnahme in der Nacht möglicher (mit Infrarot-Kamera)</td>
<td>Hocher Personalaufwand für Installation</td>
</tr>
<tr>
<td>Erfassung großer Datenmengen</td>
<td>Niedriger Personalaufwand wenn automatische Auswertung möglich</td>
</tr>
<tr>
<td>Schnelle Datenverfügbarkeit möglich</td>
<td>Hocher Personalaufwand wenn manuelle Auswertung notwendig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitere Verbreitung der Standorte infolge Verkehrüberwachung und -kontrolle</td>
<td>Erhobene Daten können einer Person (Fahrzeughalter) zugewiesen werden.</td>
</tr>
</tbody>
</table>
a) Stärken

b) Schwächen
Grössere Gebiete können nur mit relativ hohem Aufwand abgedeckt werden. Ausserdem führen Witterungseinflüsse häufig zu Problemen der Detektion, wenn z.B. die Kontrollschilder infolge Verschmutzung oder Schnee kaum erkennbar sind.

c) Chancen
Im Zusammenhang mit der Verdichtung von Standorten zur Verkehrsüberwachung und Kontrolle ist mit einer Ausweitung des Messstellennetzes zu rechnen.

d) Risiken
Die Erfassung des Kontrollschilds lässt es zu, die Bewegungen eines Fahrzeugs zu rekonstruieren, was aus Datenschutzgründen problematisch ist. Aus diesem Grund war die automatische Kontrollschilderfassung in Deutschland bereits Gegenstand von gerichtlichen Auseinandersetzungen14.

4.3.6 Passives Infrarot

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>• Detektion bei Nacht möglich</td>
<td>• Für Erfassung von Veloverkehr wenig geeignet</td>
</tr>
<tr>
<td>• Relativ robust gegenüber Beeinträchtigungen durch Umgebungsherstellung und Hindernisse</td>
<td>• Nachtwache Bedeutung von Sonderereignissen erforderlich</td>
</tr>
<tr>
<td>• Hohe Messgenauigkeit</td>
<td>• Großer Einfluss des Gerätestandortes auf die Zuverlässigkeit</td>
</tr>
<tr>
<td>• Fahrstreifenfeine Detektion</td>
<td>• Keine qualitativen Informationen über Erfassung</td>
</tr>
<tr>
<td>• Hohe zeitliche Genauigkeit</td>
<td>• Keine Erfassung persönlicher Daten</td>
</tr>
<tr>
<td>• Keine Erfassung persönlicher Daten</td>
<td>• Erfassung aller Verkehrsteilnehmer am Querschnitt</td>
</tr>
<tr>
<td>• Erfassung aller Verkehrsteilnehmer am Querschnitt</td>
<td>• Ebenbare Kosten</td>
</tr>
<tr>
<td>• Kombination mit anderen Erhebungstechnologien kann Zuverlässigkeit erhöhen</td>
<td>• Ersatz durch andere Technologien, welche flexibler einsetzbar, günstiger und zuverlässiger sind</td>
</tr>
</tbody>
</table>

a) Stärken
Passive Infrarotsysteme können auch bei ungünstigen Sichtverhältnissen (Nacht, Witterung) zur Erhebung von Verkehrsdaten eingesetzt werden. Darüber hinaus ist ihre Lagegenauigkeit hoch, was eine fahrstreifen- und richtungsfeine Detektion ermöglicht.

Zudem erfordern die passiven Systeme keine Stromzufuhr und sind somit mobil und auch an abgelegenen Standorten einsetzbar.

14 In den Bundesländern Hessen und Schleswig-Holstein wurden die landesrechtlichen Regelungen zur Kontrollschilderfassung vom deutschen Bundesverfassungsgericht für verfassungswidrig erklärt. Das Beispiel zeigt die Sensibilität des Themas.
b) Schwächen

c) Chancen
Die geringe Zuverlässigkeit bei der Erfassung des Veloverkehrs kann durch die Kombination mit anderen Erhebungsmethoden (z.B. Induktionsschleifen) verbessert werden.

d) Gefahren
Das passive Infrarot könnte durch andere Technologien, welche flexibler einsetzbar, genauier und kostengünstiger sind, ersetzt werden.

4.3.7 Laser

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>Fahrzeugklassifikation durch Vergleich mit charakteristischen Musterprofilen möglich</td>
<td>Keine Betrachtung über grösseren räumlichen Bereich möglich</td>
</tr>
<tr>
<td>Genaue Geschwindigkeitserfassung</td>
<td>Keine Abbildung von Routen möglich</td>
</tr>
<tr>
<td>Hohe Detektionsgenauigkeit</td>
<td></td>
</tr>
<tr>
<td>Fahrstreifenfeine Detektion</td>
<td></td>
</tr>
<tr>
<td>Datensicherung gewährleistet</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einsatzpotenzial steigt, wenn die Gerätekosten im Vergleich zu anderen Technologien abnehmen.</td>
<td>Ersatz durch andere Technologien, welche flexibler einsetzbar, günstiger und zuverlässiger sind</td>
</tr>
</tbody>
</table>

a) Stärken

b) Schwächen
Auf der anderen Seite lässt die fehlende eindeutige Identifikation der Fahrzeuge eine Betrachtung der Bewegung über einen grösseren räumlichen Bereich nicht zu. Eine Abbildung von Routen ist nicht möglich.

c) Chancen
Laser bleibt im Verhältnis zu anderen Technologien kostengünstig.

d) Gefahren
Eventuell Ablösung durch andere Technologien, welche flexibler einsetzbar, genauer und kostengünstiger sind.

4.3.8 Ultraschall

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>- Genaue Geschwindigkeitserfassung</td>
<td>- Keine Betrachtung über größeren räumlichen Bereich möglich</td>
</tr>
<tr>
<td>- Fahrstreifenfeine Detektion</td>
<td>- Keine Abbildung von Routen möglich</td>
</tr>
<tr>
<td>- Datenschutz gewährleistet</td>
<td>- Relativ günstig</td>
</tr>
<tr>
<td>- Einsatzpotenzial steigt, wenn die Gerätekosten im Vergleich zu anderen Technologien abnehmen</td>
<td>- Ersatz durch andere Technologien, welche flexibler einsetzbar, günstiger und zuverlässiger sind</td>
</tr>
</tbody>
</table>

a) Stärken
Ähnlich wie Laser ermöglicht Ultraschall eine genaue Geschwindigkeitserfassung und eine fahrstreifenfeine Detektion. Ebenfalls ist durch die Erhebungsmethode der Datenschutz gewährleistet. Als vorteilhaft werden darüber hinaus in der Literatur die geringen Kosten für die Durchführung von Verkehrsdatenerhebungen angeführt.

b) Schwächen
Analog zur Laser-Technologie liegen die Schwächen der Ultraschall-Detektion in der fehlenden eindeutigen Identifikation der Fahrzeuge, welche eine Betrachtung von Bewegung über einen größeren räumlichen Bereich nicht zulässt. Es ist somit beispielsweise keine Erhebung von Routen oder ähnlichem möglich.

Der Messfehler wird durch den Standort des Detektors und dessen Funktionsfähigkeit, bestimmt. Angaben zur Messgenauigkeit sind in der Literatur keine gefunden worden.

c) Chancen
Ultraschall bleibt im Verhältnis zu anderen Technologien kostengünstig.

d) Gefahren
Eventuell Ablösung durch andere Technologien, welche flexibler einsetzbar, genauer und kostengünstiger sind.
4.3.9 Radiowellen

<table>
<thead>
<tr>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>Schwächen</td>
</tr>
<tr>
<td>• Allwettertauglich</td>
<td>• Detektion nur möglich, wenn sich das Messobjekt direkt zwischen Sender und Empfänger bewegt</td>
</tr>
<tr>
<td>• Manipulations sicher Installation möglich</td>
<td></td>
</tr>
<tr>
<td>• Hohe Zählgenauigkeit</td>
<td></td>
</tr>
<tr>
<td>• Fahrstreifentiefe Detektierung</td>
<td></td>
</tr>
<tr>
<td>• Datenschutz gewährleistet</td>
<td></td>
</tr>
<tr>
<td>• Relativ günstig</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Gefahren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Einsatz durch andere Technologien, welche flexibler einsetzbar, günstiger und zuverlässiger sind</td>
</tr>
</tbody>
</table>

a) Stärken

b) Schwächen
Radiowellen benötigen immer einen Sender und einen Empfänger, welche bis maximal 20 m voneinander entfernt positioniert sein sollten, um eine verlässliche Detektion zu ermöglichen. In der Literatur finden sich keine Angaben zur Messgenauigkeit. Da an einem Messstandort während einer Erhebung grundsätzlich alle Verkehrsteilnehmer erfasst werden, treten während der Erhebungszeit keine Stichprobenfehler auf.

c) Chancen
Radiowellen bleiben im Verhältnis zu anderen Technologien kostengünstig.

d) Gefahren
Eventuell Ablösung durch andere Technologien, welche flexibler einsetzbar, genauer und kostengünstiger sind.
4.3.10 Magnetometer

<table>
<thead>
<tr>
<th></th>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intern Stärken</td>
<td>• Hohe Detektionsrate</td>
<td>• Falschdetektion bei schlechten Witterungsverhältnissen</td>
</tr>
<tr>
<td></td>
<td>• Datenschutz gewährleistet</td>
<td>• Zählergebnisse können von Nachbarspuren beeinflusst werden</td>
</tr>
<tr>
<td></td>
<td>• Relativ günstig</td>
<td>• Anfällig auf Mehrfachdetektion eines Fahrzeugs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Geringe Wiedererkennungsrate bei Signature und Platoon Matching</td>
</tr>
<tr>
<td>Intern Schwächen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extern Chancen</td>
<td>• Einsatzpotenzial steigt, wenn die Gerätekosten im Vergleich zu anderen Technologien abnehmen</td>
<td>• Einsatz durch andere Technologien, welche flexibler einsetzbar, günstiger und zuverlässiger sind</td>
</tr>
<tr>
<td>Extern Gefahren</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Stärken
Magnetometer sind relativ genau in der Detektion und haben bei guter Witterung im Vergleich beispielsweise zu Induktionsschleifen nur geringe Anteile von Falschzählungen. Hinzu kommt, dass Erhebungen relativ günstig durchzuführen sind und der Datenschutz keine Probleme bietet.

b) Schwächen
Demgegenüber steht der Nachteil, dass die Zählgenauigkeit von den Witterungsverhältnissen beeinflusst wird. Ebenfalls sind mögliche Mehrfachdetektionen oder Falschdetektionen bei mehrstreifigen Messquerschnitten eine Schwäche der Technologie.

Gemäß Medina et al. (2011) beeinflusst der Verkehr auf Nachbarspuren das Messergebnis. In der Studie wurde festgestellt, dass auf einem Highway in den USA die Detektionsrate von Fahrzeugen bei 95% liegt, wobei weniger als 2% falsch gezählt wurden. Die Abweichung zur Induktionsschleife lag bei ca. 1%. Bei Versuchen an einem Knoten haben Medina et al. (2011) bei gutem Wetter einen Falschdetektion von 6% bis 8% festgestellt, während bei Schnee der Fehler bei 8% bis 15% lag.

Wang et al. (2014a) haben in einem stark belasteten städtischen Netz von ca. 1.6 km Länge eine Abweichung der Reisezeit mittels Platoon und Signature Matching mit Magnetometer zur Reisezeitmessung mittels Automatischer Kontrollschilderfassung von ca. 25 bis 40s gemessen. Ernst et al. (2011) haben bei einem Signature Matching Versuch eine Wiedererkennungsrate von 65% erreicht.

c) Chancen
Magnetometer bleibt im Verhältnis zu anderen Technologien kostengünstig.

d) Gefahren
Eventuell Ablösung durch andere Technologien, welche flexibler einsetzbar, genauer und kostengünstiger sind.
4.3.11 Glasfaserkabel

<table>
<thead>
<tr>
<th></th>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td>• Sehr zuverlässig (auch bei schlechtem Wetter)</td>
<td>• Hohe Fehleranfälligkeit auf Abschnitten mit hohem Aufkommen an motorisiertem Verkehr</td>
</tr>
<tr>
<td></td>
<td>• Hohe Genauigkeit bei Fuss- und Velowegen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gute Erkennung bei Strassen mit wenig PW/LW-Verkehr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Richtungsgetrennte Detektion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Unterscheidung von Fussgängern und Velofahrern</td>
<td></td>
</tr>
<tr>
<td>Schwächen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Chancen** | • Wachsender Stellenwert des Langsamverkehr benötigt zuverlässige Erhebungstechnologien für den Veloverkehr | • Ersatz durch andere Technologien, welche flexibler einsetzbar, günstiger und zuverlässiger sind |

a) Stärken
Lichtwellen (durch ein Glasfaserkabel) haben ihre Stärken insbesondere bei der Zählung des Veloverkehrs, wo sie eine hohe Genauigkeit, insbesondere auch bei schlechter Witterung, aufweisen. Velofahrten werden richtungsgetrennt detektiert.

b) Schwächen

c) Chancen
Es ist anzunehmen, dass der wachsende Stellenwert des Langsamverkehrs eine erhöhte Nachfrage nach spezifischen Erhebungsmethoden für Veloverkehr auslöst und eine Chance für die Erhebung mittels Lichtwellentechnologie darstellt.

d) Gefahren
Eventuell Ablösung durch andere Technologien, welche flexibler einsetzbar, genauer und kostengünstiger sind.
4.3.12 Personenzählmatte

<table>
<thead>
<tr>
<th></th>
<th>Positiv</th>
<th>Negativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stärken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Gute Eignung für Zählung von Fußgängern</td>
<td>• Nur Erfassung von Querschnitten möglich</td>
<td></td>
</tr>
<tr>
<td>• Leicht und einfach transportierbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Anpassung an örtliche Gegebenheiten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Direkte Übermittlung der Daten an Auswerteeinheit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Eignung sowohl für Innen- als auch für Außenräume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Datensicher geschützt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chancen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Wachsender Stellenwert des Langsamverkehrs benötigt zuverlässige Erhebungstechnologien für den Fussverkehr</td>
<td>• Ersatz durch andere Technologien, welche flexibler einsetzbar, günstiger und zuverlässiger sind</td>
<td></td>
</tr>
<tr>
<td>Gefahren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Stärken</td>
<td>Personenzählmatte sind vor allem für die Zählung von Fußgängern geeignet. Die Erfassung von weiteren Kategorien ist nicht möglich. Ihre Stärken liegen in der einfachen Handhabung und der guten Anpassungsfähigkeit an örtliche Gegebenheiten.</td>
<td></td>
</tr>
<tr>
<td>b) Schwächen</td>
<td>Mit der Personenzählmatte ist nur die Erfassung an einem Querschnitt möglich. Es können keine Routen o.ä. erfasst werden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gemäß EcoCounter (2014a) liegt die Detektionsrate bei 95%. Grundsätzlich können an einem Messstandort während einer Erhebung alle Personen erfasst werden, welche den Standort passieren.</td>
<td></td>
</tr>
<tr>
<td>c) Chancen</td>
<td>Es ist anzunehmen, dass der wachsende Stellenwert des Langsamverkehrs eine erhöhte Nachfrage nach spezifischen Erhebungsmethoden für den Fussverkehr auslöst und eine Chance für Erhebungen mittels Personenzählmatten darstellt.</td>
<td></td>
</tr>
<tr>
<td>d) Gefahren</td>
<td>Eventuell Ablösung durch andere Technologien, welche flexibler einsetzbar, genauer und kostengünstiger sind.</td>
<td></td>
</tr>
</tbody>
</table>
4.3.13 Synopsis

Tabelle 17: Synopsis der in der SWOT-Analyse festgestellten Anwendungspotenziale

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Eignung für Anwendung in...</th>
<th>Grundlagen/ Instrumente</th>
<th>Planung</th>
<th>Bau- und Unterhalt</th>
<th>Betrieb</th>
<th>Monitoring / Controlling</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS-unterstützte Mobilitätserhebung</td>
<td></td>
<td>● ● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Floating Car Data</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Floating Phone Data</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Big Data</td>
<td></td>
<td>● ● ●</td>
<td>●</td>
<td>●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Bluetooth</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Radio Frequency Identification (RFID)</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Smart Card / Near Field Communication</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Barcode</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Digitales Foto/Video</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Automatische Kontrollschilderfassung</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Passives Infrarot</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Ultraschall</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Radiowellen</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Lichtwellen (Glasfaserkabel)</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Personenzählmatten</td>
<td></td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
</tr>
</tbody>
</table>

Legende: ● geeignet ●● gut geeignet ●●● sehr gut geeignet

Allgemein als Chancen für eine zukünftig verbreitete Anwendung ist die zu erwartende zunehmende Durchdringungsrate der für die Erhebungen erforderlichen Instrumente zu kennen. Dies betrifft insbesondere geeignete Endgeräte (z.B. Smartphones für Mobilitätspanels), aber auch die geplante Umsetzung verschiedener Anwendungen (Swiss Pass als Smart Card). Zahlreiche der untersuchten Methoden benötigen enormen Speicherplatz (Foto Video, Big Data), welcher in Zukunft, voraussichtlich noch kostengünstiger bereitgestellt werden kann.

Für die Verkehrsstatistik stehen auf den ersten Blick zahlreiche neue Erhebungsmethoden zusätzlich zu den etablierten Methoden (Dopplerradar, Induktionsschlaufen) zur Verfügung. Sie eröffnen Möglichkeiten zur effizienten Erfassung nicht nur von Querschnittsdaten, sondern auch für die Abbildung von Routen und die Ermittlung von Reisezeiten auf bestimmten Abschnitten. Diesbezüglich verfügen insbesondere die automatische Kontrollschilderfassung, Digitales Foto/Video und Bluetooth ein hohes Anwendungspotenzial. Auch die Bluetooth-Technologie ist hier hervorzuheben, wie einige Anwendungen

5 Anforderungen aus planerischer Sicht

5.1 Einleitung

5.1.1 Generelles Vorgehen bei der Planung einer Mobilitäts- und Verkehrserhebung

Das generelle Vorgehen bei einer Mobilitäts- und Verkehrserhebung ist in der folgenden Abbildung dargestellt (nach VSS, 1988, ergänzt).

Gestützt auf die Problemstellung und die Ziele der Erhebung werden unter Berücksichtigung der bereits vorhandenen Daten die zusätzlich benötigten Daten identifiziert. Unter Beachtung der Systemabgrenzungen und der Randbedingungen wird aus den verfügbaren Methoden die geeignete oder eine Kombination geeigneter Methoden ausgewählt.

Abbildung 4: Generelles Vorgehen bei einer Mobilitäts- und Verkehrserhebung
Wichtige Kriterien für die Wahl der Erhebungsmethode sind neben den zu erhebenden Kennwerten die zu erreichende Qualität und der benötigte Aufwand (Zeit, Personal, Kosten).

Für die Konzeption, Vorbereitung und Durchführung der Erhebung sowie für die Aufbereitung und Auswertung der erhobenen Daten sind die spezifischen Anforderungen zu beachten, welche sich aus den Zielen der Erhebung ergeben.

Das skizzierte generelle Vorgehen gilt sowohl für herkömmliche als auch für neue Mobilitäts- und Verkehrserhebungsmethoden.

5.1.2 Formulierung von Anforderungen

Bei der Konzeption und Durchführung von Zählungen, Messungen und Befragungen für eine bestimmte Planungsaufgabe gilt es zahlreiche Anforderungen zu berücksichtigen. Diese Anforderungen an herkömmliche und neue Mobilitäts- und Verkehrserhebungsmethoden decken verschiedene Bereiche ab (bastian, 2010; FGSV, 2012; Widmer et al., 2015):

- Anforderungen an die Datenqualität
- Anforderungen an die Zugänglichkeit und Klarheit der Daten
- Anforderungen an den Datenschutz
- Anforderungen bezüglich Erhebungs-, Aufbereitungs- und Publikationsaufwand
- Anforderungen an die Ausgestaltung der Erhebung
- Anforderungen an die Vorbereitung und Durchführung der Erhebung
- Anforderungen an die Datenaufbereitung und -hochrechnung
- Anforderungen an die Dokumentation und Archivierung der Daten
- Anforderungen an den Geräteeinsatz
- Anforderungen an den Personaleinsatz.

5.1.3 Anforderungen aus den Experteninterviews

Im Rahmen der Experteninterviews und des Workshops (vgl. Kapitel 2) wurden die Experten auch nach den Anforderungen, welche sie an neue Mobilitäts- bzw. Transporterhebungen, stellen, befragt. Die Ergebnisse sind in der folgenden Tabelle zusammengefasst.
Tabelle 18: In den Experteninterviews genannte Anforderungen (mit Ergänzungen aus dem Workshop)

<table>
<thead>
<tr>
<th>Relevant-/Vollständigkeit</th>
<th>Nationale Erhebungen</th>
<th>Regionale Erhebungen</th>
<th>Lokale Erhebungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Kontinuität mit bisherigen Erhebungen / Vergleichbarkeit</td>
<td>• Breiter Einsatz (Generierung von Daten für zusätzliche Indikatoren)</td>
<td>• Hohe Flexibilität bezüglich Einsatzzweck (möglichst viele verschiedene Kennwerte, für verschiedene Verkehrsmittel)</td>
</tr>
<tr>
<td></td>
<td>• Kompatibilität mit methodischen Konzepten / nationalen Statistiken</td>
<td>• Bessere Erhebung von effektiven Verhaltensänderungen</td>
<td>• Möglichkeit von Sekundäranalysen (ex post)</td>
</tr>
<tr>
<td></td>
<td>• Schweizweite Einsetzbarkeit</td>
<td>• Kontinuierliche Mobilitätserhebungen</td>
<td>• Generierung von zusätzlichen Daten (insb. Verhaltensdaten)</td>
</tr>
<tr>
<td></td>
<td>• Hohe räumliche Abdeckung</td>
<td>• Flächendeckende Anwendung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verknüpfbarkeit mit anderen Daten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Repräsentativität</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Disaggregierbarkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zusätzliche Kennwerte</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Genauigkeit | • Hohe Qualität / Messgenauigkeit | • Hohe Zuverlässigkeit (hohe Erfassungsrate, techn. Verfügbarkeit) | • Valide Zählergebnisse / Zuverlässige Kennwerte |
| | • Verlustfreie Datenübertragung | • Einhaltung Genauigkeitsanforderungen | • Verbesserung Datenqualität |
| | | • Repräsentative Ergebnisse | • Hohe Betriebszuverlässigkeit |
| | | | • Interpretationssicherheit |
| | | | • Robustheit / Vandalenresistenz der Geräte |

| Effizienz/Aufwand | • Wirtschaftlichkeit | • Vertretbare Investitionskosten | • Wirtschaftlichkeit |
| | • Eigendiagnostik (bez. Fehlererkennung) | • Vertretbare Betriebskosten | • Gutes Kosten / Nutzen-Verhältnis |
| | • Fernwartungsmöglichkeit | • Selbstdiagnosefähigkeit (bez. Fehlererkennung) | • Automatisierte Aufbereitung / Auswertung |
| | • Integrierte Aufbereitung | | |
| | • Geringer Nachbearbeitungsaufwand | | |
| | • Behinderungsfreie Einrichtung / Wartung | | |

| Zugänglichkeit/Klarheit | • Dokumentation der Stärken und Schwächen einer Technologie | • Vertretbare Investitionskosten | • Wirtschaftlichkeit |
| | | • Vertretbare Betriebskosten | • Gutes Kosten / Nutzen-Verhältnis |
| | | • Selbstdiagnosefähigkeit (bez. Fehlererkennung) | • Automatisierte Aufbereitung / Auswertung |
| | | | |

| Aktualität | • Rasche zeitliche Verfügbarkeit der Ergebnisse | • Dokumentation der Stärken und Schwächen einer Technologie | • Saubere Dokumentation und Archivierung |
| | | | • Techn. Anforderungen gemeinsam formulieren |

| Datenschutz | • Gewährleistung Datenschutz (insbes. auch bei geokodierten Daten und Verwendung von Rohdaten) | • Einhaltung Datenschutzbestimmungen | • Einhaltung Datenschutz |
| | | | • Open Government Data-fähig |

| Weitere | • Geringe Abhängigkeit von Lieferanten | • Nutzung von Unternehmensdaten wäre zweckmässig | • Partnerschaftliche Finanzierung |
| | • Nutzung von Unternehmensdaten wäre zweckmässig | | • Referenzbeispiele (erfolgreiche Erhebungen) |

Die in den Experteninterviews genannten Anforderungen für Erhebungen auf nationaler, regionaler und lokaler Ebene sind vergleichbar. Die Unterschiede sind gering.

Genauigkeit: Im Vordergrund stehen die Einhaltung der Genauigkeitsanforderungen (möglichst hohe Richtigkeit und Präzision) der erhobenen Kennwerte und die Aussagekraft der Ergebnisse. Neue Mobilitäts- und Verkehrserhebungsmethoden sollen die Genauigkeit gegenüber den etablierten Methoden verbessern. Dazu beitragen sollen auch eine hohe technische Verfügbarkeit, Vandalen-Resistenz der eingesetzten Technologien und eine verlustfreie Datenübertragung.

Zugänglichkeit und Klarheit: Aufgrund der umfangreichen Datenmengen, welche mit neuen Erhebungsmethoden gewonnen werden können, wird eine saubere Dokumentation und Archivierung gefordert. Mess- und Hochrechnungsverfahren sollten verständlich und nachvollziehbar erläutert sein (keine "Black Boxes").

Aktualität: Größere nationale Mobilitäts- und Verkehrserhebungen (MZMV, Güterverkehrsberichte) erfordern einen erheblichen Aufbereitungs-, Auswertungs- und Hochrechnungsaufwand. Vom Erhebungsende bis zur Publikation der Ergebnisse können 1 bis 2 Jahre verstreichen. Neue Erhebungsmethoden sollen dazu beitragen, dass die Ergebnisse rascher verfügbar sind.

Datenschutz: Die Einhaltung der Datenschutzbestimmungen ist auf allen drei Ebenen ein zentrales Anliegen. Die Anliegen des Datenschutzes können besonders im Falle geokodierter Daten herausfordernd sein.

Weitere: Als weitere Anforderungen wurden u.a. eine geringe Abhängigkeit von Geräte-Lieferanten und eine partnerschaftliche Finanzierung genannt.
5.2 Spezifische Anforderungen an neue Mobilitäts- und Verkehrserhebungsmethoden

5.2.1 Strukturierung der Anforderungen

Die Erfüllung der Anforderungen soll dazu beitragen, dass bei der Erhebung eine angemessene Datenqualität möglichst effizient erreicht wird. Zudem sollen sie den Datenschutz und die Transparenz sicherstellen. Dies trägt auch dazu bei, dass die Schwächen und Gefahren der Mobilitäts- und Verkehrserhebungsmethoden (vgl. Kapitel 4) reduziert werden. Für die Strukturierung der Anforderungen wurden fünf Themenbereiche gewählt:

- Anforderungen zur Verbesserung der Datenqualität
- Anforderungen zur Verbesserung der Effizienz
- Anforderungen zur Verbesserung der Transparenz
- Anforderungen zur Sicherstellung des Datenschutzes
- Anforderungen an die Dokumentation und Archivierung

Im Expertenworkshop wurden die von der Forschungsstelle formulierten Anforderungen diskutiert, verifiziert und ergänzt.

Im Folgenden werden die Anforderungen an neue Mobilitäts- und Verkehrserhebungsmethoden dargestellt. Teilweise sind diese für eine oder mehrere Erhebungsmethoden identisch.

5.2.2 GPS-unterstützte Mobilitäserhebungen

Gestützt auf die Grundlagen und Ergebnisse aus den Kapiteln 3 und 4 sowie unter Einbezug weiterer Quellen (bast, 2010; FGSV, 2012; bmivt, 2011) wurden folgende Anforderungen für die verschiedenen Erhebungsphasen identifiziert:
Erläuterungen zu den Anforderungen:

- **Für eine hohe Datenqualität** spielen insbesondere ein korrekter Geräteeinsatz und ein zuverlässiger Gerätebetrieb eine wesentliche Rolle. In Fällen, bei denen die Geräte nicht an ein repräsentatives Sample verteilt werden und Hochrechnungen auf die Gesamtbevölkerung erfolgen, ist die Verzerrung der Stichprobe zu beachten. Testanwendungen können einen Beitrag leisten, Probleme der Erhebung, Aufbereitung und Hochrechnung frühzeitig zu erkennen und Gegenmassnahmen vorzusehen. Anspruchsvoll ist die Zuweisung von Datenpunkten zu Verkehrsnetzen und -mitteln. GPS-unterstützte Erhebungen können auch genutzt werden, um die Erhebungsergebnisse von Befragungen zu plausibilisieren.

- **Für eine hohe Effizienz** spielen leistungsfähige Prüfroutinen zur Ausscheidung von fehlerhaften Daten und leistungsfähige Zuordnungsroutinen (Verkehrsnetze, -mittel) eine wichtige Rolle. Geräteausfälle sollten unmittelbar erkannt und frühzeitig Imputationsstrategien für fehlende Daten entwickelt werden. Für eine hohe Effizienz ist eine ausreichende Leistung der Hardware wichtig.

- **Für eine hohe Transparenz** sind umfassende Informationen zu Erhebungstechnologie, Messungen und Erfassungsraten bereitzustellen. Benötigt werden auch Informationen zu Verfahren für Hochrechnungen, Datenbereinigungen und Plausibilitätsprüfungen sowie Angaben zur Genauigkeit der erfassten bzw. hochgerechneten Daten (inkl. mögliche Fehlerquellen).

- **Für die Einhaltung des Datenschutzes** bestehen bei GPS-unterstützten Erhebungen erhöhte Anforderungen, da z.T. Personendaten georeferenziert erfasst werden. Dies gilt insbesondere bei der Kombination mit einer Befragung (aktives Design, sensible

Tabelle 19: Spezifische Anforderungen bei GPS-unterstützten Mobilitätserhebungen

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Datenqualität</th>
<th>Konzepte</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherstellung sachgemässe Bedienung der Geräte</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berücksichtigung und Vermeidung von Empfangsproblemen durch Abschattung</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherstellung repräsentativen Sample (unter Einrechnung von Datenlücken, Ausfällen)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherstellung ausreichende Energieversorgung (insbesondere bei Smartphones)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testanwendungen mit Prüfung der korrekten Zuweisung der Datenpunkte auf Verkehrsnetze und -mittel</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berücksichtigung Stichprobenfehler (insb. bei Smartphones und Navigationsgeräten, Verzerrung der Stichprobe)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durchführen von Funktionstests</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korrekte Positionsbestimmung (Zeitintervall, Exaktheit Positionsbestimmung)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stärkung des Vertrauens der Probanden (um das Abschalten der Geräte im Falle problematischer Wegziele zu verhindern)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Verbesserung der Effizienz</td>
<td>Erarbeitung von leistungsfähigen Prüfroutinen zur Ausscheidung von fehlerhaften Daten</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erarbeitung von leistungsfähigen Zuordnungsroutinen für die Zuordnung zu Verkehrsnetzen/Verkehrsmitteln</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einsatz von Computern mit ausreichender Rechenleistung</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erkennung und Umgang mit Ausfällen von Geräten vorsehen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Erhöhung der Transparenz</td>
<td>Bereitstellung von Angaben zu Erfassungsraten und Anzahl Messungen (inkl. Zeitdauer, Zeitpunkt)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zur Erhebungstechnologie (wer kann erhoben werden, wie, Abdeckungsgrad)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu Hochrechnungsverfahren</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu vorgenommenen Plausibilitätsprüfungen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu Datenbereinigungen und -korrekturen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Angaben zur Genauigkeit der erfassten Daten</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zum Datenschutz</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offenlegung von Fehlerquellen (Stichprobe, Erfassung, etc.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Sicherstellung des Datenschutzes</td>
<td>Anonymisierung der erhobenen Daten nach der Datenüberprüfung</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausschließliche Verwendung der Daten für festgelegten Erhebungzweck</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unterzeichnung Vertraulichkeitserkennung durch involvierte Mitarbeiter</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schutz vor nicht autorisiertem Zugriff oder Verwendung, Zerstörung und Veränderung von Daten</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verarbeitung und anonymisierte Speicherung der der Daten muss so erfolgen, dass eine Zuordnung zu einer Kategorie von sensiblen Daten nicht möglich ist</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zweckmäßige Kommunikation über Erhebung (je nach Akteurgruppe)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teilweise Sicherstellung höherer Anforderungen als Datenschutzgesetz (Akzeptanz)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anforderungen zur Sicherstellung Dokumentation und Archivierung

<table>
<thead>
<tr>
<th>Anforderungen zur Sicherstellung Dokumentation und Archivierung</th>
<th>Konzepte</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umfassende Dokumentation der verschiedenen Phasen der Erhebung (insbesondere Datenqualität, Transparenz)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Beschreibung der Verkehrsfahrten zur Einhaltung des Datenschutzes</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufbewahrung von Rohdaten und von korrigiterten Daten (inkl. Sicherungskopien)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verwendung von Datenformaten welche eine langjährige Verfügbarkeit der Daten zulassen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Verwendung von einfachen und robusten Datenbank- und Softwaresystemen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dokumentation welche Daten wie verfügbar sind</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Für eine gute Dokumentation und Archivierung braucht es eine umfassende Dokumentation über alle Erhebungsphasen und über die verfügbaren Daten. Weiter sind die Datensicherheit und je nach Erhebungszweck auch der langjährige Datenzugang sicherzustellen.

5.2.3 Floating Car Data

Gestützt auf die Grundlagen und Ergebnisse aus den Kapiteln 3 und 4 sowie unter Einbezug weiterer Quellen (bast, 2010; FGSV, 2012; bmvIt, 2011) wurden folgende Anforderungen für die verschiedenen Erhebungsphasen identifiziert:
Tabelle 20: Spezifische Anforderungen bei Floating Car Data

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Datenqualität</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherstellung ausreichenden Erfassungsgrad</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Berücksichtigung und Vermeidung von Kommunikationsproblemen durch Abschattung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Geeignete Algorithmen zur Erkennung und Korrektur von Signalverlusten, Abschattung, Stillständen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sicherstellung korrekter Bedienung Geräte (wenn separate Logger eingesetzt werden)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Berücksichtigung Stichprobenfehler (Verzerrung der Stichprobe)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Korrekte Zuordnung zu Fahrzeugkategorien</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Erstellung eines Konzeptes für den Einbau der Geräte (wenn nicht fix installiert)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Feinere Segmentierung als Streckenabschnitte zwischen Knoten</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Verbesserung der Effizienz</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Erarbeitung von leistungsfähigen Prüfroutinen zur Ausscheidung von fehlerhaften Daten</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Einsatz von Computern mit ausreichender Rechenleistung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Leistungsfähige Algorithmen zur Störungserkennung (bei ungenügender Georeferenzierung)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ausreichende Leistung der Datenübertragung (Sende- und Empfangseinrichtungen)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rasche Erfassung Geräteausfall</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Erhöhung der Transparenz</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Angaben zu Stichproben, Erfassungsdaten und Anzahl Messungen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zur Erhebungstechnologie (wer kann erhoben werden, wie, Abdeckungsgrad)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu Hochrechnungsverfahren</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu vorgenommenen Plausibilitätsprüfungen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu Datenbereinigungen und -korrekturen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Angaben zur Genauigkeit der erfassten Daten</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Offenlegung von Fehlerquellen (Stichprobe, Erfassung, etc.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Informationen zum Datenschutz</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Sicherstellung des Datenschutzes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anonymisierung der erhobenen Daten nach der Datenüberprüfung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ausschliessliche Verwendung der Daten für die jeweilige Untersuchung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Unterzeichnung Vertraulichkeitserkärung durch involvierte Mitarbeiter</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Schutz vor nicht autorisierter Zugriff oder Verwendung, Zerstörung und Veränderung von Daten</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Verarbeitung und Speicherung der Daten muss so erfolgen, dass eine Zuordnung zu einer Kategorie von sensiblen Daten nicht möglich ist</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Sicherstellung Dokumentation und Archivierung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Umfassende Dokumentation der verschiedenen Phasen der Erhebung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Beschreibung der Vorkehrungen zur Einhaltung des Datenschutzes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aufbewahrung von Rohdaten und von korrigierten Daten (inkl. entspr. Sicherungskopien)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Verwendung von Datenformaten welche ein langjährige Verfügbarkeit der Daten zulassen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Verwendung von einfachen und robusten Datenbank- und Softwaresystemen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dokumentation der Daten wie verfügbar sind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Erläuterungen zu den Anforderungen:

- Für eine hohe Effizienz spielen leistungsfähige Prüfroutinen und eine rasche Störungserkennung eine wichtige Rolle. Für die Übermittlung grosser Datenmengen braucht es eine leistungsfähige Datenübertragung.
- Für eine hohe Transparenz, die Einhaltung des Datenschutzes sowie die Dokumentation und Archivierung gelten die gleichen Anforderungen wie bei GPS gestützten Mobilitätserhebungen.
5.2.4 Floating Phone Data

Gestützt auf die Grundlagen und Ergebnisse aus den Kapiteln 3 und 4 sowie unter Einbezug weiterer Quellen (bast, 2010; FGSV, 2012; bmvit, 2011) wurden folgende Anforderungen für die verschiedenen Erhebungsphasen identifiziert:

Tabelle 21: Spezifische Anforderungen bei Floating Phone Data

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Datenqualität</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherstellung ausreichender Genauigkeit der Positionsangaben</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Geeignete Algorithmen zur Erkennung und Korrektur von Signalverlusten, Abschattung, Stillständen</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massnahmen zur Vermeidung von Funklöchern</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validierung mit Referenzquellen erforderlich (für das System, im Ausnahmefall auch für die Erhebung)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erarbeitung von leistungsfähigen Zuordnungsroutinen zu Verkehrsmitteln</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stärkung des Vertrauens der Probanden (um Ausschalten zu verhindern)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berücksichtigung Stichprobenfehler (Verzerrung der Stichprobe)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anforderungen zur Verbesserung der Effizienz				
--				
Erarbeitung von leistungsfähigen Prüfroutinen zur Ausscheidung von fehlerhaften Daten	X	X	X	X
Einsatz von Computern mit ausreichender Rechenleistung	X			X
Erarbeitung von Zuordnungsroutinen zu Verkehrsmitteln und Verkehrsnetzen	X		X	
Leistungsfähige Algorithmen zur Störungserkennung (bei ungenügender Georeferenzierung)	X		X	X
Ausreichende Leistung der Datenübertragung (Sende- und Empfangseinrichtungen)	X		X	
Rasche Erkennung Geräteausfall	X			

Anforderungen zur Erhöhung der Transparenz					
--					
Bereitstellung von Angaben zu Stichproben, Erfassungsraten und Anzahl Messungen	X		X		
Bereitstellung von Informationen zur Erhebungstechnologie (wer kann erhoben werden, wie, Abdeckungsgrad)	X				
Bereitstellung von Informationen zu Hochrechnungsverfahren	X		X		
Bereitstellung von Informationen zu vorgenommenen Plausibilitätsprüfungen	X				
Bereitstellung von Informationen zu Datenbereinigungen und -korrekturen	X		X		
Bereitstellung von Angaben zur Genauigkeit der erfassten Daten	X				
Offenlegung von Fehlerquellen (Stichprobe, Erfassung, etc.)				X	
Offenlegung Umgang mit der Veränderung der Mobiltelefon-ID	X		X		
Informationen zum Datenschutz	X			X	

Anforderungen zur Sicherstellung des Datenschutzes				

Anonymisierung der erhobenen Daten nach der Datenüberprüfung	X	X		
Ausschließliche Verwendung der Daten für die jeweilige Untersuchung	X		X	
Unterzeichnung Vertraulichkeitserkärung durch involvierte Mitarbeiter			X	
Schutz vor nicht autorisiertem Zugriff oder Verwendung, Zerstörung und Veränderung von Daten	X		X	X
Verarbeitung und Speicherung der Daten muss so erfolgen, dass eine Zuordnung zu einer Kategorie von sensiblen Daten nicht möglich ist	X		X	
Löscharbeiten der App nach erfolgter Erhebung	X			

Erläuterungen zu den Anforderungen:

- Für eine hohe Datenqualität spielen insbesondere auch die Sicherstellung einer ausreichenden Genauigkeit der Positionsangaben und Massnahmen für die Vermeidung von Funklöchern eine wichtige Rolle. Eine Validierung mit Referenzquellen ist im Rahmen eines Testbetriebs vorzusehen.
Für eine hohe Transparenz, die Einhaltung des Datenschutzes sowie die Dokumentation und Archivierung gelten die gleichen Anforderungen wie bei GPS oder FCD gestützten Mobilitätserhebungen.

5.2.5 Big Data

Tabelle 22: Spezifische Anforderungen bei Big Data

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Datenqualität</th>
<th>Abstufung</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stichprobenverzerrung berücksichtigen (je nach Kennwert)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Genauigkeit von Zeitangaben verifizieren</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Genauigkeit von Ortsangaben verifizieren</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rauschabläsion der Datenqualität (Vergleich mit externen Quellen)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Effizienz</th>
<th>Abstufung</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erarbeitung von leistungsfähigen Prüfroutinen zur Ausscheidung von fehlerhaften Daten</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Erarbeitung von leistungsfähigen Zuordnungsroutinen für die Zuordnung zu Verkehrsmitteln und Verkehrsnetzen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Einsatz von Computern mit ausreichender Rechenleistung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Effizientes und skalierbares Speichersystem für das Datenmanagement</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Verwertungsmöglichkeit von polystrukturierten Daten</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderungen zur Sicherstellung des Datenschutzes</th>
<th>Abstufung</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymisierung der erhobenen Daten nach der Datenerhebung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ausschließlich letzte Verwendung der Daten für die jeweilige Untersuchung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Untereinheiten Vertraulichkeitsabklärung durch involvierte Mitarbeiter</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Informationen zum Erhebungszeitraum (Erhebungen oft kontinuierlich, Verwendung nur eines Ausschnitts)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderungen zur Sicherstellung der Dokumentation und Archivierung</th>
<th>Abstufung</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umfassende Dokumentation wie die Daten erhoben werden</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Beschreibung der Vorkehrungen zur Einhaltung des Datenschutzes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Verwendung von Datenformaten welche eine langfristige Verfügbarkeit der Daten zulassen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Verwendung von einfachen und robusten Datenbank- und Softwaresystemen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dokumentation welche Daten wie verfügbar sind</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dokumentation der Hierarchie der Datenbanken und Zuordnungsschlüssel für das Zusammenführen von Daten</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Erläuterungen zu den Anforderungen:

- Für eine hohe Effizienz spielen neben Prüfroutinen und Zuordnungsroutinen ein leistungsfähiges Speichersystem und die Verwertungsmöglichkeit von polystrukturierten Daten eine wichtige Rolle.
- Für eine hohe Transparenz gelten grundsätzlich dieselben Anforderungen wie bei den vorher beschriebenen Methoden. Besonders wichtig bei Big Data ist die Angabe des
Anforderungen an zukünftige Mobilitätserhebungen

- Für die Einhaltung des Datenschutzes gelten grundsätzlich die gleichen Anforderungen wie bei den vorher beschriebenen Methoden.

5.2.6 Erfassung und Vergleich von ID-Codes

Gestützt auf die Grundlagen und Ergebnisse aus den Kapiteln 3 und 4 wurden folgende Anforderungen für die verschiedenen Erhebungsphasen identifiziert:

Tabelle 23: Spezifische Anforderungen bei der Erfassung und dem Vergleich von ID-Codes

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Datenqualität</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lage der Detektoren prüfen und Funktionalität sicherstellen (Wi-Fi, Bluetooth)</td>
<td>X</td>
<td>X</td>
<td>(X)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Detektion und Ausfilterung von Permanentsignalen sicherstellen (Wi-Fi, Bluetooth)</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Filterung von Mehrfachmessungen sicherstellen (Wi-Fi, Bluetooth)</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Eichzählerdurchfahren (Wi-Fi, Bluetooth, RFID)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Routinen zur Verkehrsmittelzuteilung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sicherstellung Energieversorgung (analag Foto/Video)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Verkehrseinsatzeinsatz (Vandalismus/Manipulation (analag Foto/Video)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sicherstellung Abdeckung des Untersuchungsgebietes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hohe Robustheit der Methode (mittels- und längerfristige Verfügbarkeit)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hohe Durchdringungsrate (Verbreitungsgrad)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Anforderungen zur Verbesserung der Effizienz

Erarbeitung von leistungsfähigen Prüfroutinen zur Ausscheidung von fehlerhaften Daten	X	X	(X)	X
Entwicklung allgemeingültige Algorithmen zur Datenauswertung (Wi-Fi, Bluetooth)	X	X	(X)	X
Einsatz von zeitgemäßer Technologie (IT-Infrastruktur)	X	X	X	X

Anforderungen zur Erhöhung der Transparenz

Bereitstellung von Angaben zu Stichproben, Erfassungsdaten und Anzahl Messungen	X	X	X	X
Bereitstellung von Informationen zu Erhebungstechnologie (wer kann erhoben werden, wie, Abdeckungsgrad)	X	X	X	X
Bereitstellung von Informationen zu Hochrechnungsverfahren (zeitlich, Strichprobe)	X	X	X	X
Bereitstellung von Informationen zu vorgenommenen Plausibilitätsprüfungen	X	X	X	X
Bereitstellung von Informationen zu Datenbereinigungen und -korrekturen	X	X	X	X

Anforderungen zur Sicherstellung des Datenschutzes

| Offenlegung von Fehlerquellen (Stichprobe, Erfassung, Abdeckung des Untersuchungsgebietes etc.) | X | X | X | X |

Anforderungen zur Sicherstellung Dokumentation und Archivierung

Umfassende Dokumentation der verschiedenen Phasen der Erhebung	X	X	X	X	X
Beschreibung der Vorkehrungen zur Einhaltung des Datenschutzes	X	X	X	X	
Verwendung von einfachen und robusten und performanten Datenbank- und Softwaresystemen	X	X	X	X	
Dokumentation welche Daten in welcher Form verfügbar sind	X	X	X	X	X

Januar 2016
Erläuterungen zu den Anforderungen:

- Für eine hohe Effizienz werden leistungsfähige Prüfroutinen für die Ausscheidung von fehlerhaften Daten und leistungsfähige Algorithmen für die Datenauswertung benötigt. Mit dem Detektorennetz sollten die Synergien für die Erfassung möglichst vieler benötigter Kennwerte genutzt werden. Für die Erfassung und Verarbeitung grosser Dat mengen wird eine zeitgemässe IT-Infrastruktur benötigt.

- Für eine hohe Transparenz, die Einhaltung des Datenschutzes sowie die Dokumentation und Archivierung gelten die gleichen Anforderungen wie bei den vorher beschriebenen Methoden.
5.2.7 Automatische Erkennung von optischen Merkmalen

Gestützt auf die Grundlagen und Ergebnisse aus den Kapiteln 3 und 4 wurden folgende Anforderungen für die verschiedenen Erhebungsphasen identifiziert:

Tabelle 24: Spezifische Anforderungen an die automatische Identifizierung von optischen Merkmalen

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Datenqualität</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Archivierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lage der Kameras prüfen und Funktionalität sicherstellen</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherstellung ausreichende Energieversorgung</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schutz vor Witterung / Vandalismen sicherstellen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermeidung der Beeinflussung des Verhaltens durch Erkennbarkeit einer Aufnahmeeinrichtung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erstellung von Testroutinen zur Erkennung der Merkmale (Nummernschilder, Fahrzeugtypen)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimale Auflösung für die Erkennung sicherstellen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Verbesserung der Effizienz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einsatz von Computern mit ausreichender Rechenleistung (analog ID-Code)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ausreichende Leistung der Datenübertragung</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programme/Algorithmen zur automatisierten Auswertung und Aufbereitung</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatische Erkennung Geräteausfall</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Erhöhung der Transparenz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Angaben zu Stichproben und Anzahl Messungen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu Hochrechnungsverfahren (zeitlich, Stichprobe)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu "Datenbereinigungen und -korrekturen"</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offenlegung von Fehlerquellen (Wetter, etc.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informationen zur geografischen Abdeckung des Untersuchungsgebiets</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Sicherstellung des Datenschutzes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausschließliche Verwendung der Daten für die jeweilige Untersuchung</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unterzeichnung Vertraulichkeitserklärung durch involvierte Mitarbeiter</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schutz vor nicht autorisiertem Zugriff oder Verwendung, Zerstörung und Veränderung von Daten</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Videoaufnahmen sind innerhalb einer bestimmten Zeit zu löschen</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anonymisierung sensible Daten (z.B. Nummernschilder)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximale Auflösung (wegen Erkennung Personen, etc.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anforderungen zur Sicherstellung Dokumentation und Archivierung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umfassende Dokumentation der verschiedenen Phasen der Erhebung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Beschreibung der Vorkehrungen zur Einhaltung des Datenschutzes</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verwendung von Datenformaten welche ein langjährige Verfügbarkeit der Daten zulassen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verwendung von einfachen und robusten und performenten Datenbank- und Softwaresystemen</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dokumentation welche Daten in welcher Form verfügbar sind</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen zu den Anforderungen:

- Für eine hohe Datenqualität spielen die Lage und Ausrichtung der Kameras eine wichtige Rolle. Weiter sind eine ausreichende Energieversorgung und der Vandalenschutz sicherzustellen. Bei der Platzierung der Kameras muss darauf geachtet werden, dass die Erhebungsobjekte möglichst nicht in ihrem Verhalten beeinflusst werden. Für die Erkennung von Personen, Fahrzeugen, etc. ist eine minimale Auflösung sicherzustellen.

- Für eine hohe Effizienz spielen analog zu den ID-Codes der Einsatz von leistungsfähigen Rechnern sowie eine leistungsfähige Datenübertragung eine wichtige Rolle.

- Für eine hohe Transparenz gelten grundsätzlich die gleichen Anforderungen wie bei den vorher beschriebenen Methoden.

Für eine gute Dokumentation und Archivierung gelten die gleichen Anforderungen wie bei den vorher beschriebenen Methoden.

5.2.8 Luftaufnahmen mit Satelliten, Flugzeugen oder Drohnen

Es wurden folgende Anforderungen für die verschiedenen Erhebungsphasen identifiziert:

Tabelle 25: Spezifische Anforderungen bei Luftaufnahmen

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Datenqualität</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorgfältige Planung der Überfliige (Sichtbehinderungen, Veränderung der Perspektive)</td>
<td>X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherstellung Schutz vor Witterung, Vandalismus, Manipulation</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermeidung der Beeinflussung durch Störungen</td>
<td>X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einhaltung geltende Luftfahrtrecht (Drohnen)</td>
<td>X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherstellung minimale Auflösung für die Erkennung</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anforderungen zur Verbesserung der Effizienz

| Sicherstellung leistungsfähige Datenübertragung/Speicherung | X X X (X) |
| Sicherstellung maximale Auflösung | X |

Anforderungen zur Erhöhung der Transparenz

Beratung der Angabe zur Anzahl Messungen	X X X X
Beratung der Informationen zu Hochrechnungsverfahren	X X X
Beratung der Informationen zu "Datenbereinigungen und -korrekturen"	X X X
Zeitpunkt und Ort der Aufnahme	X X

Anforderungen zur Sicherstellung des Datenschutzes

Ausschliessliche Verwendung der Daten für die jeweilige Untersuchung	X
Unterzeichnung Vertraulichkeitserklärung durch involvierte Mitarbeiter	X X
Schutz vor nicht autorisiertem Zugriff oder Verwendung, Zerstörung und Veränderung von Daten	X X X X X
Videoaufnahmen sind innerhalb einer bestimmten Zeit zu löschen	X X
Sicherstellung maximale Auflösung für die Erkennung sensibler Informationen	X X

Anforderungen zur Sicherstellung Dokumentation und Archivierung

Umfassende Dokumentation der verschiedenen Phasen der Erhebung	X X X X X
Beschreibung der Verkehrspolitik zur Einhaltung des Datenschutzes	X
Aufbewahrung von aggregierten Daten und von korrigierten Daten (Inkl. Datensicherung)	X X X
Verwendung von Datenformaten welche eine langjährige Verfügbarkeit der Daten zulassen	X X X X X
Verwendung von einfachen und robusten und performenten Datenbank- und Softwaresystemen	X X X X X
Dokumentation welche Daten in welcher Form verfügbar sind	X X
Erläuterungen zu den Anforderungen:

• Für eine hohe Datenqualität spielt die sorgfältige Planung der Überflüge eine wichtige Rolle. Zudem ist der Einfluss von Sichtbehinderungen, schlechten Witterungsverhältnissen und anderen möglichen Störungen zu berücksichtigen. Für die Erkennung der Erhebungsobjekte ist eine minimale Auflösung erforderlich.

• Für eine hohe Effizienz sind eine leistungsfähige Datenübertragung und -speicherung wichtig.

• Für eine hohe Transparenz sind insbesondere auch der Zeitpunkt und der genaue Ort der Aufnahme auszuweisen.

• Für die Einhaltung des Datenschutzes gelten grundsätzlich die gleichen Anforderungen wie bei der automatischen Identifizierung von optischen Merkmalen.

• Für die Dokumentation und Archivierung gelten grundsätzlich die gleichen Anforderungen wie bei der automatischen Identifizierung von optischen Merkmalen.

5.2.9 Automatische Erfassung mit Sensoren

Gestützt auf die Grundlagen und Ergebnisse aus den Kapiteln 3 und 4 wurden folgende Anforderungen für die verschiedenen Erhebungsphasen identifiziert:

Tabelle 26: Spezifische Anforderungen bei der automatischen Identifizierung mittels Sensoren

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Datenqualität</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lage der Detektoren prüfen und Funktionalität sicherstellen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Detektierung und Ausfilterung von Permanentesignalen sicherstellen</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filterung von Mehrfachmessungen sicherstellen</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eichzählungen durchführen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Routinen zur Verkehrsmittelzuteilung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherstellung Energieversorgung</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorkehrungen gegen Vandalismus/Manipulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderungen zur Verbesserung der Effizienz</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsfähige Datenübertragung/Speicherung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(X)</td>
<td></td>
</tr>
<tr>
<td>Erarbeitung von leistungsfähigen Prüfroutinen zur Ausscheidung von fehlerhaften Daten</td>
<td>X</td>
<td>X</td>
<td>(X)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungsfähige Routinen für Kennwertberechnung (Reports)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderungen zur Erhöhung der Transparenz</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bereitstellung von Angaben zu Stichproben und Anzahl Messungen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu Hochrechnungsverfahren (zeitlich, Stichprobe)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereitstellung von Informationen zu "Datenbereinigungen und -korrekturen"</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Öffnlegung von Fehlerquellen (Wetter, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Government fähig (gängige Datenformate)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderungen zur Sicherstellung des Datenschutzes</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es bestehen keine spezifischen Anforderungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anforderungen zur Sicherstellung Dokumentation und Archivierung</th>
<th>Konzeption</th>
<th>Vorbereitung</th>
<th>Durchführung</th>
<th>Aufbereitung</th>
<th>Auswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umfassende Dokumentation der verschiedenen Phasen der Erhebung</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Beschreibung der Vorkehrungen zur Einhaltung des Datenschutzes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufbewahrung von aggregierten Daten und von korrigierten Daten (inkl. Datensicherung)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verwendung von Datenformaten welche eine langjährige Verfügbarkeit der Daten zulassen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Verwendung von einfachen und robusten und performenten Datenbank- und Softwaresystemen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dokumentation welche Daten in welcher Form verfügbar sind</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Erläuterungen zu den Anforderungen:

- Für eine hohe Datenqualität gelten ähnliche Anforderungen wie bei den vorher beschriebenen Methoden.
- Für eine hohe Effizienz ist neben der leistungsfähigen Datenübertragung und der Erkennung von fehlerhaften Daten eine automatische Berechnung der gewünschten Kennwerte wichtig (automatische Erstellung von Reports).
- Für eine hohe Transparenz gelten grundsätzlich ähnliche Anforderungen wie bei den vorher beschriebenen Methoden. Die Daten sollten "Open Government"-fähig, das heisst öffentlich zugänglich sein und durch Dritte genutzt werden können.
- Für die Einhaltung des Datenschutzes bestehen keine speziellen Anforderungen, da keine Daten erfasst werden, welche Rückschlüsse auf einzelne Personen oder Unternehmen zulassen.
- Für die Dokumentation und Archivierung gelten vergleichbare Anforderungen wie bei den vorher beschriebenen Methoden.

5.3 Synthese der Anforderungen aus planerischer Sicht

Im Vergleich zu den herkömmlichen Mobilitäts- und Verkehrserhebungsmethoden ist aus planerischer Sicht den folgenden Anforderungen besondere Beachtung zu schenken:

- Der Einsatz komplexerer Technologien erfordert:
 - Durchführung von Testmessungen und Plausibilisierung der Datenqualität
 - Transparenz der Erhebung und Datenaufbereitung
 - Frühzeitige Erkennung von Geräteausfällen und Falschmessungen

- Die Erhebung potenziell sensibler Daten stellt höhere Anforderungen an den Datenschutz

- Die Erhebung grösserer Datenmengen erfordert:
 - Eine leistungsfähige Datenübertragung und -speicherung
 - Leistungsfähige Routinen für die Datenbereinigung und Ausfilterung von Fehlmessungen
 - Leistungsfähige Routinen für die Berechnung der gewünschten Kennwerte

- Die Schnelligkeit von Technologien stellt Anforderungen an die der eingesetzten Technologien in der Verwendung und Verbreitung (mittel- und längerfristige Nutzung ist sicherzustellen)
6 Evaluation der Mobilitäts- und Verkehrserhebungsmethoden

6.1 Einleitung

6.2 Ziele und Bewertungsindikatoren

Es werden folgende Aspekte, evaluiert:

- Die Frage der Akzeptanz ist bezüglich der direkt betroffenen Personen sowie der breiten Öffentlichkeit auf Grund der vorhandenen Erfahrungen und Einschätzungen zu beurteilen. Auch der Datenschutz wird hier berücksichtigt; dieser muss auf jeden Fall gewährleistet sein. Die dafür erforderlichen Vorkehrungen können je nach Methode variieren.

Die folgende Tabelle zeigt die für die Ziele vorgeschlagenen Teilziele und die Indikatoren für deren Bewertung. Die Ziele und Indikatoren berücksichtigen die Ergebnisse der SWOT-Analyse (Kapitel 4.2) sowie die im Kapitel 5 formulierten Anforderungen.

16 Dies sind alle Erhebungsmethoden, bei denen die beschriebenen Technologien nicht eingesetzt werden.
Tabelle 27: Ziele, Teilziele, Indikatoren

<table>
<thead>
<tr>
<th>Ziel</th>
<th>Teilziel</th>
<th>Indikator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hohe Datenqualität</td>
<td>Vollständigkeit der Daten</td>
<td>Kennzahlen, die vollständig erhoben werden können</td>
</tr>
<tr>
<td></td>
<td>Relevanz</td>
<td>Anzahl und Bedeutung von bisherigen Daten, die erhoben werden können</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Datenlücken, die geschlossen werden können</td>
</tr>
<tr>
<td></td>
<td>Aktualität der Daten</td>
<td>Dauer zwischen Erhebungsende und Verfügbarkeit der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>Genauigkeit der Daten</td>
<td>Systematische Fehler der erhobenen Daten (Richtigkeit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zufällige Fehler der erhobenen Daten (Präzision)</td>
</tr>
<tr>
<td>Hohe Effizienz</td>
<td>Aufwand für die Konzeption und Vorbereitung</td>
<td>Arbeitsschritte bzw. Arbeitsvorgänge zur Konzeption und Vorbereitung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benötigte technische Hilfsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benötigtes Know-How</td>
</tr>
<tr>
<td></td>
<td>Erhebungsaufwand</td>
<td>Investitionen für Infrastruktur und Geräte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aufwand für den Betrieb der Erhebung</td>
</tr>
<tr>
<td></td>
<td>Aufbereitung- und Auswertungsaufwand</td>
<td>Arbeitsschritte bzw. Arbeitsvorgänge zur Datenaufbereitung, inkl. Anonymisierung und Plausibilisierung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benötigte technische Hilfsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benötigtes Know-How</td>
</tr>
<tr>
<td>Hohe Akzeptanz und Datenschutz</td>
<td>Akzeptanz seitens der Öffentlichkeit generell</td>
<td>Erfahrungen mit der Akzeptanz der Öffentlichkeit</td>
</tr>
<tr>
<td></td>
<td>Akzeptanz seitens der Öffentlichkeit hinsichtlich Glaubwürdigkeit der Methode</td>
<td>Erfahrungen mit der Akzeptanz der Öffentlichkeit und Verbreitung der Methode</td>
</tr>
<tr>
<td></td>
<td>Bereitschaft für die Mitwirkung (Betroffene)</td>
<td>Erfahrungen bzgl. Bereitschaft zur Mitwirkung an Erhebungen</td>
</tr>
<tr>
<td></td>
<td>Einhaltung Datenschutz</td>
<td>Aufwand für die Sicherstellung des Datenschutzes</td>
</tr>
</tbody>
</table>

6.3 Bewertung der einzelnen Methoden

Hinsichtlich der Genauigkeit der Daten lässt sich jedoch ein Vorteil von GPS-unterstützten Methoden feststellen; ebenfalls als relativ genau einzuschätzen sind die automatische Identifikation optischer Merkmale, Luftaufnahmen sowie Identifikationen mittels Sensoren.

Ein Schwachpunkt der analysierten Methoden ist sicherlich der zu betreibende Aufwand für Konzeption und Vorbereitung der Erhebung. Dies liegt unter anderem daran, dass für
einige Methoden noch keine standardisierten Vorgehensweisen vorhanden sind. Dies trifft besonders für die Methode Big Data zu. Bei der Erhebung selbst ist der Aufwand für Big Data am kleinsten, da es sich um eine Sekundäranalyse bestehender Daten handelt.

Ein grosser Nachteil sämtlicher analysierten Methoden ist der zu betreibende Aufwand für Aufbereitung und Auswertung, welcher bei beinahe allen Methoden generell als sehr hoch einzustufen ist. Auch hier ist ausschlaggebend, dass die erhobenen Daten wegen fehlender allgemeingültiger Routinen (z.B. die Verkehrsmittelerkennung bei GPS-basierten Erhebungen) aufwändig für die Auswertung vorzubereiten sind.

Ein weiterer Nachteil der analysierten Methoden ist die als gering einzuschätzende generelle Akzeptanz der Methoden zu erwähnen. Lediglich Floating Car Data sowie die Erfassung und der Vergleich von ID-Codes scheinen allgemein akzeptiert. GPS, Floating Car Data und Luftaufnahmen sind hier ebenfalls noch zu nennen. Dennoch, und obwohl nicht für alle Methoden bewertbar, lässt sich festhalten, dass die Bereitschaft für die Mitwirkung von Probanden an Erhebungen generell als hoch einzustufen sind, obwohl die Frage des Datenschutzes weiterhin als grosse Herausforderung der neuen Erhebungs- methoden bezeichnet werden kann.

Bei der Abwägung, ob neue Technologien resp. Methoden zur Verkehrserhebung eingesetzt werden sollen oder nicht, sind jeweils die Gesamtkosten (Investitionskosten, Erhebungs-, Auswertekosten usw.) zu betrachten. Allgemeingültige Aussagen zu den kostenmässigen Vor- und Nachteilen der neuen Technologien sind nicht möglich.

Schliesslich lässt sich sagen, dass der Entscheid für den Einsatz einer bestimmten Methode immer individuell und abhängig vom gewünschten Einsatzbereich, den vorhandenen Ressourcen sowie der erforderlichen Aussagekraft der Ergebnisse abhängig ist.
Tabelle 28: Beurteilung der neuen Erhebungsmethoden gegenüber den herkömmlichen Methoden

<table>
<thead>
<tr>
<th>Teilziele</th>
<th>Methoden</th>
<th>Methoden</th>
<th>Methoden</th>
<th>Methoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS-unterstützte Mobilitätsmessung</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>Nicht bewertbar</td>
</tr>
<tr>
<td>Floating Car Data</td>
<td>++</td>
<td>++</td>
<td>Nicht bewertbar</td>
<td></td>
</tr>
<tr>
<td>Floating Phone Data</td>
<td>++</td>
<td>++</td>
<td>Nicht bewertbar</td>
<td></td>
</tr>
<tr>
<td>Big Data</td>
<td>++</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erfassung und Vergleich von ID-Codes</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Automatische Erkennung von optischen Merkmalen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Nicht bewertbar</td>
</tr>
<tr>
<td>Luftaufnahmen</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Automatische Identifikation mit Sensoren</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>++</td>
</tr>
</tbody>
</table>

Vollständigkeit der Daten
- ++: signifikant besser als herkömmliche Methoden
- ++: besser als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- --: signifikant schlechter als herkömmliche Methoden

Relevanz
- ++: signifikant besser als herkömmliche Methoden
- ++: besser als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- --: signifikant schlechter als herkömmliche Methoden

Aktualität der Daten
- ++: signifikant besser als herkömmliche Methoden
- ++: besser als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- --: signifikant schlechter als herkömmliche Methoden

Genauigkeit der Daten
- ++: signifikant besser als herkömmliche Methoden
- ++: besser als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- --: signifikant schlechter als herkömmliche Methoden

Aufwand für Konzeption und Vorbereitung
- --: signifikant schlechter als herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- +: besser als herkömmliche Methoden
- ++: signifikant besser als herkömmliche Methoden

Erhebungsaufwand
- ++: signifikant besser als herkömmliche Methoden
- ++: besser als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- --: signifikant schlechter als herkömmliche Methoden

Aufbereitungs- und Auswertungsaufwand
- --: signifikant schlechter als herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- +: besser als herkömmliche Methoden
- ++: signifikant besser als herkömmliche Methoden

Akzeptanz – Generell
- --: signifikant schlechter als herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- +: besser als herkömmliche Methoden
- ++: signifikant besser als herkömmliche Methoden

Akzeptanz – Glaubwürdigkeit der Methode
- --: signifikant schlechter als herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- +: besser als herkömmliche Methoden
- ++: signifikant besser als herkömmliche Methoden

Akzeptanz – Bereitschaft für die Mitwirkung
- ++: signifikant besser als herkömmliche Methoden
- ++: besser als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- --: signifikant schlechter als herkömmliche Methoden

Aufwand zur Einhaltung des Datenschutzes
- --: signifikant schlechter als herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- +: besser als herkömmliche Methoden
- ++: signifikant besser als herkömmliche Methoden

Legende:
- --: signifikant schlechter als herkömmliche Methoden
- -: schlechter als herkömmliche Methoden
- 0: ähnliche wie herkömmliche Methoden
- +: besser als herkömmliche Methoden
- ++: signifikant besser als herkömmliche Methoden
7 Schlussfolgerungen und Empfehlungen

7.1 Schlussfolgerungen

a) Technologien mit Interaktion

Die Technologien mit Interaktionen erlauben es, Objekte zu identifizieren, zu verfolgen und teilweise (Smartphone mit App, GPS Logger mit Zusatzfunktion) zu "befragen". Dieser Vorteil kann aber auch ein Nachteil sein, da es je nach Technologie möglich ist, Personen zu identifizieren und die erhobenen Daten mit anderen persönlichen Daten zu verknüpfen. Dies kann zu Problemen mit der Datenschutzgesetzgebung führen.

Der künftige Einsatz der neuen Erhebungsmethoden hängt besonders davon ab, wie stark sich die einzelnen Technologien entwickeln resp. wie hoch deren Akzeptanz in der Bevölkerung ist. Die Anzahl Bluetooth-fähiger Geräte kann sich erhöhen, da z.B. fast die ganze Bevölkerung ein Smartphone besitzt. Falls die Skepsis der Bevölkerung gegenüber der omnipräsenz Datensammlung zunimmt, kann dies dazu führen, dass die Bluetooth-Funktion vermehrt ausgeschaltet wird. Problematisch ist auch, dass vielfach die Daten als "Abfall-Produkt" von anderen Nutzungen entstehen und vom Technologiebesitzer (z.B. TomTom) verkauft werden, d.h. es ist für den Datennempfänger unklar, wie die Daten genau erhoben werden und wie gut deren Qualität ist.

b) Technologien ohne Interaktion

Die Technologien ohne Interaktion haben den Vorteil, dass sie kein Empfangsgerät benötigen. Je nach Technologie ist eine Identifikation und Verfolgung der Objekte möglich (Foto/Video mit Objekt- und Gesichtserkennung, automatische Kontrollschilderfassung). Deshalb sind sie aufgrund des Datenschutzes nicht beliebig einsetzbar. Die Sensor-
Technologien haben dieses Problem nicht und sind ohne viel Aufwand einsetzbar. Sie erlauben es aber nur bedingt, die erhobenen Objekte zu verfolgen. Problematisch bei einzelnen dieser Technologien (z.B. Personenzählmatte, Glasfaserkabel) ist, dass sie sich nur für die Erhebung bestimmter Objekte (z.B. nur Fussgänger oder nur Velofahrer) eignen und verhältnismässig wenig Informationen zur Datenqualität vorliegen.

7.2 Empfehlungen

Anhänge

<table>
<thead>
<tr>
<th>I</th>
<th>Interviewleitfaden .. 107</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Liste der interviewten Experten .. 119</td>
</tr>
<tr>
<td>III</td>
<td>Übersicht über heute verwendete / künftig benötigte Kennwerte 121</td>
</tr>
<tr>
<td>III.1</td>
<td>Personenmobilität/-verkehr (Antworten aus Experten-Interviews) .. 123</td>
</tr>
<tr>
<td>III.2</td>
<td>Gütertransport/-verkehr (Antworten auf Experten-Interviews) ... 125</td>
</tr>
<tr>
<td>IV</td>
<td>Beurteilungsblätter ... 127</td>
</tr>
<tr>
<td>IV.1</td>
<td>Teilziel: Vollständigkeit der Daten ... 129</td>
</tr>
<tr>
<td>IV.1.1</td>
<td>Teilziel: Relevanz .. 131</td>
</tr>
<tr>
<td>IV.1.2</td>
<td>Teilziel: Relevanz .. 134</td>
</tr>
<tr>
<td>IV.2</td>
<td>Ziel: Hohe Effizienz .. 135</td>
</tr>
<tr>
<td>IV.2.1</td>
<td>Teilziel: Aufwand für die Konzeption und Vorbereitung .. 135</td>
</tr>
<tr>
<td>IV.2.2</td>
<td>Teilziel: Erhebungsaufwand .. 138</td>
</tr>
<tr>
<td>IV.2.3</td>
<td>Teilziel: Aufbereitungs- und Auswertungsaufwand .. 141</td>
</tr>
<tr>
<td>IV.3</td>
<td>Teilziel: Hohe Akzeptanz und Datenschutz ... 145</td>
</tr>
<tr>
<td>IV.3.1</td>
<td>Teilziel: Akzeptanz bei der Öffentlichkeit generell .. 145</td>
</tr>
<tr>
<td>IV.3.2</td>
<td>Teilziel: Akzeptanz seitens der Öffentlichkeit hinsichtlich Glaubwürdigkeit der Methode 147</td>
</tr>
<tr>
<td>IV.3.3</td>
<td>Teilziel: Bereitschaft für die Mitwirkung (Betroffene) ... 148</td>
</tr>
<tr>
<td>IV.3.4</td>
<td>Teilziel: Einhaltung Datenschutz ... 149</td>
</tr>
</tbody>
</table>
Interviewleitfaden
Anforderungen an zukünftige Mobilitätserhebungen
SVI Projekt 2011/005 Anforderungen an zukünftige Mobilitätserhebungen

Interviewleitfaden für die Bedürfnisanalyse

Vorbemerkungen

- Ergänzend wird der Umgang mit Mobilitäts- und Verkehrsdaten und Erfahrungen mit eingesetzten Erhebungstechnologien sowie deren Stärken/Schwächen erfragt.
- Bei den Anwendungszwecken werden 5 Bereiche Grundlagen/Instrumente, Planung, Bau und Unterhalt, Betrieb/Management und Monitoring/Controlling unterschieden.
- Je nachdem in welchen Bereichen der interviewte Experte tätig ist oder war konzentriert sich das Interview auf diese Bereiche.
- Es bestehen folgende Fragenbereiche:
 - **Teil I: Angaben zu Interviewten Person:**
 - Informationen zum Interviewpartner
 - Abgedeckte Erfahrungsbereiche
 - **Teil II: Heutiger Umgang mit Verkehrs- und Mobilitätsdaten**
 - Nutzung von Mobilitäts- und Verkehrsdaten
 - Eingesetzte Technologien für die Erhebung
 - Aufwand und Qualität der erhobenen Kenngrössen
 - **Teil III: Bedürfnisse Personenmobilität/-verkehr**
 - Benötigte Mobilitäts- und Verkehrsdaten und Anwendungszwecke
 - Lücken bei den Mobilitäts- und Verkehrsdaten
 - Prioritäten für Kenngrössen
 - **Teil IV: Bedürfnisse Gütertransport und -verkehr**
 - Benötigte Transport- und Verkehrsdaten und Anwendungszwecke
 - Lücken bei den Mobilitäts- und Verkehrsdaten
 - Prioritäten für Kenngrössen
 - **Teil V: Erfahrungen mit Erhebungstechnologien**
 - Eingesetzte oder bekannte Erhebungstechnologien
 - Stärken/Schwächen dieser Erhebungstechnologien
 - Bewusst nicht eingesetzte Technologien und Begründung
 - **Teil VI: Weitere Fragen**
 - Generelle Anforderungen an zukünftige Mobilitätserhebungen
 - Weitere Hinweise auf Einsatz von „neuen“ Mobilitäts- und Verkehrserfassungsinstrumente (Literatur, Testanwendungen, etc.)

- Der Interviewleitfaden wird ca. 5 bis 7 Tage vor dem Interview verschickt zur Vorbereitung und Minimierung der Interviewdauer.
Teil I: Angaben zur interviewten Person

<table>
<thead>
<tr>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution/Firma:</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aufgaben/Tätigkeiten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erfahrungsbereiche bezogen auf Verkehrsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Personenmobilität/-verkehr</td>
</tr>
<tr>
<td>□ Gütertransport/-verkehr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erfahrungsbereiche bezogen auf Anwendungszwecke</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Grundlagen/Instrumente (z.B. Statistik, Nachfrageanalysen, Modellierung, Prognosen)</td>
</tr>
<tr>
<td>□ Planung (z.B. Konzepte, Netzplanung, Raumplanung)</td>
</tr>
<tr>
<td>□ Bau und Unterhalt (z.B. Zustandsüberwachung, Erhaltungsmanagement, Baustellenplanung)</td>
</tr>
<tr>
<td>□ Betrieb/Management (z.B. Verkehrsmanagement, Betriebslenkung)</td>
</tr>
<tr>
<td>□ Monitoring/Controlling (z.B. Erfolgskontrollen, Wirkungskontrollen)</td>
</tr>
<tr>
<td>□ Andere: ..</td>
</tr>
<tr>
<td>□ Andere: ..</td>
</tr>
</tbody>
</table>

Teil II: Umgang mit Verkehrs- und Mobilitätsdaten

Grundlagen:

- Tabellen mit Kennwerten (vgl. Beilage 1a Personen und 1b Güter)
- Tabelle mit Technologie (Beilage 2)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neben Antwort sind Begründungen/Erklärungen wichtig</td>
<td></td>
</tr>
</tbody>
</table>

1 Welche Kennwerte erheben Sie oder lassen sie erheben (vgl. Liste Beilage 1a und 1b, zutreffendes ankreuzen)?

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neben Antwort sind Begründungen/Erklärungen wichtig</td>
<td></td>
</tr>
</tbody>
</table>
2 Mit welchen Technologien erheben sie resp. lassen sie diese Kennwerte erheben?
(vgl. Liste Beilage 2, zutreffendes ankreuzen)

3 In welcher Häufigkeit setzen sie diese Technologien ein? Gibt es Unterschiede zwischen den Technologien?

4 Wie beurteilen Sie die Qualität dieser Mobilitäts- und Verkehrsdaten?

5 Wie beurteilen Sie die den Aufwand diese Mobilitäts- und Verkehrsdaten zu erheben?

6 Wie beurteilen Sie die den Aufwand für die Datenauswertung und Hochrechnung?
Teil III: Bedürfnisse nach Daten: Personenmobilität/-verkehr

Grundlage: Tabelle mit Kennwerten (Beilage 1a)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neben Antwort sind Begründungen/Erklärungen wichtig</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sind in der Tabelle 1a die aus ihrer Sicht wichtigsten Mobilitäts- und Verkehrskennwerte enthalten?</td>
<td>□ Ja □ Nein</td>
</tr>
<tr>
<td></td>
<td>Wenn nein:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welche Mobilitäts- und Verkehrskennwerte fehlen? (bitte in Beilage 1a ankreuzen bzw. ergänzen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>..</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Für welche Aufgaben/Anwendungszwecke verwenden sie diese oder würden sie diese verwenden?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>..</td>
<td></td>
</tr>
<tr>
<td></td>
<td>..</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Welche Prioritäten haben sie bezüglich Mobilitäts- und Verkehrskennwerte? (wichtigste Kennwerte bzw. wichtigste Aufgaben)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>..</td>
<td></td>
</tr>
</tbody>
</table>
Teil IV: Bedürfnisse nach Daten: Gütertransport/-verkehr

Grundlage: Tabelle mit Kennwerten (Beilage 1b)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sind in der Tabelle die wichtigsten Transport- und Verkehrskennwerte enthalten?</td>
<td>□ Ja □ Nein</td>
</tr>
<tr>
<td></td>
<td>Wenn nein:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welche Transport- und Verkehrskennwerte fehlen?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Für welche Aufgaben/Anwendungszwecke verwenden sie diese oder würden sie diese verwenden?</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Welche Prioritäten haben sie bezüglich Transport- und Verkehrskennwerte? (wichtigste Kennwerte bzw. wichtigste Aufgaben)</td>
<td></td>
</tr>
</tbody>
</table>
Teil V: Erfahrungen mit Erhebungstechnologien

Grundlage: Liste der Technologien (Beilage 2, wichtigste Technologien aus Teil II)

Technologie 1:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wo und wann wurden diese eingesetzt?</td>
<td>..</td>
</tr>
<tr>
<td>2</td>
<td>Welche Erfahrungen haben sie gemacht? Welche Stärken bzw. Schwächen weisen diese auf?</td>
<td>..</td>
</tr>
</tbody>
</table>

Technologie 2:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wo und wann wurden diese eingesetzt?</td>
<td>..</td>
</tr>
</tbody>
</table>
AP1: Bedürfnisanalyse

2 Welche Erfahrungen haben sie gemacht? Welche Stärken bzw. Schwächen weisen diese auf?

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wo und wann wurden diese eingesetzt?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Welche Erfahrungen haben sie gemacht? Welche Stärken bzw. Schwächen weisen diese auf?</td>
<td></td>
</tr>
</tbody>
</table>

Technologie 3:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technologie 4:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wo und wann wurden diese eingesetzt?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Welche Erfahrungen haben sie gemacht? Welche Stärken bzw. Schwächen weisen diese auf?</td>
<td></td>
</tr>
</tbody>
</table>

Technologie 5:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wo und wann wurden diese eingesetzt?</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Welche Erfahrungen haben sie gemacht? Welche Stärken bzw. Schwächen weisen diese auf?</td>
<td></td>
</tr>
</tbody>
</table>
Stärken bzw. Schwächen weisen diese auf?

Teil VI: Weitere Fragen

<table>
<thead>
<tr>
<th>Nr</th>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Welche Technologien setzen sie heute bewusst nicht ein obwohl sie ein Potential (Qualitätsverbesserung / Effizienzsteigerung) vermuten? Aus welchen Gründen?</td>
<td>………</td>
</tr>
<tr>
<td>2</td>
<td>Welche Anforderungen haben sie an zukünftige Mobilitätserhebungen bzw. Transporterhebungen?</td>
<td>Personenverkehr: ………</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Güterverkehr: ………</td>
</tr>
</tbody>
</table>
3 Haben sie weitere Hinweise zum Einsatz von (neuen) Erhebungstechnologien?

4 Haben sie weitere Bemerkungen zum Thema?
II Liste der interviewten Experten

Folgende Experten wurden im Laufe der Arbeiten interviewt.

<table>
<thead>
<tr>
<th>Experte</th>
<th>Institution</th>
<th>Schwerpunkt Bereich</th>
<th>Personenverkehr</th>
<th>Güterverkehr</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.-D. Deuschle</td>
<td>Bundesamt für Verkehr / Sektion Planung, Sektion Güterverkehr</td>
<td>Planung, Monitoring und Controlling</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>J. Lietha Matthias Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Dietrich</td>
<td>Stadt Zürich / Mobilität und Verkehr</td>
<td>Grundlagen / Instrumente und Planung</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>J. Grotrian</td>
<td>SBB Cargo</td>
<td>Grundlagen / Instrumente</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>H. Honermann</td>
<td>ARE / Grundlagen / Modellierung</td>
<td>Grundlagen / Instrumente</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>J. Häberli</td>
<td>Bundesamt für Strassen / Abteilung Netzplanung</td>
<td>Grundlagen / Instrumente, Planung, Betrieb / Management, Monitoring / Controlling</td>
<td>X (x)</td>
<td></td>
</tr>
<tr>
<td>N. Latuske S. Pirkelbauer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Kettner</td>
<td>Mobilität Kt. BS</td>
<td>Grundlagen / Instrumente und Planung, Monitoring und Controlling</td>
<td>X (x)</td>
<td></td>
</tr>
<tr>
<td>C. Ordon</td>
<td>Amt für Verkehr Kt. ZH / Verkehrsgrundlagen</td>
<td>Grundlagen / Instrumente, Planung, Monitoring und Controlling</td>
<td>X (x)</td>
<td></td>
</tr>
<tr>
<td>P. Schirato</td>
<td>ASTRA / Verkehrs-managementzentrale</td>
<td>Betrieb / Management</td>
<td>X (x)</td>
<td></td>
</tr>
<tr>
<td>W. Scherr</td>
<td>SBB / Personenverkehr</td>
<td>Grundlagen / Instrumente, Planung, Monitoring / Controlling</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O. Janssens</td>
<td>Stadt Zürich / Dienstabteilung Verkehr</td>
<td>Grundlagen / Instrumente, Planung, Monitoring / Controlling</td>
<td>X (x)</td>
<td></td>
</tr>
<tr>
<td>R. Dorbritz</td>
<td>Stadt Zürich / Mobilität und Verkehr</td>
<td>Grundlagen / Instrumente, Monitoring / Controlling</td>
<td>X (x)</td>
<td></td>
</tr>
<tr>
<td>R. Frommenwiler</td>
<td>Verkehrsbetrie der Stadt Zürich</td>
<td>Planung</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>D. Cataldi</td>
<td>Canton de Genève, Direction générale de la mobilité</td>
<td>Grundlagen / Instrumente, Planung, Monitoring und Controlling</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C. Liaudat</td>
<td>Etat de Vaud, Direction générale de la mobilité et des routes</td>
<td>Grundlagen / Instrumente, Planung, Monitoring und Controlling</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
III Übersicht über heute verwendete / künftig benötigte Kennwerte
III.1 Personenmobilität/-verkehr (Antworten aus Experten-Interviews)

<table>
<thead>
<tr>
<th>Interviewpartner (Interviewpartner gleicher Institutionen zusammengefasst)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuelles Mobilitätsverhalten</td>
<td></td>
</tr>
<tr>
<td>Etappe</td>
<td></td>
</tr>
<tr>
<td>Start- und Endpunkt (Koordinaten)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Start- und Ankunftszeit (inkl. Datum)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Zugangsdistanz</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Abgangsdistanz</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Fahrlänge</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Umsteigegeldistanz</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Etappenlänge</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Zugangzeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Abgangzeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Fahrzeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Wartezeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Umsteigezeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Verwendetes Verkehrsmittel</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Mobilitätswerkzeuge (Auto, GA, Velo etc.)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Fahrer oder Mitfahrer (MIV)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Gepäck</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Anzahl Mitreisende</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Wege</td>
<td></td>
</tr>
<tr>
<td>Wegkette</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Kombination von Verkehrsmitteln</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Wegzeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Weggeschwindigkeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Route</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Wegzeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Umwegzeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Wegdistanz</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Beförderungsasse</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Luftliniendistanz</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Reisegeschwindigkeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Umsteigehäufigkeit</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Ausgänge</td>
<td></td>
</tr>
<tr>
<td>Ausgänge</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Umsteigevorgänge</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Umsteigezeiten</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Anforderungen an zukünftige Mobilitätsershebungen

<table>
<thead>
<tr>
<th>Erzeugungs-raten, Einsteiger, Aussteiger, etc.</th>
<th>Verkehrsleistung</th>
<th>Fahrleistung</th>
<th>Nachfragesströme</th>
<th>Fahrzweck (Verteilung)</th>
<th>Modal Split</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitlücken</td>
<td>Verkehrsleistung im Querschnitt</td>
<td>Verkehrsmenge in einem Strom</td>
<td>Verkehrsdichte</td>
<td>Verkehrszusammensetzung (Typen von Verkehrsmitteln)</td>
<td>Lokale Geschwindigkeitsverteilung</td>
</tr>
<tr>
<td>Weglücke</td>
<td>Beschleunigung</td>
<td>Verkehrsdaten</td>
<td>Kennwerte</td>
<td>Mobilitätsdaten</td>
<td>Mikrokosmisches Verkehrsgeschehen</td>
</tr>
<tr>
<td>Beschleunigung</td>
<td>Verkehrsdaten</td>
<td>Kennwerte</td>
<td>Mobilitätsdaten</td>
<td>Mikrokosmisches Verkehrsgeschehen</td>
<td>Makrokosmisches Verkehrsgeschehen</td>
</tr>
<tr>
<td>Verzögerung</td>
<td>Kennwerte</td>
<td>Mobilitätsdaten</td>
<td>Mikrokosmisches Verkehrsgeschehen</td>
<td>Makrokosmisches Verkehrsgeschehen</td>
<td></td>
</tr>
<tr>
<td>Lokale Geschwindigkeit</td>
<td>Kennwerte</td>
<td>Mobilitätsdaten</td>
<td>Mikrokosmisches Verkehrsgeschehen</td>
<td>Makrokosmisches Verkehrsgeschehen</td>
<td></td>
</tr>
</tbody>
</table>

Interviewpartner (Interviewpartner gleicher Institutionen zusammengefasst)

Aggregiertes Mobilitätsverhalten

Mikrokosmisches Verkehrsgeschehen

Makrokosmisches Verkehrsgeschehen

Januar 2016
III.2 Gütertransport-/verkehr (Antworten auf Experten-Interviews)

Individuelles Transportverhalten

<table>
<thead>
<tr>
<th>Interviewpartner (Interviewpartner gleicher Institutionen zusammengefasst)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versender und Empfänger (Koordinaten)</td>
<td>x</td>
</tr>
<tr>
<td>Start- und Ankunfts-zeit (inkl. Datum)</td>
<td>x</td>
</tr>
<tr>
<td>Etappenlänge</td>
<td>x</td>
</tr>
<tr>
<td>Zugangszeit</td>
<td>x</td>
</tr>
<tr>
<td>Abgangszeit</td>
<td>x</td>
</tr>
<tr>
<td>Fahrgeschwindigkeit</td>
<td>x</td>
</tr>
<tr>
<td>Standzeit/Wartezeit</td>
<td>x</td>
</tr>
<tr>
<td>Umladezeit</td>
<td>x</td>
</tr>
<tr>
<td>Beförderung</td>
<td>x</td>
</tr>
<tr>
<td>Logistiksegment (gem. Logistikmarktstudie)</td>
<td>x</td>
</tr>
<tr>
<td>Verwendetes Verkehrsmittel</td>
<td>x</td>
</tr>
<tr>
<td>Warengruppe</td>
<td>x</td>
</tr>
<tr>
<td>Frachtart</td>
<td>x</td>
</tr>
<tr>
<td>Leitentität des kombinierten Verkehrs</td>
<td>x</td>
</tr>
<tr>
<td>Branche (bez. Transportgut)</td>
<td>x</td>
</tr>
<tr>
<td>Werkverkehr oder gewerblicher Verkehr</td>
<td>x</td>
</tr>
<tr>
<td>Direktverkehr oder Sammel- und Verkehrsverkehr</td>
<td>x</td>
</tr>
<tr>
<td>Pendel- und Systemverkehr</td>
<td>x</td>
</tr>
<tr>
<td>Größe, Volumen, Fläche des Gutes</td>
<td>x</td>
</tr>
<tr>
<td>Gefahrgut / Nicht Gefahrgut</td>
<td>x</td>
</tr>
</tbody>
</table>

Transportschritte

<table>
<thead>
<tr>
<th>Touren</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportkette</td>
<td>x</td>
</tr>
<tr>
<td>Kombination von Verkehrsmitteln</td>
<td>x</td>
</tr>
<tr>
<td>Transporthäufigkeit</td>
<td>x</td>
</tr>
<tr>
<td>Route</td>
<td>x</td>
</tr>
<tr>
<td>Umladefrequenz</td>
<td>x</td>
</tr>
<tr>
<td>Unterwegszeit</td>
<td>x</td>
</tr>
<tr>
<td>Laufzeit</td>
<td>x</td>
</tr>
<tr>
<td>Laufdistanz</td>
<td>x</td>
</tr>
<tr>
<td>Laufgeschwindigkeit (LaV=LaD/LaZ)</td>
<td>x</td>
</tr>
<tr>
<td>Umladehöhe</td>
<td>x</td>
</tr>
</tbody>
</table>

Januar 2016
<table>
<thead>
<tr>
<th>Interviewpartner (Interviewpartner gleicher Institutionen zusammengefasst)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregiertes Transportverhalten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heute</td>
<td>Zusätzlich benötigt</td>
</tr>
<tr>
<td>Verkehrsaufkommen (inkl. Erzeugungsarten, etc.)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verkehrslastigkeit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Fahrleistung</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Nachfrageströme</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wareneinfluss (Verteilung)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Modale Split</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahl Abfahrtszeit, Ziel, Verkehrsmittel, Route (Verteilungen)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Anzahl Touren</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Stops pro Tour</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Transportketten (Verteilungen)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mikroskopisches Verkehrsgeschehen</td>
<td></td>
</tr>
<tr>
<td>Zeitlücken</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Weglücken</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschleunigung</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verzögerung</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lokale Geschwindigkeit</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. Transportgeschwindigkeit</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Makroskopisches Verkehrsgeschehen</td>
<td></td>
</tr>
<tr>
<td>Verkehrsleistung im Querschnitt</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Verkehrsleistung in einem Strom</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Verkehrsverkehrsanordnung (Typen von Verkehrsmitteln)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lokale Geschwindigkeitsverteilung</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschwindigkeitsverteilung</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Laufzeitenverteilung</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
IV Beurteilungsblätter
IV.1 Ziel: Hohe Datenqualität

IV.1.1 Teilziel: Vollständigkeit der Daten

Indikator: Kennzahlen, die vollständig erhoben werden können

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Car Data</td>
<td>Vgl. GPS-unterstützte Mobilitätserhebung</td>
<td>Vgl. GPS-unterstützte Mobilitätserhebung</td>
<td>++</td>
</tr>
<tr>
<td>Big Data</td>
<td>Abgeleitete Daten: • Muster des Mobilitätsverhaltens soziökonomischer Schichten</td>
<td>Big Data verknüpft Daten aus unterschiedlichen Erhebungen, ist aber selber keine Erhebungsmethode. Deswegen ist eine allgemeine Beurteilung nicht möglich.</td>
<td>Nicht bewertbar</td>
</tr>
<tr>
<td>Methoden</td>
<td>Mengengerüst, Vorhandene Informationen</td>
<td>Beurteilung incl. Begründung</td>
<td>Note</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>• Bei den meisten Technologien: Reisezeiten, Geschwindigkeiten und Routenwahl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bei einzelne Technologie: Start- und Ankunftszeit, Identifikation an einem Standort, Verkehrsarten usw.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identifikation an einem Standort</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verkehrsbelastung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Geschwindigkeiten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reisezeiten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verkehrsmittel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Routenwahl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rückstaulänge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luftaufnahmen</td>
<td>Erhobene/abgeleitete Daten:</td>
<td>Die Frequenz der Luftaufnahmen hat einen entscheidenden Einfluss darauf, ob die aufgelisteten Merkmale vollständiger als mit etablierten Methoden (Zählungen) erhoben werden können. Die aufgelisteten Kennzahlen haben keine sehr hohe Priorität. Die Methode kann eine höhere Qualität und Vollständigkeit der Daten bringen, solange die Aufnahmen häufig genug durchgeführt werden. Es handelt sich jedoch von Daten ohne hohe Priorität.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• Anwesenheit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Parkraumbelegung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bei den meisten Technologien: Verkehrsbelastungen, Anwesenheit, Geschwindigkeiten, Zeitlücken, Belegungsdauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bei einzelnen Technologie: Fahrzeugart</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IV.1.2 Teilziel: Relevanz

Indikatoren:
1. Anzahl und Bedeutung von Daten, die erhoben werden können
2. Datenlücken, die geschlossen werden können

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| GPS-unterstützte Mobilitätserhebung | Erhobene/abgeleitete Daten:
• Start-, Zwischen- und Endpunkte von Etappen (Koordinaten)
• Start-, Zwischen- und Ankunftszeit von Etappen
• Trajektorien der Fahrzeuge resp. Personen
• Geschwindigkeiten
• Reisezeiten
• Routenwahl
• Verkehrsverhältnisse
• Rückstauzeiten
• Wartezeiten
• Streckenbezogene Geschwindigkeiten des Güterverkehrs
• Routenwahl des Güterverkehrs | Indikator 1:
Die Methode erlaubt die Erhebung von wichtigen Kennzahlen mit hoher Priorität (Reisezeiten, Wegdistanzen, Routenwahl). | + |
| Floating Car Data | Vgl. GPS-unterstützte Mobilitätserhebung | Indikator 1:
Die Methode erlaubt die Erhebung von wichtigen Kennzahlen mit hoher Priorität (Reisezeiten, Wegdistanzen, Routenwahl). | + |
| Floating Phone Data | Erhobene/abgeleitete Daten:
• Start-, Zwischen- und Endpunkte von Etappen (Koordinaten)
• Start-, Zwischen- und Ankunftszeit von Etappen
• Trajektorien der Fahrzeuge resp. Personen
• Geschwindigkeiten
• Reisezeiten
• Routenwahl | Indikator 1:
Die Methode erlaubt die Erhebung von wichtigen Kennzahlen mit hoher Priorität (Reisezeiten, Wegdistanzen, Routenwahl). | + |
<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| Big Data | Abgeleitete Daten:
 • Muster des Mobilitätsverhaltens sozioökonomischer Schichten
 • Aktivitätenmuster pro Verkehrsteilnehmer
 • Berechnung des Level of Service auf Strassenabschnitten
 • Ermittlung von individuellen Aktivitätenmuster, von durchgeführten Wege und deren zeitliche Verteilung | Big Data verknüpft Daten aus unterschiedlichen Erhebungen, ist aber selber keine Erhebungsmethode. Deswegen ist eine allgemeine Beurteilung nicht möglich. | |
| Erfassung und Vergleich von ID-Codes | Erhobene/abgeleitete Daten:
 • Bei den meisten Technologien: Reisezeiten, Geschwindigkeiten und Routenwahl
 • Bei einzelne Technologie: Start- und Ankunftszeit, Identifikation an einem Standort, Verkehrsarten usw. | Indikator 1:
 Die Methode erlaubt die Erhebung einiger Kennzahlen mit hoher Priorität (Reisezeiten, Routenwahl und Geschwindigkeiten).
 Indikator 2:
 Die Methode schliesst keine Datenlücken in der bisherigen Statistik, bis auf die Identifikation an einem Standort. | + |
| Automatische Identifikation von optischen Merkmalen | Erhobene/abgeleitete Daten:
 • Identifikation an einem Standort
 • Verkehrsbelastung
 • Geschwindigkeiten
 • Reisezeiten
 • Verkehrsmittel
 • Routenwahl
 • Rückstau länge | Indikator 1:
 Die Methode erlaubt die Erhebung vieler Kennzahlen mit hoher Priorität (Verkehrsbelastung, Geschwindigkeiten, Reisezeiten, Verkehrsmittel, Routenwahl und Rückstau länge).
 Indikator 2:
 Die Methode schliesst keine Datenlücken in der bisherigen Statistik, bis auf die Identifikation an einem Standort. | + |
| Luftaufnahmen | Erhobene/abgeleitete Daten:
 • Anwesenheit
 • Parkraumbelegung | Indikator 1:
 Die Methode erlaubt die Erhebung von Kennzahlen ohne hohe Priorität.
 Indikator 2:
 Die Methode schliesst keine Datenlücken in der bisherigen Statistik, bis auf die Anwesenheit an einem Standort | 0 |
<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| Automatische Identifikation mit Sensoren | Erhobene/abgeleitete Daten:
 • Bei den meisten Technologien: Verkehrsbelastungen, Anwesenheit, Geschwindigkeiten, Zeitlücken, Belegungsduar
 • Bei einzelnen Technologie: Fahrzeugart | Indikator 1:
 Die Methode erlaubt die Erhebung einiger Kennzahlen mit hoher Priorität (Verkehrsbelastungen, Geschwindigkeiten) sowie von weiteren Kennzahlen ohne hohe Priorität.
 Indikator 2:
 Die Methode schliesst keine Datenlücken in der bisherigen Statistik, bis auf die Anwesenheit an einem Standort
 Die Methode erlaubt die Erhebung von Daten ohne hohe Priorität und schliesst keine speziellen Datenlücken in der bisherigen Statistik. | + |
IV.1.3 Teilziel: Relevanz

Indikator: Dauer zwischen Erhebungsende und Verfügbarkeit der Ergebnisse

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| GPS-unterstützte Mobilitätserhebung | • Zeitlicher Datenverlust durch Dauer der Erst-Ortung
• Nachbearbeitung mit hohem Aufwand verbunden
• Leichter Import in Verkehrsplanungsprogramme | Die Methode stellt zwar relativ schnell Daten zur Verfügung, die aber aufwändig nachbearbeitet werden müssen, um verlässliche Ergebnisse zu erreichen. | + |
| Floating Phone Data | Im Allgemeinen schnelle Übertragungsintervalle, die Aktualität der Messwerte wird allerdings durch die Verzögerung zwischen der Erfassung und der Übermittlung der Datensätze bestimmt. | Die Daten stehen bei guter Übertragungsgeschwindigkeit sehr schnell zur Verfügung und können visualisiert oder gespeichert werden. | + |
| Big Data | Daten werden über längeren Zeitraum gesammelt, können aber mittels standardisierter Routinen schnell ausgewertet werden. | Daten sind nicht sofort verfügbar, ist aber nicht das Ziel der Verwendung. Stärke der Daten liegt in ihrem Umfang aggregierter Daten für standardisierte Auswerteroutinen. Deswegen ist eine allgemeine Beurteilung nicht möglich. | 0 |
| Erfassung und Vergleich von ID-Codes | Bluetooth/Wi-Fi:
• Daten stets aktuell und schnell verfügbar
• Zeitnahe Datenübertragung und Verfügbarkeit | Daten werden zeitnah übertragen und stehen kurz nach Erhebung für Auswertungen zur Verfügung | + |
| | RFID/SmartCards/NFC/Barcodes:
• Zeitnahe Datenerfassung, Übertragung und Verfügbarkeit | | |
| Luftaufnahmen | Die Aktualität und die zeitliche Verfügbarkeit der Daten hängt von der Erhebungsart (Flugzeug, Drohne, Satellit) ab. Luftaufnahmen für amtliche Orthofotos werden in regelmäßigen Abständen erstellt (z.B.: Jahresrhythmus). | Eine allgemeine Beurteilung nicht möglich. | Nicht bewertbar |
| Automatische Identifikation mit Sensoren | • Infrarot/Laser/Ultraschall/Glasfaserskabel/Radiowellen: keine Informationen in der Literatur verfügbar
• Magnetometer: keine Informationen in der Literatur verfügbar | Daten werden zeitnah übertragen und stehen kurz nach Erhebung für Auswertungen zur Verfügung | + |
IV.2 Ziel: Hohe Effizienz

IV.2.1 Teilziel: Aufwand für die Konzeption und Vorbereitung

Indikatoren:
1. Arbeitsschritte bzw. Arbeitsvorgänge zur Konzeption und Vorbereitung
2. Benötigtes Know-How

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| GPS-unterstützte Mobilitätserhebung | Anforderungen zusätzlich zu den etablierten Methoden:
Indikator 2: Es ist Know-How über die Funktionsweise und Grenzen der Technologie von GPS erforderlich.
Die Methode erfordert einen Mehraufwand in der Konzeption- und Vorbereitungsphase. Dieser hängt auch von der Art der Erhebung ab (z. B. mit/ohne Befragung). Das zusätzlich benötigte Know-How kann als nicht allzu komplex eingestuft werden. | - |
| Floating Car Data | Anforderungen zusätzlich zu den etablierten Methoden:
• 4 Anforderungen zur Erhöhung der Effizienz in der Konzeption- und Vorbereitungsphase: Erarbeitung von leistungsfähigen Prüfroutinen zur Ausscheidung von fehlerhaften Daten, Einsatz von Computern mit ausreichender Rechenleistung, Leistungsfähige Algorithmen zur Störungserkennung (bei ungenügender Georeferenzierung), Ausreichende Leistung der Datenübertragung (Sende- und Empfangseinrichtungen) | Indikator 1: Im Verhältnis zu den etablierten Methoden sind diverse zusätzlichen Arbeits schritte in der Konzeption-Vorbereitungsphase vorzusehen (z.B. Erarbeitung von Prüfroutinen, Algorithmen zur Störungserkennung), was zu einem erhöhten Aufwand führt.
Indikator 2: Es ist Know-How über die Funktionsweise und Grenzen der Technologie des FCD erforderlich.
Die Methode erfordert einen Mehraufwand in der Konzeption- und Vorbereitungsphase. Das zusätzlich benötigte Know-How kann als nicht allzu komplex eingestuft werden. | - |
<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methoden</td>
<td>Mengengerüst, Vorhandene Informationen</td>
<td>Beurteilung inkl. Begründung</td>
<td>Note</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
</tbody>
</table>
| Automatische Identifikation von optischen Merkmalen | Anforderungen zusätzlich zu den etablierten Methoden:
• 4 Anforderungen zur Erhöhung der Effizienz in der Konzeption- und Vorbe-reitungsphase: Einsatz von Computern mit ausreichender Rechenleistung (analog ID-Code), Ausreichende Leistung der Datenübertragung, Programme/Algorithmen zur automatisierten Auswertung, Automatische Erkennung Geräteausfall | Indikator 1:
Im Verhältnis zu den etablierten Methoden sind zusätzlichen Arbeitsschritte in der Konzeption-/Vorbereitungsphase vorzusehen (Programme/Algorithmen zur automatisierten Auswertung, Automatische Erkennung Geräteausfall), was zu einem erhöhten Aufwand führt.
Indikator 2:
Es ist kein spezifisches zusätzliches Know-How erforderlich.
Die Methode fordert einen kleinen Mehraufwand in der Konzeption- und Vorbereitungsphase, benötigt aber kein zusätzliches Know-How. | 0 |
| Luftaufnahmen | Anforderungen zusätzlich zu den etablierten Methoden:
• 2 Anforderungen zur Erhöhung der Effizienz in der Konzeption- und Vorbe-reitungsphase: Datenübertragung/Speicherung, Maximale Auflösung | Indikator 1:
Im Verhältnis zu den etablierten Methoden sind keine zusätzlichen Arbeits-schritte in der Konzeption-/Vorbereitungsphase vorzusehen.
Indikator 2:
Es ist kein spezifisches zusätzliches Know-How erforderlich.
Die Methode ist bezüglich des Aufwandes in der Konzeption- und Vorberei-tungsphase mit den etablierten Methoden vergleichbar | 0 |
| Automatische Identifikation mit Sensoren | Anforderungen zusätzlich zu den etablierten Methoden:
• 2 Anforderungen zur Erhöhung der Effizienz in der Konzeption- und Vorbe-reitungsphase: Datenübertragung/Speicherung, Routine für Kennwerbe-rechnung (Reports) | Indikator 1:
Im Verhältnis zu den etablierten Methoden sind Routinen für Kennwertberech-nung vorzusehen.
Indikator 2:
Es ist kein spezifisches zusätzliches Know-How erforderlich.
Die Methode ist bezüglich des Aufwandes in der Konzeption- und Vorberei-tungsphase mit den etablierten Methoden vergleichbar | 0 |
IV.2.2 Teilziel: Erhebungsaufwand

Indikatoren:
1. **Investitionen für Infrastruktur und Geräte für die Erhebung**
2. **Aufwand für den Betrieb der Erhebung**

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| GPS-unterstützte Mobilitätserhebung | • Stärken: Erhebliche Reduktion der Stichprobengröße
 • Chancen: Mit Apps keine Gerätekosten (ev. Programmierungskosten)
 Anforderungen zusätzlich zu den etablierten Methoden:
 • 1 Anforderung zur Erhöhung der Effizienz in der Durchführungsphase: Integrierbarkeit mit Befragungen (und Strukturdaten) | Indikator 1:
 Je nach eingesetzter Technologie können Geräte- und/oder Programmierungskosten entstehen
 Indikator 2:
 Es ist mit keinem zusätzlichen Aufwand für den Betrieb der Erhebung zu rechnen. Es können Kosten für den Datenkauf entstehen.
 Die Methode erlaubt eine deutliche Reduktion der Stichprobengröße und reduziert somit den Erhebungsaufwand. Je nach eingesetzter Technologie können jedoch Gerätekosten entstehen. Die Daten müssen unter Umständen eingekauft werden. | 0 |
| Floating Car Data | Anforderungen zusätzlich zu den etablierten Methoden:
 • 2 Anforderungen zur Erhöhung der Effizienz in der Durchführungsphase: Ausreichende Leistung der Datenübertragung (Sende- und Empfangseinrichtungen), Rasche Erkennung Geräteausfall | Indikator 1:
 Die Methode erfordert keine Investition in Infrastruktur/Geräte
 Indikator 2:
 Es ist mit keinem zusätzlichen Aufwand für den Betrieb der Erhebung zu rechnen. Es können Kosten für den Datenkauf entstehen.
 FCD erfordert keinen zusätzlichen Erhebungsaufwand im Vergleich zu den etablierten Methoden. Die Daten müssen unter Umständen eingekauft werden. | 0 |
| Floating Phone Data | Anforderungen zusätzlich zu den etablierten Methoden:
 • 1 Anforderung zur Erhöhung der Effizienz in der Durchführungsphase: Ausreichende Leistung der Datenübertragung (Sende- und Empfangseinrichtungen) | Indikator 1:
 Die Methode erfordert keine Investition in Infrastruktur/Geräte
 Indikator 2:
 Es ist mit keinem zusätzlichen Aufwand für den Betrieb der Erhebung zu rechnen. Es können Kosten für den Datenkauf entstehen.
 FCD erfordert keinen zusätzlichen Erhebungsaufwand im Vergleich zu den etablierten Methoden. Die Daten müssen unter Umständen eingekauft werden. | 0 |
<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| Big Data | • Organisatorisch liegen die Vorteile im generelle niedrigen Erhebungsaufwand und damit verbundenen niedrigen Kosten, mit denen Stichproben erhoben werden können
 • Keine Erhebungsgeräte nötig
 Anforderungen zusätzlich zu den etablierten Methoden:
 • Keine spezifische Anforderung zur Erhöhung der Effizienz in der Durchführungsphase (Big Data ist keine echte Erhebungsmethode) | Indikator 1:
 Die Methode erfordert keine Investition in Infrastruktur/Geräte
 Indikator 2:
 Es ist mit keinem zusätzlichen Aufwand für den Betrieb der Erhebung zu rechnen. Es können Kosten für den Datenkauf entstehen.
 Big Data erfordert keine Investitionen in Infrastruktur und Geräte und reduziert den Erhebungsaufwand. Die Daten müssen unter Umständen eingekauft werden. | ++ |
| Erfassung und Vergleich von ID-Codes | • Wi-Fi/Bluetooth: relativ tiefe Investitionskosten
 • Eine Schwäche des Einsatzes von Bluetooth ist der hohe Geräteaufwand, da die einzelnen Detektoren zu vernetzen sind; zudem ist der Erhebungsaufwand zu Beginn sehr hoch; im Dauerbetrieb jedoch gering
 • RFID: Die robuste Technik und lange Lebensdauer reduziert den Personalaufwand und ermöglicht so sehr günstige Untersuchungen.
 • Smart Card / NFC: relativ günstig
 • Barcode: sehr günstig
 • Video: Unter bestimmten Voraussetzungen bieten sie die Möglichkeit zur Kostenreduktion, beispielsweise infolge der möglichen Auswertung mehrerer Fahrstreifen zur gleichen Zeit (bis zu 6 Fahrspuren durch 1 Kamera), für die andernfalls mehrere Erhebungsgeräte installiert werden müssten
 • Automatische Kontrollschilderfassung: sehr hoher Personalaufwand für die Installation, insb. bei temporären Erhebungen
 Anforderungen (zusätzlich zu den etablierten Methoden, Kap. 5)
 • Keine spezifische Anforderung zur Erhöhung der Effizienz in der Durchführungsphase | Indikator 1:
 Je nach eingesetzter Technologie können Gerätekosten entstehen (Bluetooth, Wi-Fi, Video)
 Indikator 2:
 Es können Kosten für den Datenkauf entstehen.
 Je nach eingesetzter Technologie kann der Erhebungsaufwand gegenüber den etablierten Methoden höher oder tiefer liegen resp. können Kosten für den Datenkauf entstehen. | 0 |
<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| Automatische Identifikation von optischen Merkmalen | Anforderungen zusätzlich zu den etablierten Methoden:
• 3 Anforderungen zur Erhöhung der Effizienz in der Durchführungsphase:
 Ausreichende Leistung der Datenübertragung, Programme/Algorithmen zur automatisierten Auswertung, Automatische Erkennung Geräteausfall | Indikator 1:
Die Methode kann Investitionen in den Geräten (Video) erfordern, soweit sie nicht gemietet werden
Indikator 2:
Es ist mit keinem zusätzlichen Aufwand für den Betrieb der Erhebung zu rechnen
Die Methode ist bezüglich des Aufwandes in der Erhebungsphase mit den etablierten Methoden vergleichbar, obwohl Investitionen in den Geräten erforderlich sind. | 0 |
| Luftaufnahmen | Anforderungen zusätzlich zu den etablierten Methoden:
• 1 Anforderung zur Erhöhung der Effizienz in der Durchführungsphase: Bereitstellung von Angaben zu Anzahl Messungen | Indikator 1:
Es können Gerätekosten (z.B. für Drohne) entstehen.
Indikator 2:
Es ist mit keinem zusätzlichen Aufwand für den Betrieb der Erhebung zu rechnen. Es können Kosten für den Datenkauf entstehen
Die Methode ist bezüglich des Aufwandes in der Erhebungsphase mit den etablierten Methoden vergleichbar. | 0 |
| Automatische Identifikation mit Sensoren | SWOT-Analyse:
• Passives Infrarot/Ultraschall/Radiowellen/Magnetometer/Personenzählmatten: eher tiefe Kosten
Anforderungen zusätzlich zu den etablierten Methoden:
• 1 Anforderung zur Erhöhung der Effizienz in der Durchführungsphase: Datenübertragung/Speicherung | Indikator 1:
Die Methode kann Investitionen in den Geräten (Detektoren) erfordern, soweit sie nicht gemietet werden
Indikator 2:
Es ist mit keinem zusätzlichen Aufwand für den Betrieb der Erhebung zu rechnen
Die Methode ist bezüglich des Aufwandes in der Erhebungsphase mit den etablierten Methoden vergleichbar. | 0 |
IV.2.3 Teilziel: Aufbereitungs- und Auswertungsaufwand

Indikatoren:
1. Arbeitsschritte bzw. Arbeitsvorgänge zur Datenaufbereitung inkl. Anonymisierung und Plausibilisierung
2. Benötigte technische Hilfsmittel
3. Benötigtes Know-How

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| **GPS-unterstützte Mobilitätsershebung** | • Generell erfordern GPS-basierte Erhebungen einen sehr hohen Aufwand bei der Nachbearbeitung

Anforderungen zusätzlich zu den etablierten Methoden:
• 4 Anforderungen zur Erhöhung der Effizienz in der Aufbereitungs- und Auswertungsphase: Erarbeitung von leistungsfähigen Prüfroutinen zur Ausscheidung von fehlerhaften Daten, Erarbeitung von leistungsfähigen Zuordnungsroutinen für die Zuordnung zu Verkehrsmitteln, Einsatz von Computern mit ausreichender Rechenleistung, Integrierbarkeit mit Befragungen (und Strukturdaten) | Indikator 1:
Rohdaten erfordern hohen Aufwand an manueller Nachbearbeitung und Plausibilisierung. Unter anderem sind Prüfroutinen zur Ausscheidung fehlerhafter Daten sowie leistungsfähigen Zuordnungsroutinen für die Zuordnung zu Verkehrsmitteln nötig.
Indikator 2:
Es sind Computer mit ausreichender Rechenleistung nötig
Indikator 3:
Der Aufbereitungs- und Auswertungsaufwand ist höher als mit den etablierten Methoden, da u. a. zusätzliche Routinen nötig sind | |
| **Floating Car Data** | • Es zeigt sich eine Abweichung der Daten mit herkömmlich (z. B. über Induktionschlaufen) erhobenen Daten, weshalb die Daten aufwändig mit Referenzdaten validiert werden müssen

Anforderungen zusätzlich zu den etablierten Methoden:
• 3 Anforderungen zur Erhöhung der Effizienz in der Aufbereitungs- und Auswertungsphase: Erarbeitung von leistungsfähigen Prüfroutinen zur Ausscheidung von fehlerhaften Daten, Einsatz von Computern mit ausreichender Rechenleistung, Leistungsfähige Algorithmen zur Störungserkennung (bei ungenügender Georeferenzierung) | Indikator 1:
Indikator 2:
Es sind Computer mit ausreichender Rechenleistung nötig
Indikator 3:
Der Auswertungsaufwand ist höher als mit den etablierten Methoden, da u. a. zusätzliche Routinen nötig sind | - |
<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| Floating Phone Data | • Hoher Aufwand für die Datenaufbereitung, wenn sich Funkzellen und Verkehrszeilen nicht räumlich ähneln
| | Anforderungen zusätzlich zu den etablierten Methoden: | Indikator 1: Ableich zwischen Funkzellen und Verkehrszeilen erfordert relativ grossen Aufwand.
| | | Indikator 2: Es sind Computer mit ausreichender Rechenleistung nötig. | |
| Big Data | • Big Data erfordern einen sehr hohen Personal-und Zeitaufwand bei der Datenaufbereitung | Indikator 1: Ableich zwischen Aggregationsniveau der Daten und Zielaggregaten (z.B. Verkehrszeilen) erfordert relativ grossen Aufwand.
<p>| | Anforderungen zusätzlich zu den etablierten Methoden: | Unter anderen sind Prüfroutinen zur Ausscheidung von fehlerhaften Daten sowie leistungsfähigen Zuordnungs Routinen für die Zuordnung zu Verkehrsmitteln nötig. | |
| | | Indikator 3: Es braucht Know-How in den statistischen Methoden bzw. Data Mining sowie entwickelte Algorithmen zur Datenauswertung. | |</p>
<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfassung und Vergleich von ID-Codes</td>
<td>• RFID/Smart Card/NFC: Validierung mit genauen und besseren Referenzquellen erforderlich</td>
<td>Indikator 1: Abgleich zwischen Aggregationsniveau der Daten und Zielaggregaten (z.B. Verkehrszellen) erfordert relativ grossen Aufwand.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Anforderungen zusätzlich zu den etablierten Methoden:</td>
<td>Indikator 2: Es sind Computer mit ausreichender Rechenleistung nötig (RFID, Smart Card, NFC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Automatische Kontrollschilderfassung: sehr hoher Personalaufwand für die Auswertung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatische Identifikation von optischen Merkmalen</td>
<td>Anforderungen zusätzlich zu den etablierten Methoden:</td>
<td>Indikator 1: Identifikation erfolgt mittels Software. Anwender kann vermutlich, ausser der üblichen Prüfung der Daten auf Sinnhaftigkeit, keine weiteren Überprüfungen vornehmen.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• 2 Anforderungen zur Erhöhung der Effizienz in der Aufbereitungs- und Auswertungsphase: Einsatz von Computern mit ausreichender Rechenleistung, Programm/Algorithmen zur automatisierten Auswertung</td>
<td>Indikator 2: Es sind Computer mit ausreichender Rechenleistung nötig</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Video: Aufwändige manuelle Auswertung in der Regel erforderlich</td>
<td>Indikator 3: Es ist kein spezifisches Know-How nötig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Der Aufbereitungsaufwand ist mit den etablierten Methoden vergleichbar.</td>
<td></td>
</tr>
<tr>
<td>Luftaufnahmen</td>
<td>Anforderungen zusätzlich zu den etablierten Methoden:</td>
<td>Indikator 1: Keine spezifische Anforderungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 Anforderung zur Erhöhung der Effizienz in der Aufbereitungsphase: Datenübertragung/Übertragung</td>
<td>Indikator 2: Keine spezifische Anforderungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Video: Aufwändige manuelle Auswertung in der Regel erforderlich</td>
<td>Indikator 3: Es ist kein spezifisches Know-How nötig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Der Aufbereitungsaufwand ist mit den etablierten Methoden vergleichbar.</td>
<td></td>
</tr>
<tr>
<td>Methoden</td>
<td>Mengengerüst, Vorhandene Informationen</td>
<td>Beurteilung inkl. Begründung</td>
<td>Note</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
</tbody>
</table>
| Automatische Identifikation mit Sensoren | Anforderungen zusätzlich zu den etablierten Methoden:
 • 2 Anforderungen zur Erhöhung der Effizienz in der Aufbereitungs- und Auswertungsphase: Datenübertragung/Speicherung, Routine für Kennwertberechnung (Reports) | Indikator 1:
 Die Daten sind statistisch auszuwerten und auf die Konsistenz zu prüfen. Bei Bedarf müssen Referenzdaten als Vergleich zur Hilfe genommen werden.
 Indikator 2:
 Keine spezifischen Anforderungen
 Indikator 3:
 Es ist kein spezifisches Know-How nötig
 Der Aufbereitungsaufwand ist mit den etablierten Methoden vergleichbar. | 0 |
IV.3 Ziel: Hohe Akzeptanz und Datenschutz

IV.3.1 Teilziel: Akzeptanz bei der Öffentlichkeit generell

Indikatoren: Erfahrungen mit der Akzeptanz der Öffentlichkeit (Datenschutz)

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| GPS-unterstützte Mobilitätserhebung | Anforderungen zusätzlich zu den etablierten Methoden:
- 8 Anforderungen zum Datenschutz: Anonymisierung der erhobenen Daten nach der Datenerhebung, Ausschließliche Verwendung der Daten für festgelegte Zwecke, Unterzeichnung Vertraulichkeitsklärung durch involvierte Mitarbeiter, Schutz vor nicht autorisierter Verwendung, Zerstörung und Veränderung von Daten, Verarbeitung und anonymisierte Speicherung der Daten muss so erfolgen, dass eine Zuordnung zu einer Kategorie, von sensiblen Daten nicht möglich ist (Prüfung mit Datenschutzgesetz), Vernichtung der Daten beim Auftragnehmer (soweit vom Auftraggeber gewünscht), Zweckmäßige Kommunikation über Erhebung (je nach Akteurgruppe), Teilweise höhere Anforderungen als Datenschutzgesetz (Akzeptanz)

Die Methode erlaubt die Sammlung von persönlichen Daten, so wie auch bei den etablierten Methoden der Fall sein kann (z. B bei Befragungen). Die Anzahl Daten und die Genauigkeit/Vollständigkeit sind jedoch höher als bei herkömmlichen Methoden, was zu einer tieferen Akzeptanz führen kann. | | - |
| Floating Car Data | Anforderungen zusätzlich zu den etablierten Methoden:
- 5 Anforderungen zum Datenschutz: Anonymisierung der erhobenen Daten nach der Datenerhebung, Ausschließliche Verwendung der Daten für die jeweilige Untersuchung, Unterzeichnung Vertraulichkeitsklärung durch involvierte Mitarbeiter, Schutz vor nicht autorisiertem Zugriff oder Verwendung, Zerstörung und Veränderung von Daten, Verarbeitung und Speicherung der Daten muss so erfolgen, dass eine Zuordnung zu einer Kategorie von sensiblen Daten nicht möglich ist (Prüfung mit Datenschutzgesetz)

Die Methode erlaubt keine Sammlung von persönlichen Daten, sondern von Fahrzeugdaten. Eine anonyme Übertragung der Daten ist möglich, so dass die Akzeptanz ähnlich wie bei den etablierten Methoden sein dürfte. | | 0 |
| Floating Phone Data | Anforderungen zusätzlich zu den etablierten Methoden:
- 5 Anforderungen zum Datenschutz: Anonymisierung der erhobenen Daten nach der Datenerhebung, Ausschließliche Verwendung der Daten für die jeweilige Untersuchung, Unterzeichnung Vertraulichkeitsklärung durch involvierte Mitarbeiter, Schutz vor nicht autorisiertem Zugriff oder Verwendung, Zerstörung und Veränderung von Daten, Verarbeitung und Speicherung der Daten muss so erfolgen, dass eine Zuordnung zu einer Kategorie von sensiblen Daten nicht möglich ist (Prüfung mit Datenschutzgesetz)

Die Methode erlaubt die Sammlung von persönlichen Daten, so wie auch bei den etablierten Methoden der Fall sein kann (z. B bei Befragungen). Die Anzahl Daten und die Genauigkeit/Vollständigkeit sind jedoch höher als bei herkömmlichen Methoden, was zu einer tieferen Akzeptanz führen kann. | | - |
<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatische Identifikation mit Sensoren</td>
<td>Keine zusätzlichen Anforderungen zur Sicherstellung des Datenschutzes (Kap. 5)</td>
<td>Diese Methode erlaubt keine Erfassung von persönlichen Daten und ist somit unbedenklich bezüglich der Akzeptanz</td>
<td>0</td>
</tr>
</tbody>
</table>
IV.3.2 Teilziel: Akzeptanz seitens der Öffentlichkeit hinsichtlich Glaubwürdigkeit der Methode

Indikatoren: Erfahrungen mit der Akzeptanz der Öffentlichkeit bzgl. Verbreitung der Methode

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Car Data</td>
<td></td>
<td>Methode ist der breiten Öffentlichkeit nur wenig bekannt, jedoch für Probanden und Allgemeinheit nachvollziehbar.</td>
<td>+</td>
</tr>
<tr>
<td>Floating Phone Data</td>
<td></td>
<td>Methode ist der breiten Öffentlichkeit nur wenig bekannt, jedoch für Probanden und Allgemeinheit nachvollziehbar.</td>
<td>+</td>
</tr>
<tr>
<td>Big Data</td>
<td></td>
<td>Methode wird in der Öffentlichkeit diskutiert, ist aber negativ konnotiert. Methodik ist für Probanden und Allgemeinheit eher schwer nachvollziehbar.</td>
<td>0</td>
</tr>
<tr>
<td>Automatische Identifikation von optischen Merkmalen</td>
<td></td>
<td>Methodik ist der breiten Öffentlichkeit bekannt, für Probanden und Allgemeinheit eher schwer nachvollziehbar.</td>
<td>-</td>
</tr>
<tr>
<td>Luftaufnahmen</td>
<td></td>
<td>Methodik ist der breiten Öffentlichkeit bekannt, für Probanden und Allgemeinheit einfach nachvollziehbar.</td>
<td>+</td>
</tr>
<tr>
<td>Automatische Identifikation mit Sensoren</td>
<td></td>
<td>Methode ist der breiten Öffentlichkeit nur wenig bekannt, für Probanden und Allgemeinheit eher schwer nachvollziehbar.</td>
<td>-</td>
</tr>
</tbody>
</table>
IV.3.3 Teilziel: Bereitschaft für die Mitwirkung (Betroffene)

Indikatoren: Erfahrungen Bereitschaft zur Mitwirkung von Erhebung

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
</table>
| GPS-unterstützte Mobilitätserhebung | SWOT-Analyse (Kap. 4):
 - Die Datenerhebung erfolgt mit vergleichsweise geringem Aufwand für die Probanden | Der Aufwand ist deutlich kleiner als für herkömmliche Mobilitätserfassungen mit Verkehrstagebüchern. Die Akzeptanz unter diesem Blickwinkel dürfte deswegen gross sein (Probleme beim Datenschutz sind bei einem anderen Indikator erfasst). | ++ |
| Floating Car Data | | Floating Car Data benötigt in der Regel keine direkte Mitwirkung der Betroffenen, welche somit keinen Aufwand haben. Die Akzeptanz unter diesem Blickwinkel dürfte deswegen gross sein (Probleme beim Datenschutz sind bei einem anderen Indikator erfasst). | ++ |
| Floating Phone Data | | Floating Car Data benötigt in der Regel keine direkte Mitwirkung der Betroffenen, welche somit keinen Aufwand haben. Die Akzeptanz unter diesem Blickwinkel dürfte deswegen gross sein (Probleme beim Datenschutz sind bei einem anderen Indikator erfasst). | ++ |
| Big Data | | Big Data erfordert in der Regel keine direkte Mitwirkung der Betroffenen, welche somit keinen Aufwand haben. Die Akzeptanz unter diesem Blickwinkel dürfte deswegen gross sein (Probleme beim Datenschutz sind bei einem anderen Indikator erfasst) | ++ |
| Erfassung und Vergleich von ID-Codes | | Diese Methoden benötigen in der Regel keine direkte Mitwirkung der Betroffenen, welche somit keinen Aufwand haben. Die Akzeptanz unter diesem Blickwinkel dürfte deswegen gross sein (Probleme beim Datenschutz sind bei einem anderen Indikator erfasst) | ++ |
| Automatische Identifikation von optischen Merkmalen | | Personen können nicht entscheiden, ob sie erhoben werden können oder nicht. Deshalb ist keine Bewertung dieses Indikators möglich. | Nicht bewertbar |
| Luftaufnahmen | | Personen können nicht entscheiden, ob sie erhoben werden können oder nicht. Deshalb ist keine Bewertung dieses Indikators möglich. | Nicht bewertbar |
| Automatische Identifikation mit Sensoren | | Personen können nicht entscheiden, ob sie erhoben werden können oder nicht. Deshalb ist keine Bewertung dieses Indikators möglich. | Nicht bewertbar |
IV.3.4 Teilziel: Einhaltung Datenschutz

Indikatoren: Aufwand für die Sicherstellung des Datenschutzes

<table>
<thead>
<tr>
<th>Methoden</th>
<th>Mengengerüst, Vorhandene Informationen</th>
<th>Beurteilung inkl. Begründung</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS-ununterstützte Mobilitätserhebung</td>
<td>Daten werden im Rahmen spezifischer Untersuchungen gesammelt, bei denen Vertraulichkeitsklärungen Schutz sicherstellen. GPS-Logger sind nicht eindeutig einer Person zugeordnet und werden nach Abschluss der Untersuchung wieder zurückgegeben. Problem der Zuordnung von Bewegungsprofilen zu Personen bei Smartphone-basierten GPS-Logger.</td>
<td>Aufwand für die Sicherstellung des Datenschutzes kann relativ hoch sein.</td>
<td>-</td>
</tr>
<tr>
<td>Floating Car Data</td>
<td>GPS-Logger sind einem registrierten Fahrzeug zugeordnet und ermöglichen theoretisch Rückschlüsse auf Bewegungen des Halter.</td>
<td>Aufwand für die Sicherstellung des Datenschutzes relativ hoch.</td>
<td>0</td>
</tr>
<tr>
<td>Floating Phone Data</td>
<td>Mittels der Zuordnung des Telefons zu Personen bei Smartphone-basierten Anwendungen entsteht Problem des Datenschutzes (personalisiertes Bewegungsprofil).</td>
<td>Aufwand für die Sicherstellung des Datenschutzes relativ hoch.</td>
<td>-</td>
</tr>
<tr>
<td>Big Data</td>
<td>Mittels der Zuordnung des Telefons zu Personen bei Smartphone-basierten Anwendungen entsteht Problem des Datenschutzes (personalisiertes Bewegungsprofil). Daten werden aber von Besitzern meist bereits verschlüsselt ausgegeben.</td>
<td>Der Aufwand für die Sicherstellung des Datenschutzes je nach Daten recht hoch sein.</td>
<td>-</td>
</tr>
<tr>
<td>Automatische Identifikation von optischen Merkmalen</td>
<td></td>
<td>Aufwand für die Sicherstellung des Datenschutzes ist hoch.</td>
<td>-</td>
</tr>
<tr>
<td>Luftaufnahmen</td>
<td></td>
<td>Aufwand für die Sicherstellung des Datenschutzes relativ hoch.</td>
<td>-</td>
</tr>
</tbody>
</table>
Glossar

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGPS</td>
<td>Assisted Global Positioning System</td>
</tr>
<tr>
<td>ANPR</td>
<td>Automatic number plate recognition</td>
</tr>
<tr>
<td>App</td>
<td>Application Software</td>
</tr>
<tr>
<td>BiBo</td>
<td>Be-in/Be-out</td>
</tr>
<tr>
<td>FCD</td>
<td>Floating Car Data</td>
</tr>
<tr>
<td>FG</td>
<td>Fussgänger</td>
</tr>
<tr>
<td>FPD</td>
<td>Floating Phone Data</td>
</tr>
<tr>
<td>Fz</td>
<td>Fahrzeug</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications ist der weltweit am meisten verbreitete Standard für volldigitale Mobilfunknetze</td>
</tr>
<tr>
<td>ID-Code</td>
<td>Identification Code</td>
</tr>
<tr>
<td>IVT</td>
<td>Institut für Verkehrsplanung und Transportsysteme</td>
</tr>
<tr>
<td>LSVA</td>
<td>Leistungsabhängige Schwerverkehrsabgabe</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>LW</td>
<td>Lastwagen</td>
</tr>
<tr>
<td>MIV</td>
<td>Motorisierter Individualverkehr</td>
</tr>
<tr>
<td>MZMV</td>
<td>Mikrozensus Mobilität und Verkehr</td>
</tr>
<tr>
<td>NFC</td>
<td>Near Field Contact</td>
</tr>
<tr>
<td>ÖV</td>
<td>Öffentlicher Verkehr</td>
</tr>
<tr>
<td>PW</td>
<td>Personenwagen</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>RP-Befragung</td>
<td>Revealed Preference Befragung</td>
</tr>
<tr>
<td>SIM-Karte</td>
<td>"Subscriber Identity Module"-Karte</td>
</tr>
<tr>
<td>SP-Befragung</td>
<td>Stated Preference Befragung</td>
</tr>
<tr>
<td>SVI</td>
<td>Schweizerische Vereinigung der Verkehrsingenieure und Verkehrsexperten</td>
</tr>
<tr>
<td>SWOT-Analyse</td>
<td>Strengths, Weaknesses, Opportunities, Threats; Analyse der Stärken, Schwächen, Chancen und Gefahren</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>Verkehr</td>
<td>Bewegung von Personen und Gütern in einem definierten System</td>
</tr>
<tr>
<td>VSS</td>
<td>Schweizerischer Verband der Strassen- und Verkehrsfachleute</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Brand-Name für den funkbasierten WLAN IEEE 802.11-Kommunikationsstandard</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

ASTRA (2012) Richtlinie 13 005 Videoanlagen

Axer, S., J. Rohde und B. Friedrich (2012) Level of service estimation at traffic signals based on innovative traffic data services and collection techniques. 15th meeting of the EURO Working Group on Transportation

Bouman, P. et al (o.J.) Recognizing Demand Patterns from Smart Card Data for Agent-Based Micro simulation of Public Transport. Erasmus University, Rotterdam

B+S AG (2011) Standardisierte Verkehrsdaten für das verkehrsträgerübergreifende Verkehrsmanagement. Forschungsauftrag VSS 2006/905

CC.com (2014a) Präsenation Blids. Präsentation im Rahmen Roadshow, Oktober 2014

CC.com (o.J.) Abschätzung der minimal notwendigen Verkehrsstärke für den Einsatz von BLIDS-Netzwerken

CC.com (o.J.) Untersuchung Stichprobenfähigkeit. Austrian Institute of Technology

DataCollect (2014) eScan. www.datacollect.de Zugriff:23.05.2014

Anforderungen an zukünftige Mobilitätserhebungen

Rapp Trans AG (2012b) Aktualisierung Mengengerüst Güterverkehr Kanton Zürich 1993-2010, Amt für Verkehr Kanton Zürich

Rapp Trans AG (2011) Future technologies and Innovations relating to freight transport which are relevant for carbon footprint calculation, COFRET, www.cofret-project.eu

Stepher, P., C. FitzGerald und J. Zhang (2008) Advances in GPS Technology for measuring travel. The University of Sydney

SWISSCOM Business Engineering (o.J.) Fingerprinting Methode

Transport Canada (2014c) Canadian Vehicle Study – Heavy Truck Component. Präsentation Transport Canada vom Juni 2014

VSS (1988) SN 640 002 Verkehrserhebungen

Projektabschluss

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederazione svizra

Eidgenössisches Departement für
Umwelt, Verkehr, Energie und Kommunikation UVEK
Bundesamt für Strassen ASTRA

FORSCHUNG IM STRASSENWESEN DES UVEK

Formular Nr. 3: Projektabschluss

 erstellt / geändert am: 18.9.2015

Grunddaten

Projekt-Nr.: SVI 2011/015
Projekttitle: Anforderungen an zukünftige Mobilitätserhebungen
Enddatum: Oktober 2015

Texte

Zusammenfassung der Projektergebnisse:

Zielereichung:

Das Ziel der Forschungsarbeit, die Anwendungspotenziale neuer Technologien und Methoden für die Mobilitäts- und Verkehrsberhebung auszuloten und diese unter Berücksichtigung der Anforderungen an künftige Mobilitätsberhebungen zu bewerten, wurde erreicht.

Folgerungen und Empfehlungen:

Publikationen:

Der Projektleiter/die Projektleiterin:

Name: Paul
Vorname: Widmer

Amt, Firma, Institut: büro widmer ag, Frauenfeld

Unterschrift des Projektleiters/der Projektleiterin:

Forschung im Strassenwesen des UVEK: Formular 3

Seite 2 / 3

158 Januar 2016
FORSRUCH IM STRASSENWESEN DES UVEK
Formular Nr. 3: Projektabschluss

Beurteilung der Begleitkommission:

Beurteilung:

Das fachkompetente Forschungssteam hat effizient und zielorientiert gearbeitet, die Anregungen und Inputs der Fachleute breit abgestützt. Die Kommission ist in der Lage, die Bedürfnisse der Mobilitätserhebung zu erfüllen. Das Bericht enthält eine umfangreiche Auseinandersetzung mit den Stärken, Schwächen, Chancen und Gefahren der neuen Technologien. Die Anforderungen an Mobilitäts- und Verkehrsdaten wurden inhaltlich erarbeitet und umfassend durchgearbeitet. Der Bericht umfasst auch die Erfahrungen der Experteninterviews und Workshops zur Arbeit, erweckt sich als sehr zweckmäßig.

Umsetzung:

Zur direkten Umsetzung braucht es aufgrund der Komplexität der Materie und der offenen Fragen, u.a. zur Genauigkeit der Daten, zu den Kosten und zum Datenschutz noch weitergehende Abklärungen und Vertiefungen.

weitergehender Forschungsbedarf:

Bei GPS unterstützten Mobilitätserhebungen (prozess Anwendungsprozess) besteht weiterer Forschungsbedarf, um benutzerfreundliche Verfahren zu entwickeln und einsetzbar zu machen. Die Gewinnung der empirischen Technologien sind an Schweizer Beispiele zu überprüfen. Der Stand des Wissens ist laufend weiterzuführen, die dieser Bericht den aktuellen State-of-the-Art darstellt. Es ist auszumachen, welche Technologien die öffentliche Hand (Beispielweise) mit sich zu starker Abhängigkeit von privaten Anbietern zu vermeiden. Für die systematische Sammlung von Beispiele könnte eine zentrale Datenbank geschaffen werden, mit zu laufen und nachgeführt wird.

Einfluss auf Normenwerk:

Der Präsident/die Präsidentin der Begleitkommission:

Name:
Vorname: Kurt

Firma, Institut:

Unterschrift des Präsidenten/der Präsidentin der Begleitkommission:

Januar 2016
Anforderungen an zukünftige Mobilitätserhebungen

Januar 2016
Verzeichnis der Berichte der Forschung im Strassenwesen

Das Verzeichnis der Berichte der Forschung im Strassenwesen kann heruntergeladen werden unter: www.astra.admin.ch -> Dienstleistungen -> Forschung im Strassenwesen -> Downloads -> Formulare
Anforderungen an zukünftige Mobilitätserhebungen
SVI-Publikationsliste

Das Publikationsverzeichnis der SVI-Forschungsarbeiten kann heruntergeladen werden unter: www.svi.ch -> Publikationen -> Forschungsberichte