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Abstract. Since modern transport services are becoming more flexible,
demand-responsive, and energy/cost efficient, there is a growing demand
for large-scale microscopic simulation platforms in order to test sophis-
ticated routing algorithms. Such platforms have to simulate in detail,
not only the dynamically changing demand and supply of the relevant
service, but also traffic flow and other relevant transport services. This
paper presents the DVRP extension to the open-source MATSim simu-
lator. The extension is designed to be highly general and customizable
to simulate a wide range of dynamic rich vehicle routing problems. The
extension allows plugging in of various algorithms that are responsible
for continuous re-optimisation of routes in response to changes in the sys-
tem. The DVRP extension has been used in many research and commer-
cial projects dealing with simulation of electric and autonomous taxis,
demand-responsive transport, personal rapid transport, free-floating car
sharing and parking search.
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1 Introduction

The recent technological advancements in ICT provide novel, on-line fleet man-
agement tools, opening up a broad range of possibilities for more intelligent
transport services: flexible, demand-responsive, safe and energy/cost efficient.
Significant enhancements can aid in both traditional transport operations, like
regular public transport or taxis and introduction of novel solutions, such as
demand-responsive transport (DRT) or personal rapid transport (PRT). How-
ever, the growing complexity of modern transport systems, despite all benefits,
increases the risk of poor performance, or even failure, due to the lack of precise
design, implementation and testing.

A traditional approach to test algorithms are benchmark instances (e.g.
[26,11]). A number of instances are made available, often on the web, and algo-
rithms to solve these problems are collected, together with performance num-
bers. To make performances comparable, all algorithms should be run on the



same computers, maybe provided by the team that is providing the benchmark.
And ideally there would be a “blind” part of the testing, where the submitted
algorithms are run on benchmark instances that were not published beforehand.

Benchmark instances have been successfully applied to analyse and com-
pare performances of algorithms solving different kinds of static Vehicle Routing
Problems (VRP) [10,31], where, in the most basic version of the problem, one
wants to determine minimal-cost vehicle routes, which begin at the depot, visit
a subset of the customers, and return to the depot.

The Dynamic VRP (DVRP, [24,2,23]) is different from the static problem in
that not all information relevant to the planning of the routes is known when the
routing process begins, and some information, such as expected travel times, may
be imprecise and stochastic. In the dynamic case, like in other online problems,
where algorithms need to run while the controlled system is evolving [8], the
use of static benchmark datasets is problematic. For example, with a static
benchmark dataset one needs to be really diligent not to make the algorithm
look into the future when the future (e.g. future requests) is already available in
the input data. Also, with a pre-computed benchmark, it is impossible to have
the system react to the control – for example cancelling requests when pick-ups
take too long. Moreover, even simple pre-planned event sequences may lead into
inconsistencies: for example, serving a request between its scheduled submission
and cancellation. Finally, the controlled system may be stochastic, in which case
there needs to be either an analytic description of the stochastic properties of the
system, or some way to generate random draws from the system. Consequently,
there has been no reference benchmarks for DVRP so far [23].

These above problems could potentially be addressed by theoretical ap-
proaches to the analysis of online optimisation algorithms, such as competetive
analysis [8]. However, their use is mostly limited to simplified cases, and for large
and complex real-life problems the simulation approach is often the only viable
way to evaluate, compare and refine dynamic algorithms [12]. For example, for
dynamic vehicle routing problems, one could have a simulation tool that gener-
ates requests and travel times randomly. A to-be-evaluated dispatch algorithm
then needs to direct a fleet of vehicles to serve these requests.

In order to be realistic, such tools have to model, in detail, not only the
dynamically changing demand and supply of the relevant service, but also traf-
fic flow and other existing transport services, including mutual interactions/re-
lations between all these components. Although several approaches have been
proposed [25,1,17,9], as far the authors know, no existing solutions provide large-
scale microscopic simulation that include all the components above. [28] provides
a recent review of existing agent-based simulators for DRT.

2 MATSim and DVRP

One possible solution to simulation-based benchmarking of online algorithms
is to use an existing transport/traffic simulator instead of creating one from
scratch. Such a tool should allow for detailed modelling of complex interdepen-
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Fig. 1. Integration of the DVRP module in the MATSim multi-iterative simulation
process. [14]

dencies between the three main components, that is customer demand, traf-
fic flow, and vehicle fleet, and be able to run large-scale simulation. MATSim
(Multi-Agent Transport Simulation) [15] offers a comprehensive set of features
that renders it suitable for benchmarking purposes. First of all, it is a multi-
agent activity-based microsimulation system for daily transport demand analy-
sis. Secondly, due to a fast and efficient traffic simulation, it is able to conduct
analyses for large scenarios, even concerning a whole country. Last but not least,
MATSim modularity and openness (open-source software) allow for extending
and adjusting its functionality to one’s needs.

To enable simulation of vehicle routing in MATSim, the DVRP (Dynamic
Vehicle Routing Problem) extension [19] has been developed. The extension
is designed to be highly general and customizable to model a wide range of
dynamic vehicle routing problems, including the so-called Rich DVRPs. Com-
pared to the classic VRP, the major model enhancements are: (a) one-to-many
(many-to-one) and many-to-many topologies, (b) multiple depots, (c) dynamic
requests, (d) request and vehicle types, (e) time windows for requests and vehi-
cles, (f) time-dependent stochastic travel times and costs, and (g) network-based
routing (including route planning, vehicle monitoring and diversion). The DVRP
extension is in direct interaction with the simulation during the execution of the
traffic flow simulation. Figure 1 shows the interaction of the main MATSim mod-
ules and the DVRP extension. One can easily extend the existing model even
further to cover other specific cases (see Section 5), which then require at least
a specific optimizer (see Section 4).

3 DVRP model and simulation

3.1 Basic model

The DVRP extension is responsible for modelling both demand and supply of
the transport service in question, while MATSim simulates them together with
other components of the overall transport system.

In the most basic setup, the DVRP problem is defined by a fleet of Vehicles
that serves submitted Requests. Requests come in over time, and not all requests



need to be known when the first request is served. In addition, the traffic state
is not fully known ahead of time, although travel time and cost estimates are
available.

The way a vehicle serves assigned requests is defined by its schedule that
consists of a sequence of Tasks, such as driving from one location to another, or
staying at a given location. Schedules are computed and managed by the opti-
miser algorithm (Sec. 4). In order to build a valid schedule, the optimiser needs
to take into account all constraints. Among them are network constraints, such
as turning or vehicle restrictions, and time constraints, such as time windows
or travel times. Therefore, when planning a drive from one place to another,
the optimiser uses one of the least cost path calculators available in MATSim.
It finds a minimum-cost path through the network, given the departure time,
vehicle type and cost function.

3.2 Dynamic agents

The standard day-to-day re-planning approach in MATSim [14] assumes that
agents can make complete daily activity plans only between simulation runs.
During simulation, plans are executed without any change. This renders MAT-
Sim’s standard implementation of agents not suitable for simulating Dynamic
Vehicle Routing Problems, where each driver agent (either human or robot) be-
haves dynamically and follows tasks coming continuously from the dispatcher.
In order to overcome this limitation, the dynamic agent was introduced as an
alternative to the standard pre-planned agent. The dynamic agent provides the
foundation for simulating dynamically behaving agents in a wide range of differ-
ent simulation scenarios, DVRP being only one of them.

In general, the dynamic agent can actively decide what to do at each simu-
lation step instead of using a pre-computed plan. It is up to the agent whether
decisions are made spontaneously or (re-)planned in advance. In some applica-
tions, the agent is fully autonomous and acts according to his/her desires, beliefs
and intentions, whereas in other ones, it may just follow orders systematically
issued from the outside, which is the case of dynamic vehicle routing.

Contrary to the standard MATSim agent executing a fixed plan of static
activities and legs, the dynamic agent performs dynamic activities and legs,
which are usually created on the fly, and can be modified at any time. Moreover,
dynamic activities and legs are simulated. For instance, when driving a car,
the agent can change the route, destination or even decide about picking up or
dropping off somebody on the way.

In the present paper, the dynamic agent will be used to represent the taxicab
driver. In general, however, it can be used to represent arbitrary agent types.

3.3 Simulation

Realistic simulation of DVRP requires a proper behavioural model of the taxi-
cab driver agent. At a higher level, this agent follows its dynamically changing
schedule. After completing one task, it switches to the next one. The new task



is then translated into a dynamic action, which is performed by the agent. For
instance, a pickup task is translated into a dynamic pickup activity, where the
driver agent first waits for the passenger agent (if not yet there), and then lets
it board the vehicle. In this specific case, simulation of the task includes a direct
interaction between agents. In other cases, the interaction may be indirect, e.g.
an agent moving through the network contributes together with other drivers to
the overall traffic.

While executing scheduled tasks, the driver can be continuously monitored
with task trackers that offer functionality similar to GPS navigation, such as
tracking its movement or predicting task completion time. Moreover, the com-
munication can be two-way. For instance, while executing a drive task, the agent
can be ordered to divert from its current destination.

The current implementation of the driver agent logic assumes that drivers
strictly follow the schedules which are managed centrally by the optimiser. How-
ever, the logic can be modified in order to give more autonomy to drivers (e.g.
planning routes, accepting/rejecting requests, specifying their availability). In
the most extreme case, drivers could fully decide for themselves, while the op-
timiser would act as a middleman, only establishing contact between customers
and drivers.

4 Optimiser

As in real-life online fleet management systems, the central element in the DVRP
extension is the optimisation algorithm. The optimiser reacts to events gener-
ated during simulation, which could be: request submissions, vehicle departures
or arrivals, etc. Additionally, it can monitor the movement of individual vehi-
cles, as well as query other sources of online information, e.g. current traffic
conditions. In response to changes in the system, the optimiser may update ve-
hicles’ schedules, either by applying smaller modifications or re-optimizing them
from scratch. Vehicles are notified about changes in their schedules and adjust
to them as soon as possible, including immediate diversion from their current
destinations.

The extension’s architecture allows the plugging in of various on-line vehicle
routing algorithms (optimisers). In order to plug an optimiser into the simu-
lator, it has to implement the base VrpOptimizer interface or one of its more
specialised subinterfaces. The base interface contains the following two methods:

– requestSubmitted(Request request)—called on submitting request; in
response, the optimiser either adapts vehicles’ schedules so that request can
be served, or rejects it.

– nextTask(Vehicle vehicle)—called whenever vehicles’s current task has
been completed and the vehicle will switch to the next planned task; this is
the last moment to make or revise the decision on what to do next.

This basic functionality can be freely extended. References to more complex
optimisers used for such services like taxi, shared taxi or demand-responsive
transport can be found in Sections 5 and 6.



In general, there are two ways of responding to the incoming events. They
can be handled either immediately (synchronously) or between simulation time
steps (asynchronously). In the former case, schedules are re-calculated (updated
or re-optimised) directly, in response to the calling of the optimiser’s methods.
This simplifies accepting/rejecting new requests, since the answer is immediately
passed back to the caller. In the latter case, all events observed within a sim-
ulation period are buffered and then processed collectively just before the next
simulation period begins. Mixing both approaches by answering immediately to
some events, and buffering other ones is also possible. Regardless of the approach
taken, special care must be given to thread safety when running multi-threaded
simulation and/or optimisation.

5 Example

This section discusses creating a DVRP optimiser and running a MATSim sim-
ulation for autonomous taxi (AT) service, which dispatches ATs in response to
continuously incoming taxi calls. The central part is the ATOptimizer class (List-
ing 1). As stated above, by implementing the standard VrpOptimizer interface,
the optimiser can react to two types of events: submission of a new request, and
switching to the next tasks. The former is handled in the requestSubmitted(

Request) method, where the optimiser schedules the newly submitted request.
The latter, in turn, is handled in the nextTask(Vehicle) method, which is called
when vehicle finishes its current task. In this case, the optimiser updates this
vehicle’s schedule, and then switches vehicle’s current task to the next one.

Listing 1. ATOptimizer.java

public class ATOptimizer implements VrpOptimizer {

public void requestSubmitted(Request request) {

scheduleRequest(request);

}

public void nextTask(Vehicle vehicle) {

updateScheduleAndSwitchToNextTask(vehicle);

}

...

}

The standard procedure of running a MATSim simulation consists of the
following four steps:

1. load a config file (containing all simulation parameters)
2. load scenario data (i.e. read data and initialise all object structures)
3. create and configure a simulation controller
4. run simulation

Because simulating ATs requires the DVRP extension to be added, the base
scheme has to be extended with loading the fleet data and then adding the im-
plemented optimiser to the controller (between steps 3 and 4). Listing 2 presents



a code that configures and runs AT simulation. In this example, all taxi trips
will be served by fleet of ATs according to the optimisation algorithm defined
in the ATOptimizer class.

Listing 2. AT simulation

Config config = loadConfig(); // (step 1)

Scenario scenario = loadScenario(config); // (step 2)

Controler controller = new Controler(scenario); // (step 3)

Fleet fleet = loadFleet();

addVrpOptimizer(controller, "taxi", fleet, ATOptimizer.class);

controller.run(); // (step 4)

Complete, executable examples presenting the use of the DVRP extension to
simulate different on-demand transport services can be found in the following
places in the MATSim project:

– RunOneTaxiExample (see http://matsim.org/javadoc → dvrp) – the most
basic example on dispatching a single taxi to serve incoming requests

– RunRobotaxiExample (see http://matsim.org/javadoc→ av) – a robotaxi
(AV taxi) fleet is used to replace all private car trips of a random population
in the city of Cottbus, Germany

– RunTaxiExample (see http://matsim.org/javadoc→ taxi) – used to bench-
mark the taxi optimisers available in the taxi extension; a fleet of taxis in
dispatched to serve taxi calls in the city of Mielec, Poland

– RunSharedTaxiExample (see http://matsim.org/javadoc→ taxi) – a sim-
ple shared taxi algorithm for up to two passengers with different origins and
destinations set in Braunschweig, Germany.

– RunTaxibusExample (see http://matsim.org/javadoc → taxi) – an exam-
ple for a DRT shuttle system where passengers want to reach a train station
in Braunschweig, Germany.

6 Existing applications

The development of the DVRP testbed originated in the simulation of taxi fleets
and was more recently extended to larger fleets of AVs and demand-responsive
transport. One first use case was the simulation of taxi demand in the Polish city
of Mielec. For this scenario, different dispatch algorithms have been developed
and tested. The model has been used for comparison of off-line and on-line taxi
dispatching optimization algorithms [18,22] and simulation of electric taxicab
fleets [3].

Based on the actual demand for taxi trips in Berlin [6] and Barcelona [30],
several different taxi dispatch algorithms were measured in their performance
under different demand levels. The results suggest that First-In-First-Out algo-
rithms are capable of handling typical taxi demand levels reasonably well. In
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sudden demand peaks, however, strategies focusing on minimizing idle mileage
for vehicles (thus maximising throughput) rather than customer waiting times
perform far better in terms of waiting time for the majority of passengers. Also
approaches based on solving a linear assignment problem were experimented
[20]. The strategy produced better results for both drivers (less idle driving) and
passengers (less waiting) than rule-based approaches, but is more demanding in
terms of computational requirements.

Another field of usage of the DVRP testbed is the investigation of demand-
responsive transport (DRT) systems, which generally incorporate the transporta-
tion of several passengers with different destinations at the same time. The con-
ceptual use cases for them are wide ranged and can possibly include one-to-many
or many-to-many relations with different kinds of operational schemes in terms
of spatial limitation or usage of stops and pre-bookings.

In one case study, a pre-booked dial-a-ride DRT service for commuter transit
of a car production plant was developed and assessed for the Wolfsburg region
in central Germany. With car traffic to and from the production plant causing
considerable congestion during peak hours, a high-quality DRT service picking
up passengers at home and dropping them off at their workplace could possibly
help to reduce congestion around arterials. To achieve this, while keeping the
commuting times of DRT users at an acceptable level, a compromise between
vehicle capacity, waiting times and in-vehicle travel times was found [7]. Using
8-seat vehicles, travel times of DRT passengers were simulated to be only slightly
higher than using private cars.

Further DRT applications include an application to evaluate several DRT
schemes for a thinly populated area in Australia [27]. Based on the same infras-
tructure, a DRT service that includes both passenger and parcel distribution has
also been simulated [29]. A possible DRT system using public transport stops
and allowing passengers with common trip patterns to share rides was evaluated
on a pseudo-realistic scenario of the Cottbus region (Germany)[16].

More recently, the ability to simulate very large fleets of (automated) taxis
have been assessed. The largest scenario calculated so far is based on the inner-
city car trips in Berlin. These accumulate to roughly 2.5 million trips per day
and are usually handled by a fleet of roughly 1.2 million privately owned cars. In
[5,4] these trips were shifted from car mode to shared autonomous vehicle (SAV).
While this resembles an extreme scenario (no more private cars), it demonstrates
the overall potential of SAVs and opens up further branches of research. In order
to cope with a fleet size of hundreds of thousands of vehicles, vehicle dispatch is
based on rule-based heuristics that either assign the vehicle closest to a request
(in times when there is an oversupply of vehicles) or assign a vehicle to the closest
request. Zonal registers were used to pre-filter vehicles and requests close to each
other. Results suggest that a fleet of 100 000 to 110 000 vehicles is sufficient to
replace all car trips, leading to a possible fleet reduction of 90 %. Waiting times
for passengers can be kept in a range between 3 to 5 minutes for the majority of
customers even during peak times. On average, vehicles spend more than 80%
of the driven mileage with a customer on board. Pick-up trips are generally



longer in the outskirts of the city [4], leading to the question whether offering
such a service in less-densely populated areas is of commercial or communal
interest. During further research, the possible positive impact of an improved
traffic flow of automated vehicles has been assessed, concluding that a minor
increase in traffic flow capabilities of SAVs would be enough to (over)-compensate
the negative congestion impact of the additional empty trips of SAV fleets. [21]

The interplay of multiple dynamic AV taxi services has been tested in combi-
nation with a responsive demand in [13]. A coherent framework of utility scoring
for traditional modes of transport, as well as for autonomous vehicles has been
set up, such that the artificial simulation population is able to choose between
conventional means of transport and the new services. On the supply side, single-
passenger SAVs have been offered in competition to multi-passenger (“pooled”)
AVs. Both services used a dispatching heuristic by Maciejewski and Bischoff [5],
while the latter one aggregated up to four yet unserved requests with origin and
destination locations not being farther apart than 400 m. The study showed that
with MATSim and DVRP it is possible to model coherent demand reactions to
new forms of dynamic transportation. While both AV offers were used at peak-
hours, customers favoured the pooled AVs at off-peak hours, where they were
able to weigh the slightly increased travel times but low prices of the pooled
service against considerably higher prices (but shorter travel times) of the AV
taxi service.

7 Conclusions

This paper presents the current functionality and typical use cases of the DVRP
extension. By providing an abstraction layer for modelling of fleet management
operations, the extension allows for simulation of dynamic vehicle routing in
MATSim. Since 2011, the extension has been actively developed and continu-
ously new features are being added. Currently, our efforts are focused on: (a) sim-
plifying the process of plugging in custom-made VRP optimisers and models by
means of dependency injection, (b) speedup and parallelisation of large-scale
simulations, and (c) standardisation of the DVRP interfaces. By being able to
simulate large and complex transport systems at the microscopic level of detail,
and offering code modularity and openness, MATSim and DVRP can serve as a
testbed platform for dynamic vehicle routing problems.
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23. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle
routing problems. European Journal of Operational Research 225(1), 1 – 11 (2013),
http://www.sciencedirect.com/science/article/pii/S0377221712006388

24. Psaraftis, H.N., Wen, M., Kontovas, C.A.: Dynamic vehicle routing problems:
Three decades and counting. Networks 67(1), 3–31 (2016)

25. Regan, A., Mahmassani, H., Jaillet, P.: Evaluation of dynamic fleet management
systems: Simulation framework. Transportation Research Record 1645, 176–184
(1998)

26. Reinelt, G.: TSPLIB95. https://www.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95/ (accessed 2017-02-16)
27. Ronald, N.: Yarrawonga and mulwala: Demand-responsive transportation in re-

gional victoria, australia. In: Horni, A., Nagel, K., Axhausen, K.W. (eds.) The
Multi-Agent Transport Simulation MATSim, chap. 95. Ubiquity, London (2016),
http://matsim.org/the-book

28. Ronald, N., Thompson, R., Winter, S.: Simulating demand-responsive transporta-
tion: A review of agent-based approaches. Transport Reviews 35(4), 404–421 (2015)

29. Ronald, N., Yang, J., Thompson, R.G.: Exploring co-modality using on-demand
transport systems. Transportation Research Procedia 12, 203 – 212 (2016), http:
//www.sciencedirect.com/science/article/pii/S2352146516000600

30. Salanova, J.M., Romeu, M.E., Amat, C.: Aggregated modeling of urban taxi ser-
vices. Procedia - Social and Behavioral Sciences 160, 352 – 361 (2014), http:

//www.sciencedirect.com/science/article/pii/S187704281406248X

31. Toth, P., Vigo, D.: Vehicle Routing. Society for Industrial and Applied Math-
ematics, Philadelphia, PA (2014), http://epubs.siam.org/doi/abs/10.1137/1.
9781611973594

View publication statsView publication stats

http://www.sciencedirect.com/science/article/pii/S0377221712006388
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://matsim.org/the-book
http://www.sciencedirect.com/science/article/pii/S2352146516000600
http://www.sciencedirect.com/science/article/pii/S2352146516000600
http://www.sciencedirect.com/science/article/pii/S187704281406248X
http://www.sciencedirect.com/science/article/pii/S187704281406248X
http://epubs.siam.org/doi/abs/10.1137/1.9781611973594
http://epubs.siam.org/doi/abs/10.1137/1.9781611973594
https://www.researchgate.net/publication/318133484

