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Abstract

Random sampling from discrete populations is one of the basic primitives in statis-
tical computing. This article briefly introduces weighted and unweighted sampling with
and without replacement. The case of weighted sampling without replacement appears
to be most difficult to implement efficiently, which might be one reason why the R imple-
mentation performs slowly for large problem sizes. This paper presents four alternative
implementations for the case of weighted sampling without replacement, with an analysis
of their run time and correctness.
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1. Introduction

Random sampling from discrete populations is one of the basic primitives in statistical com-
puting. This paper focuses on a specific variant: sampling without replacement from a finite
population with non-uniform weight distribution. One application for weighted sampling
without replacement is the “Truncate-Replicate-Sample” method for stochastic conversion
of positive real-valued weights to integer weights in the domain of spatial microsimulation
(Lovelace and Ballas 2013). Further applications include market surveys, quality control in
manufacturing, and on-line advertising (Efraimidis 2010).

Throughout this paper, the term weight refers to the relative probability that an item is
sampled. A related problem, sampling from a population with given inclusion probabilities
(without specifying an order) is beyond the scope of this paper.

First, different techniques for sampling from discrete populations are reviewed. Several im-
plementations for sampling without replacement are discussed, this includes evaluation of run
time performance and correctness. The paper concludes with suggestions for incorporating
the findings into base R (R Core Team 2015).

http://www.jstatsoft.org/
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2. Sampling from discrete populations

Algorithm 1 is offered as a definition of sampling from discrete populations with or without
replacement from arbitrary (including uniform) weight distributions. (A pair of dice indicates
random draws.)

Algorithm 1 sample(n, s, replace, pi)

Require: n: Size of the population
Require: s: Number of items to sample
Require: replace: true to request sampling with replacement
Require: pi: Weight of each item for i ∈ {1, . . . , n}
Ensure: Returns a vector kj ∈ {1, . . . , n} for j ∈ {1, . . . , s} that contains the indexes of the

items sampled
1: if s = 0 then
2: return vector of length 0
3: end if
4: Randomly select k so that, for all i, P(k = i) = pi∑

j pj

5: if not replace then
6: n← n− 1
7: remove item k from pi
8: end if
9: return k ⊕ sample(n, s− 1, replace, pi)

From this definition, the following can be observed:

• Sampling with replacement appears to be a simpler problem than sampling without
replacement, as the lines 5 to 8 in Algorithm 1 are not required.

• If all weights pi are equal, the problem is simpler as well: The selection probability
P(i = k) of the sampled items in line 4 always equals 1

n and does not have to be
computed explicitly.

In the framework of Algorithm 1, sampling without replacement with non-uniform weights
seems to be the hardest problem. This intuition carries over to the more specialized algorithms
for sampling with and without replacement, and with uniform or arbitrary weights, which are
presented in the remainder of this section.

2.1. Sampling with replacement

The with replacement case corresponds to repeated selection of k from a fixed discrete weight
distribution. The uniform case can be implemented easily by transforming the output of a
random number generator that returns uniformly distributed floating-point numbers in [0, 1).
(Implementing such a random number generator is nontrivial in itself but outside the scope
of this paper.)

More work is needed in the non-uniform case: Here, Walker’s alias method (Walker 1977),
which is also used in R, is an option. Assuming w.l.o.g.

∑
j pj = n, it is possible to construct
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a subdivision (li, ri, si) with i, li, ri ∈ {1, . . . , n} and 0 < si ≤ 1 so that

pi =
∑

j:lj=i

sj +
∑

j:rj=i

(1− sj).

Sampling an item requires sampling from {1, . . . , n} (to choose i) and then sampling from
[0, 1) (to choose li or ri): If the random number is less than si, item li is chosen, otherwise
item ri. (Figuratively, the probability mass given by pi is distributed over n “boxes” so that
the space in each box i is assigned to at most two items li and ri. The share occupied by
item li in box i is given by si. Some items may be distributed over several boxes. Sampling
an item means selecting a box and choosing between the two items in this box.)

Walker’s alias method is optimal, requiring only O(n) preprocessing time (in a modification
suggested by Vose (1991)). Hence, for non-uniform weights, the run time is at least O(n+ s),
and the input size n will dominate unless s� n. More recently, Marsaglia, Tsang, and Wang
(2004) have suggested a table-based method that seems to perform much faster in practice
but expresses the weights as rationals with a fixed base and is therefore not usable directly
for distributions with a large range. Shmerling (2013) presents a comprehesive review and
suggests a general method suitable even for quasi-infinite ranges.

2.2. Sampling without replacement

In the without replacement case, each selected item is removed from the collection of candidate
items. Again, the uniform case is much simpler. An array of size n, initialized with the natural
sequence, can be used for storing the candidate items. The selection of the item corresponds
to choosing an index at random in this array. Removal of an item with known index can be
done in O(1) time by simply replacing it with the last item in the array and truncating the
array by one.

For the non-uniform case, lines 4 and 7 in Algorithm 1 can be implemented with a data
structure that maintains a subdivision of an interval into n subintervals and allows lookups
and updates. Walker’s alias method seems to be ill-suited for this purpose, as each item
potentially spreads over several “boxes”, and an efficient update algorithm seems elusive.
Wong and Easton (1980) propose a data structure similar to a heap that can be initialized
in O(n) time and supports simultaneous lookup and update in O(log n) time, the reader is
referred to the original paper for details.

2.3. Sampling according to selection probabilities

Tillé (2006) defines a more rigorous framework for sampling algorithms from the perspective
of the likelihood that a sample is selected based on a given sampling design. In the context
of that framework, Algorithm 1 belongs to the class of “draw by draw” algorithms. For the
application of sampling theory, the order of the selected elements is not important and usually
ignored; in contrast, Algorithm 1 returns an ordered sequence of sampled elements.

3. Implementation

R offers reasonably efficient implementations for all cases except non-uniform sampling with-
out replacement. The stock implementation for weighted random sampling without replace-
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ment requires O(n ·s) run time, which is equivalent to O(n2) if s = O(n). This paper explores
alternative approaches: rejection sampling, one-pass sampling and reservoir sampling. Only
the first can be described formally within the framework of Algorithm 1, however an actual
implementation would use sampling with replacement as a subroutine. The last two are based
on an arithmetic transformation of a weight distribution.

3.1. Rejection sampling

In the framework of Algorithm 1, rejection sampling corresponds to flagging sampled items
as “invalid” (instead of removing them) in line 7, and repeating the sampling in line 4 until
hitting a valid item. Note that the distribution of the result is not modified if invalid items are
purged occasionally. This corresponds to the class of “rejective algorithms” in the framework
of Tillé (2006).

Therefore, sampling without replacement can be emulated by repeated sampling with re-
placement, as shown in Algorithm 2. The general idea is to sample slightly more items than
necessary (with replacement), and then to throw away the duplicate items. If the resulting se-
quence of items is shorter than requested, the result for a much smaller problem is appended.
In Algorithm 2, duplicate items in the result of a sampling with replacement (line 1) corre-
spond to invalid items in the rejection sampling, and the recursive call in line 7 corresponds
to purging the invalid items.

Algorithm 2 sample.rej(n, s, pi)

Require: n: Size of the population
Require: s: Number of items to sample
Require: pi: Weight of each item for i ∈ {1, . . . , n}
Ensure: Returns a vector kj ∈ {1, . . . , n} for j ∈ {1, . . . , s} that contains the indexes of the

items sampled
1: ki ← unique(sample(n, expected.items(n, s), true, pi))
2: l← length(ki)
3: if l ≥ s then
4: return the first s items of ki
5: end if
6: remove items ki from pi
7: return ki ⊕ sample.rej(n− l, s− l, pi)

Here, expected.items(n, s) is an estimate for the number of items that need to be drawn with
replacement, so that the result can be expected to contain at least s unique items. (An
incorrect estimate only affects the run time, not the correctness of the algorithm.) Note
that, with expected.items(n, s) = 1 everywhere, Algorithms 1 and 2 are in fact identical.
For a uniform distribution, it can be shown that the result has approximately s unique
items in expectation with expected.items(n, s) = n(Hn − Hn−s) = n

∑n
i=n−s+1

1
i . This is

an underestimate for non-uniform distributions. Nevertheless, the implementation in this
package uses this estimate, capped at 2n. As shown in Section 5, this algorithm performs
worse than the alternatives shown in the following section in the majority of cases, but still
better than the stock implementation for large values of n and s. Therefore, no tuning of the
estimation of the number of expected items has been carried out.
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3.2. One-pass sampling

A particularly interesting algorithm has been devised only recently by Efraimidis and Spirakis
(2006). In the simplest version (here referred to as one-pass sampling), it is sufficient to draw
n random numbers, combine them arithmetically with the weight distribution pi, and perform
a partial sort to find the indexes of the s smallest items. Algorithm 3 is a modified version of
Algorithm A in the original paper that operates on the logarithmic scale for increased numeric
stability.

Algorithm 3 sample.rank(n, s, pi)

Require: n: Size of the population
Require: s: Number of items to sample
Require: pi: Weight of each item for i ∈ {1, . . . , n}
Ensure: Returns a vector kj ∈ {1, . . . , n} for j ∈ {1, . . . , s} that contains the indexes of the

items sampled
1: ri ← Exp(1)/pi for all i ∈ {1, . . . , n}
2: return the positions of the s smallest elements in ri

The arithmetic transformation of the weight distribution is carried out in line 1. A sequence
of i.i.d. samples from the exponential distribution with rate 1 is divided by the weights, the
order of the results defines the sampling order. Intuitively, an item with a large weight has
a larger probability of appearing earlier in this sorting order. Efraimidis and Spirakis (2006)
prove that Algorithms 1 and 3 are equivalent.

The algorithm amazes with its elegance and simplicity. It allows for almost trivial paral-
lelization, provided that independent random number generators are available to each thread.
Computational complexity is dominated by the partial sort (which can be implemented in
O(n + s log n), or even in O(n) for floating-point numbers (Terdiman 2000). However, the
cost of generating n random variates may outweigh the cost for sorting even for moderately
large values of s. The next subsection describes an extension to overcome this issue.

3.3. Reservoir sampling

Reservoir sampling with exponential jumps is a modified version of one-pass sampling. A
reservoir of “active” items is maintained. Each generated random number decides how many
input items are skipped until the current “least likely” item is removed from the reservoir.
Algorithm 4 shows a verbal description, further details and formal proofs of correctness are
beyond the scope of this paper and can be found in (Efraimidis and Spirakis 2006). Only
O(s log n

s ) random numbers (in expectation) are needed with this extension, whereas the
simple version always requires n random numbers. The exponential jumps method requires
fewer updates of the reservoir (and therefore fewer random numbers and less run time) if
the weights are arranged in descending order. In addition to drawing random numbers, the
extraction of the smallest item from a priority queue (line 4) is the most expensive operation.

4. Implementation

The wrswoR package (Müller 2016a) contains implementations for the algorithms presented
in the previous section: One R implementation of rejection sampling (Algorithm 2, denoted
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Algorithm 4 sample.expj(n, s, pi)

Require: n: Size of the population
Require: s: Number of items to sample
Require: pi: Weight of each item for i ∈ {1, . . . , n}
Ensure: Returns a vector kj ∈ {1, . . . , n} for j ∈ {1, . . . , s} that contains the indexes of the

items sampled
1: Initialize reservoir with the first s elements
2: Set keys for these elements based on their weight and one random number per item
3: while not all items processed do
4: Choose item with lowest key in the reservoir
5: Determine number of items to skip, based on this key and a random number
6: Replace item with lowest key with current item in the reservoir
7: Set the new item’s key based on its weight and a random number
8: end while
9: return Items in reservoir sorted by their key

by rej ), two implementations (R and C++) of one-pass sampling (Algorithm 3, rank and
crank), and one C++ implementation of reservoir sampling with exponential jumps (expj,
Algorithm 4). The Rcpp package (Eddelbuettel and François 2011; Eddelbuettel 2013) is
used to generate the glue between R and C++.

In the package, the functions are prefixed with sample_int_. All functions share the same
interface, the function arguments correspond to those of Algorithms 1 to 4: size is the s
argument, and prob is the pi argument. For testing the new routines against the R imple-
mentation, a wrapper function sample_int_R() is provided, which calls the base R function
sample.int() with replace = FALSE:

function (n, size, prob)

{

sample.int(n, size, replace = FALSE, prob)

}

The R implementations are very similar to the pseudocode: As an example, the rank imple-
mentation is shown below.

function (n, size, prob)

{

.check_args(n, size, prob)

head(order(rexp(n)/prob), size)

}

The crank implementation has been somewhat optimized for cache efficiency. Due to its
relative complexity, the expj implementation is kept very close to the pseudocode in the
original paper, still this function also operates on the logarithmic scale for numeric stability.
The transformation works in a fashion very similar to that of Algorithm 3.

The remainder of this paper presents performance characteristics and a validation of the new
implementations.
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5. Performance

This section presents run time tests for various combinations of input parameters, attempts
to provide guidance when to choose which implementation, and discusses the correctness of
the implementation. All test results shown in this section are based on data available in the
wrswoR.benchmark package (Müller 2016b).

5.1. Input parameters

The run time tests used different values for the function arguments n, s and prob. Instead of
directly specifying s, it is given as a proportion of n, denoted by r = s

n . The following weight
distributions (used for pi) were tested:

uniform pi = 1 everywhere

linear Sequence from 1 to n ({pi} = {1, . . . n}), ascending (↗), descending (↘) and shuffled
(;)

geometric Starting at 1, the weight is multiplied with a constant α for each step (pi+1 = αpi,
ascending, descending, and shuffled); the constant is chosen so that both minimal and
maximal weights and the sum of weights is still representable as a floating-point number.

The geometric case is very extreme and unlikely to occur in practice, it is included here to
test potential limitations of the implementations.

5.2. Run time

The run time was measured using the microbenchmark package (Mersmann 2015) in block
order with a warmup of 10 iterations using the default 100 iterations. The tests ran on a
single core of an Intel Xeon CPU X5680 clocked at 3.33 GHz with 12 MB cache, running
Red Hat Enterprise Linux Server release 7.2, R version 3.2.3, and version 0.4 of the wrswoR
package.

Figure 1 presents an overview of the median run time for different input sizes, output size
ratios, weight distributions and implementations. The R implementation is outperformed by
all other implementations for n ≈ 10 000, in many cases even for much smaller inputs. In the
log-log scale used here, the slope of the curves translates to computational complexity; the
steeper slope for the R implementation corresponds to its quadratic complexity compared to
the only slightly superlinear complexity of the other algorithms. No data were obtained for
the R implementation if the computation would have taken too long, this is reflected by a
premature ending of the corresponding curves in Fig. 1.

As expected, the expj implementation is among the fastest, especially for r � 1. In the case
r = 0.01 for the geometric ascending distribution, the new implementations win only by a
margin; in particular, the run time of expj depends on the ordering of the weights which is
unfavorable here.

The rej and rank implementations exhibit initial costs on the sub-millisecond scale even for
small input sizes, probably due to the fact that both are implemented purely in R. In addition,
the rej code is by far the slowest (but still faster than the stock implementation) for geometric
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Figure 2: Comparison of crank and expj run times

distributions, because in each step only a tiny fraction of items have a non-negligible weight,
and hence most sampled items are rejected as duplicates (line 1 of Algorithm 2).

Figure 2 compares run times for crank and expj for the different weight distributions, values
above 1 mean that expj is faster. The expj implementation seems to perform better than
crank if r is small or n is large. For the pathological geometric cases, the run time differences
between ascending and descending weights are substantial for small r. The advantage of the
expj code for r = 1 and large n is surprising and can only be explained with differences in
run time between partial sort (which is used for crank) and priority queue (for expj ).

For the break-even analysis, expj is compared to the stock implementation in Fig. 3 for linear
ascending weights. The expj implementation can be up to about 2 times slower than the
stock implementation, for absolute run times of around 10 microseconds for n = 100. It is
remarkable that the relative performance of expj is worst with r = 0.1 in this case. The
relative slowness of the stock implementation for the case r = 0.01 is due to a mandatory
pre-sorting of weights using heap sort even for s = 1, which is not required for expj.

Figure 4 shows a more detailed break-even point analysis for a larger choice for r and for all
weight distributions tested. Compared to expj, the stock implementation performs best with
a uniform weight distribution, offsetting the break-even point to just below 500 for the best
choice of r ≈ 0.1. In other words, for n < 500 and s = d0.1ne, the stock implementation is
still the best choice in the case of a uniform or near-uniform distribution, with a speedup of
at most 2.12.
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6. Correctness

This section aims at validating the new implementations. A correct implementation should
satisfy the following criteria:

1. All output items are between 1 and n.
2. Each item occurs at most once in the output.
3. For given parameters n, s and pi, the probability that item i is at position j in the

output (with 1 ≤ i ≤ n and 1 ≤ j ≤ s) is identical for the implementation under test
and the stock implementation.

Verifying these criteria seems to be challenging due to the stochasticity of the algorithms. The
first two can be simply checked by observing the output. The following subsection describes
a procedure for checking the third criterion.

6.1. Methodology

For fixed i and j and for fixed parameters n, s, and pi, each call to the sampling routine is a
Bernoulli trial with fixed success probability πi,j . Repeated sampling leads to an i.i.d. sequence
of Bernoulli trials. In general, computing the exact value of πi,j for large j seems to require
considerable computational resources. Therefore, the value of πi,j is assumed unknown, and
only the equality of the proportions is tested for the different implementations using a two-
sided test for equal proportions (essentially a χ2 test, implemented by the prop.test()

function). The correctness check is performed as follows:

• The parameters n, s, and pi, and the implementation under test, are fixed.
• For both the tested and the stock implementation, N random samples without replace-

ment are drawn and recorded.
• For all i and j, the number of samples where item i is in position j (denoted by fi,j) is

computed.
• The counts are tested for equality of proportions, yielding a p-value for each tuple (i, j).

In this setting, for fixed (i, j), the p-value is itself a random variable that is distributed
uniformly over (0, 1] under the null hypothesis of equal proportions (i.e., if the tested imple-
mentation is correct). On the other hand, if the implementation is faulty, the rejection rate
for the null hypothesis will be large, and a substantial share of the p-values will be very close
to 0. While this procedure does not constitute a proof of correctness, it offers a means to
automatically test the implementations for nontrivial errors. A similar procedure (using a
visual representation with violin plots) caught an implementation error in the expj code that
occurred only in the case 1 < s < n.

To assert the sensitivity of the testing procedure, a faulty implementation was simulated by
passing altered weights to R’s implementation. The modification consists of updating

p′i := pi ·
(

1 + skew · i− 1

n− 1

)
,

where a skew of zero means no change, and a skew of 1% corresponds to relative differences
increasing between 0 % and 1 %.



12 Accelerating weighted random sampling without replacement

0

50

100

0.00 0.25 0.50 0.75 1.00

p-value

R
a
n
k

j

1

2

3

4

i

1

2

3

4

5

6

7

Figure 5: Schweder plot for p-values resulting from comparing the crank and R implementa-
tions

The test for equal proportions can be substituted by Fisher’s exact test, which tends to pro-
duce lower p-values and therefore is usually more powerful than the test for equal proportions.
However, Fisher’s exact test has O(N) complexity, because it evaluates the density of the hy-
pergeometric distribution on a support of the order of N . Using this test would have been
prohibitive in the setting described here.

6.2. Example

Figure 5 shows a Schweder plot (Schweder and Spjøtvoll 1982) of the p-values resulting from an
experiment that draws N = 222 samples for n = 7, s = 4, and a geometric weight distribution
with α = 1.08, using all five implementations. Different values of i and j are denoted with
different colors and shapes. The theoretical distribution is shown as a dotted line, and aligns
very well with the observed p-values. Fisher’s combined probability test is a meta-analysis
method that combines multiple p-values (from different but related studies) into one; it is
implemented in the metap package (Dewey 2016). For this particular run of the experiment,
Fisher’s method cannot reject the null hypothesis of uniformity (p = 0.896). As an example
for a positive test, Fig. 6 shows results for the same experiment, now substituting the stock
implementation with a faulty one with skew = 0.25 %. Despite the relative similarity of the
weight distributions, the distribution of the p-values deviates substantially from the uniform
distribution, with more p-values close to zero than expected. Here, Fisher’s method detects
significant, although not overwhelming, evidence against the null hypothesis (p = 0.0183).
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Figure 6: Schweder plot for p-values resulting from comparing the R implementation with a
skewed version of itself

6.3. Results

A fairly comprehensive test also has been carried out, covering all n ∈ {2, . . . 80}, a subset of
s ∈ {1, . . . , n}, and all (i, j). For each combination, the cell frequencies fi,j were collected for
all new implementations, and for the stock implementation with and without altered weights
(using skew values between 0.25 % and 16 %), for N ranging from 210 to 224 (only powers of
2). Each cell frequency was compared to that of the stock implementation. This resulted in
around 5× 108 p-values, which were again combined using Fisher’s method.

Figure 7 shows the results of the meta-analysis separately for each N and for each (suppos-
edly correct or faulty) implementation. Comparing the stock implementation to itself (using
different random seeds) resulted in a p-value of almost 1 for all N , the same holds for all
new codes. On the other hand, all skews tested led to strong rejection of the correctness
hypothesis (p-value effectively 0) sooner or later; as expected, the smaller the skew, the larger
the N that is required for rejection.

This comparison is less sensitive to implementation errors that occur only for specific argu-
ments (e.g., if an implementation behaves as expected except if n is a power of 2). To catch
such deficiencies, it is helpful to analyze finer aggregates of the p-values. Figure 8 shows
combined p-vaules separately for all pairs of n and N when comparing each new code to the
stock implementation. Some p-values are in the range of (0.01, 0.1] or even

(
10−4, 0.01

]
, but

this can be expected due to the uniform distribution of the p-values under the null hypothesis.
The plot in Fig. 9 is similar, but shows the p-values that result from comparing the stock
implementation with a skewed version of itself, for different skews. Here, for all skews except
0, the combined p-value approaches zero sooner or later as N increases.
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7. Conclusions and future work

This paper describes four new implementations for weighted random sampling without re-
placement in R: Rejection sampling, two implementations of one-pass sampling, and reservoir
sampling with exponential jumps. The new implementations, even those written in pure R,
clearly outperform the one provided by the base package if the number of items to choose
from is just above 10 000, this threshold is below 500 for reservoir sampling with exponential
jumps. Each of the algorithms presented here has its advantages:

• Rejection sampling is a simple and straightforward method that builds upon weighted
sampling with replacement.

• One-pass sampling can be parallelized easily.
• Reservoir sampling with exponential jumps is fast even for degenerate weight distribu-

tions, and economical in its use of random numbers.

In particular, reservoir sampling with exponential jumps (Efraimidis and Spirakis 2006) re-
quires just about double the time of the stock implementation in the worst case, code op-
timization (such as using a cache-efficient heap structure for the priority queue) might help
further reduce this threshold or even remove it entirely. Reservoir sampling performs best if
the weights are pre-sorted in descending order. An optional sorting step could be provided
for convenience.

For validation, the new implementations have been compared with the stock implementation
by counting the number of occurrences for each item and each possible position in a large



16 Accelerating weighted random sampling without replacement

number of runs, and testing the null hypothesis of equal proportions. This yields a massive
amount of p-values, which can be combined using Fisher’s method, a meta-analysis technique.
The validation methodology is able to clearly detect an emulated implementation error, which
consisted of skewing the input frequency distribution in a predefined fashion, whereas no
difference between the new and the stock implementations could be measured. So far, the
detection of non-systematic errors or other failure modes have not been tested.

In order to include a faster sampling algorithm into base R, an implementation in C seems
necessary. Other platforms for scientific computing, such as Python or Julia, would also benefit
if this implementation was provided in an open-source library with a documented interface.

For the current implementation in R, a user might not expect a natural operation such
as random sampling to take excessive time, without the ability to interrupt it. Calling
R_CheckUserInterrupt() every 107 or so operations in the current implementation would at
least save the unaware user the frustration of a lost workspace.

The algorithms presented here generate an ordered sample of items based on relative weights.
If the relative importance is instead given as inclusion probabilities, and the order of the
items is irrelevant, e.g., as in the application of survey sampling, the UPxxx() functions in
the sampling package (Tillé and Matei 2015) offer a viable alternative.
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Tillé Y (2006). “Sampling Algorithms.” In Sampling Algorithms, Springer Series in Statistics,
pp. 31–39. Springer New York. ISBN 978-0-387-30814-2 978-0-387-34240-5. 3.

http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.ipl.2005.11.003
http://www.sciencedirect.com/science/article/pii/S002001900500298X
http://dx.doi.org/10.1016/j.compenvurbsys.2013.03.004
http://dx.doi.org/10.18637/jss.v011.i03
http://dx.doi.org/10.18637/jss.v011.i03
https://CRAN.R-project.org/package=microbenchmark
http://krlmlr.github.io/wrswoR
https://CRAN.R-project.org/package=wrswoR.benchmark
https://CRAN.R-project.org/package=wrswoR.benchmark
https://www.R-project.org/
http://dx.doi.org/10.1093/biomet/69.3.493
https://github.com/yihui/tikzDevice
http://dx.doi.org/10.1016/j.spl.2013.01.002
http://dx.doi.org/10.1016/j.spl.2013.01.002
http://www.codercorner.com/RadixSortRevisited.htm
http://www.codercorner.com/RadixSortRevisited.htm


18 Accelerating weighted random sampling without replacement
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