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Abstract 

 
This paper reports the findings of a systematic study using Monte Carlo experiments and a real dataset 

aimed at comparing the performance of various ways of specifying random taste heterogeneity in a 

discrete choice model. Specifically, the analysis compares the performance of two recent advanced 

approaches against a background of four commonly used continuous distribution functions. The first of 

these two approaches improves on the flexibility of a base distribution by adding in a series 

approximation using Legendre polynomials. The second approach uses a discrete mixture of multiple 

continuous distributions. Both approaches allow the researcher to increase the number of parameters as 

desired. The paper provides a range of evidence on the ability of the various approaches to recover 

various distributions from data. The two advanced approaches are comparable in terms of the likelihoods 

achieved, but each has its own advantages and disadvantages. 

 
Keywords: Random taste heterogeneity; Mixed logit; Method of sieves; Mixtures of distributions. 

 

 

 

1. Introduction 

 

The widespread use of models such as the Mixed Multinomial Logit (MMNL) model 

(cf. Revelt and Train, 1998; Train, 1998; McFadden and Train, 2000; Hensher and 

Greene, 2003; Train 2003) has made the issue of choosing a mixing distribution very 

important. In these models we must specify a mixing distribution, i.e. a distribution of 

random parameters, that may be interpreted as representing random taste heterogeneity. 

The trouble is that we never observe these random parameters and that we mostly have 

little a priori information about the shape of their distribution except possibly a sign 

constraint. On the other hand, the choice of a specific distribution may seriously bias 

results if that distribution is not suitable for the data (cf. Hess et al., 2005; Fosgerau, 
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2006). This kind of misspecification is particularly damaging when the distribution is 

itself of interest as is the case in estimation of the value of travel time, the response to 

tolls, adoption of a new mode, etc.
1
  

The point of this paper is to provide a comparison of two advanced approaches for the 

representation of random taste heterogeneity in discrete choice models. A prominent 

feature of the paper is the graphical evidence we provide on the ability of the various 

approaches to approximate various challenging distributions. The range of possible 

shapes of the mixing distribution is determined by a number of deep parameters to be 

estimated. The two advanced approaches in this paper are ways of specifying the mixing 

distribution with a variable number of deep parameters such that an arbitrary level of 

flexibility may be achieved. In the present paper, we limit our attention to univariate 

mixing distributions; the use of multivariate distributions is a topic for further research.  

Various authors have estimated a range of parametric distributions, aiming to gauge 

the advantages of distributions with a high degree of flexibility (see for example 

Hensher and Greene, 2003; Train and Sonnier, 2005; Hess et al., 2006a; Rigby et al. 

2009; Rigby and Burton, 2006; Scarpa et al., 2008). However, although different 

distributions have different properties, flexibility is generally determined by the number 

of parameters for the distributions. A two-parameter distribution corresponds to just a 

two-dimensional subset of some space of distributions. So, while it may be possible to 

find a low-parameter parametric distribution that fits well in a specific situation, it will 

not be more flexible than other parametric distributions with the same number of 

parameters. This acts as our main motivation for exploring alternative ways of 

representing random taste heterogeneity. 

The method of sieves is a natural choice for generating flexible distributions. 

Consider some model containing an unknown function to be estimated, where, in the 

present case, the unknown function is the unknown density of a taste coefficient α . The 

unknown function can be thought of as a point in an infinite-dimensional parameter 

space. Rather than trying to estimate a point in an infinite-dimensional space, one 

estimates over an approximating finite-dimensional parameter space. As the dimension 

of the approximating space grows, the resulting estimate approaches the true unknown 

function under quite general circumstances (Chen, 2006). Additionally, the dimension 

of the approximating space can increase with the size of the dataset such that better 

approximations to the true function are obtained for larger datasets. In econometrics, the 

resulting estimators are known as semi-nonparametric (Galant and Nychka, 1987).  

There are various ways of approximating an infinite-dimensional space of 

distributions by finite-dimensional spaces. In this paper, we shall confine attention to 

just two convenient possibilities and we shall fix the number of parameters to be 

estimated, corresponding to the dimension of the approximating space, at low values. 

What we obtain is thus just some very flexible distributions with more parameters than 

usual. The distributions can be extended with more parameters as desired in a very 

straightforward way, as discussed in Section 2.  

The first approach we consider is that described by Fosgerau and Bierlaire (2007). 

The main feature of this approach is that it can use any continuous distribution as its 

base. This is then extended by means of a series expansion, in our case using Legendre 

polynomials, such that any continuous distribution can be approximated at the limit, 

                                                 
1
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providing it has support within the support of the base distribution. The number of 

parameters can be increased one by one by increasing the number of terms used in the 

series expansion. Fosgerau and Bierlaire (2007) present the technique as a test of the 

appropriateness of the base distribution, used by testing the model with additional terms 

against the base model. Here, we simply use the resulting model as a flexible means of 

retrieving random taste heterogeneity.  

The other approach that we consider employs a mixture of distributions (MOD) 

estimator, which is another example of the use of the method of sieves. Specifically, we 

make use of a discrete mixture of Normal distributions with different means and 

variances that are to be estimated, where such a mixture of Normals can approximate 

any continuous distribution. In existing work, Coppejans (2001) considers the MOD 

estimator for the case of cross-sectional binary choice data, deterministic taste 

coefficients but randomly distributed error terms, paralleling the estimator of Klein and 

Spady (1993). As such, our use of the idea of a finite mixture of Normals is somewhat 

different. Another discussion on mixtures of Normal distribution is given by Geweke 

and Keane (2001).  

Both approaches have the flexibility of allowing for multiple modes in a distribution. 

This can be a significant advantage compared to the typically used distributions (e.g. 

Normal, Lognormal, ...) that are restricted to a single mode, given the possibility that the 

sample may be composed of distinct groups with different behaviour.  

In this paper, we present evidence from two separate studies. In the first part of the 

paper, we conduct a systematic study using Monte Carlo experiments. Here, we show 

that the two flexible approaches are both able to approximate well a range of true 

distributions, even though the number of deep parameters is kept reasonably low. The 

two approaches do about equally well in outperforming four commonly used 

distributions over a range of situations. Hence, we recommend the use of a flexible 

approach in applied modelling work, at least as a guide to the selection of a simpler 

distribution. The choice between the two flexible approaches may be guided by 

considerations on bias and variance, which seem to favour the Fosgerau & Bierlaire 

approach, or by the ability of the MOD estimator to approximate point masses.  

In the second part of the paper, we provide evidence on the methods using data from 

the Swiss value of time study. Here we simultaneously estimate flexible distribution for 

four coefficients, which we believe is a first. We find the application of the flexible 

approaches to be illuminating in that it reveals features of the data that could not be 

revealed using the simpler approaches. The MOD approach did run into a limitation in 

that it turned out to be not computationally possible to estimate beyond a mixture of two 

normals for each coefficient. On the other hand, a larger number of parameters could be 

estimated with the Fosgerau & Bierlaire approach, with no limit in sight. 

We do not provide theoretical results concerning consistency and asymptotic 

properties of the estimators of the distribution of α that we employ. Fosgerau and 

Nielsen (2006) prove consistency of an estimator of the distribution of α in a case when 

the distribution of the error terms
2
 is unknown. It seems feasible to extend this result to 

the case of a MMNL model with an unknown mixing distribution.  

The paper is organised as follows. The following section presents the mathematical 

details of the two advanced approaches used in this paper. This is followed in Section 3 

by a discussion of the results from the Monte Carlo studies, and a discussion of the 
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results from the application on real data in Section 4. Finally, Section 5 presents the 

conclusions of the analysis. 

 

 

2. Methodology 

 

In this section, we discuss the two main methods compared in this analysis, with the 

Fosgerau-Bierlaire approach described in Section 2.1, and the MOD approach described 

in Section 2.2. This is followed in Section 2.3 by a brief description of various 

continuous distributions used in our experiments. 

 

2.1. Fosgerau & Bierlaire approach 

 

Let Φ be the standard Normal cumulative distribution function with density φ  and let 

G be an absolute continuous distribution with density g. We take Φ as the base 

distribution with which we seek to estimate the true distribution G.
3
 

Since both Φ and G are increasing, it is possible to define Q(x)=G(Φ-1
(x)) such that 

Q(Φ(β))=G(β). Furthermore, Q is monotonically increasing and ranges from 0 to 1 on 

the unit interval. Thus, Q is a cumulative distribution function for a random variable on 

the unit interval. Denote by q the density of this variable, which exists since G is 

absolute continuous. Then we can express the true density as g=q(Φ)φ . 

Consider now a discrete choice model P(y|v,α) conditional on the random parameter α  

which has the true distribution G. Then the unconditional model is 

 

( ) ( ) ( )P y v P y v g d
α

α α α| = | ,∫  

1( ( )) ( )
x
P y v x q x dx−= | ,Φ∫  (1) 

 

Thus the problem of finding the unknown density g is reduced to that of finding q, an 

unknown density on the unit interval. The terms Φ-1
(x) are just standard Normal draws 

used in numerical simulation of the likelihood (cf. Train, 2003). 

Now, let Lk be the k
th

 Legendre polynomial on the unit interval (cf. Bierens, 2007; 

Fosgerau and Bierlaire, 2007). These functions constitute an orthonormal base for 

functions on the unit interval
4
 such that ∫LkLk’ is equal to 1 when k=k’ and zero 

otherwise. We can then write: 

 
2

2

(1 )
( )

1

k kk

kk

L
q x

γ

γ

+
= .

+

∑
∑

 (2) 

 

Squaring the numerator ensures positivity, while the normalisation in the denominator 

ensures that q(x) integrates to 1. Thus this expression is in fact a density. Bierens (2007) 

proves that any density on the unit interval can be written in this way. 

                                                 
3
 It is generally appropriate to choose a base distribution that is a priori thought to be a likely candidate 

for the true distribution. We choose the Normal distribution to have consistency with the MOD approach. 
4
 See Bierens (2007) for a precise definition of this and following statements in this paragraph. 
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The choice of Legendre polynomials is not a necessity. There are many other bases 

for functions on the unit interval that could have been used. Legendre polynomials are 

convenient because they have a recursive definition that is easily implemented on a 

computer.
5
 

To define the estimator that we use in this paper, we simply select a cut-off K for k, 

such that we only use the first K terms of (2). Thus we have a representation of a 

flexible qK with K parameters and a corresponding cumulative distribution function QK. 

This is inserted into equation (1) to enable estimation by maximum likelihood. For more 

details on this approach, see Fosgerau and Bierlaire (2007). 

Figure 1 shows cumulative distribution functions (CDF) for various parameter 

combinations of a Q3(Φ) distribution, where the base distribution Φ is a standard 

Normal distribution and the three γk parameters are set to all combinations of -1, 0 and 

1. As the figure shows, this general form is able to take a variety of shapes. 
 

  
Figure 1: CDF plots for various distributions. 

 

2.2. Mixtures of distributions approach 

 

In our MOD approach, we combine a standard continuous mixture approach with a 

discrete mixture approach, as described for example by Hess et al. (2006b) and, in 

another context, Coppejans (2001). Specifically, the mixing distribution is itself a 

discrete mixture of several independently distributed Normal distributions. We define a 

set of mean parameters, µk and a corresponding set of standard deviations, σk, with 

k=1,…,K. For each pair (µk, σk), we then define a probability πk, where 0 1
k

kπ≤ ≤ , ∀ , 

and where 
1

1
K

kk
π

=
=∑ . A draw from the mixture distribution is then produced on the 

basis of two uniform draws u1 and u2 contained between 0 and 1, where we get: 

 

( )
1 1

1

1 2 1ifu uµ σα π−

,= Φ , <  

( )
1

1

1 2
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if with 1 1
k k

k k
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−

−

,
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( )
1

1
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1
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K K
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where 
1

k kµ σ
−

,Φ  is the inverse cumulative distribution of a Normal with mean µk and 

standard deviation σk. 

With k Normal terms, the resulting distribution allows for k separate modes, where the 

different modes can differ in mass. However, the flexibility of this approach is not 

limited to allowing for multiple modes, the method also allows for saddle points in a 

distribution. 

Furthermore, it is possible to have point-mass at a specific value, in which case the 

associated standard deviation parameter becomes 0. This property of the MOD approach 

is both a blessing and a curse. Coppejans (2001) enforces a lower bound on the variance 

of the normally distributed components in order to ensure that the estimated distribution 

is smooth and to prove asymptotic convergence to the true distribution as the number of 

Normal distributions increases with sample size. Thus imposing a lower bound on the 

variances is desirable when the true distribution is thought to be smooth and it avoids 

the estimated distribution becoming degenerate. 

It is difficult to make a case for mass-points in a distribution of preference-

parameters. However, there is one exception, namely a heightened mass at zero. This is 

useful in the representation of taste heterogeneity for attributes that some individuals are 

indifferent to, a concept discussed for example in the context of the valuation of travel 

time savings (VTTS) by Cirillo and Axhausen (2006). It can also be useful in the 

context of attribute processing strategies in SP data, with some respondents ignoring 

certain attributes, such that they obtain a zero coefficient (cf. Hensher, 2006). In the 

results below we do not impose a lower bound on the variances. 
 

 
Figure 2: CDF plots for various mixtures of two Normal distributions. 

 

An illustration of the flexibility of the MOD approach is given in Figure 2, which 

shows cumulative distribution functions (CDF) for various examples of a mixture of 
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two Normal distributions. In the first example, the only parameter that changes is π1 

(and hence by extension also π2), where, with π1=1, we have a standard Normal 

distribution, with the shape gradually changing as we increase the mass for the second 

Normal, π2. The second example illustrates the potential of the method to retrieve a 

point mass at a given value. Here, the standard deviation for the second support point, σ2 

is gradually decreased, where, with σ2=0, we get a point mass of 50%  at a value of 0 

(µ2=0), with the CDF turning into a step function at a value of 0. In the third example, 

the two support points have mean values at -2 and 2, and share a common standard 

deviation, while π1= π2=0.5. As we gradually increase the standard deviations, we move 

from a distribution with two separate peaks (with little mass in between) to a 

distribution looking like a Normal with a very high variance. In the final example, we 

again have two Normals with equal standard deviation, fixed at 0.5, along with equal 

probabilities π1= π2=0.5, and a mean for the first Normal fixed at -2. As the mean of the 

second Normal is gradually decreased from its initial value of 2, we move from a 

distribution with two separate peaks to a distribution approximating a Normal. 

 

2.3. Other distributions 

 

Along with the approaches from Section 2.1 and Section 2.2, we also estimated 

models making use of a set of standard continuous distributions, as commonly used in 

Mixed Logit analyses. Here, we limit the set of distributions to the Normal, the 

Uniform, the symmetrical Triangular and the Johnson SB. 

 

 

3. Experiments on simulated data 

 

This section presents the results from our systematic Monte Carlo analysis. We first 

present the empirical framework used in this analysis (Section 3.1). We then briefly 

discuss the issue of the number of parameters (Section 3.2) before discussing the actual 

results (Section 3.3). 

 

3.1. Generation of data 

 

The setup for this analysis makes use of binary choice panel data. The conditional 

indirect utility function for the first alternative is set to zero, while, in choice situation t 

for respondent n, the utility of the second alternative is given by: 

 

1
n t n n t n t

U vα ε
µ

, , ,= + +  (4) 

 

where ε follows a logistic distribution, vn,t is an observed quantity, and αn is an 

individual-specific i.i.d. latent random variable. This is the simplest possible setup that 

allows us to identify the distribution of an unobserved random parameter. This 

simplicity is a virtue, since we can then focus on the issue at hand, namely the ability of 
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different estimators to recover a true distribution. The use of panel data is crucial, since 

otherwise it becomes hard to distinguish the distribution of α from the distribution of ε. 

We simulate datasets of a size that is realistic in applied situations, containing 1,000 

“individuals" making 8 “choices" each. We generate data for seven different choices of 

true distribution for αn, with details given below. The observed variable v is drawn from 

a standard Normal distribution, while the scale parameter µ is fixed at a value of 2. 

It is important to realise that results from a single experiment can be influenced by 

randomness, such that it is impossible to reach general conclusions. Therefore we 

generate 50 datasets for each distribution.
6
 Estimating the models many times for each 

true distribution of α allows us to take into account the fact that the estimates are 

random variables obtained as functions of random data. Altogether, we generate 50 

datasets for each of the seven true distributions, leading to a total of 350 datasets. 

The seven true distributions were chosen with the aim of representing a wide array of 

possibilities that challenge our ability to estimate them. An important point here is to 

select the distributions such that they lie well within the support of vn,t which is standard 

Normal. Thus we have selected the distributions to lie mostly within the interval [-2,2].
7
  

Specifically, we use the following seven data generating processes: 

 

- DM(2) data: Discrete mixture with two support points, α=-1 with probability 

π1=0.5, and α=1 with probability π2=0.5 

- DM(3) data: Discrete mixture with three support points, α=-1, α=0 and α=1, 

with equal mass of π1= π2= π3=⅓ 

- LN data: Lognormal shifted to the left, generated by α=exp(u)/2-1, where 

u~N(0,1) 

- N data: Standard Normal, α ~N(0,1) 

- NM data: Normal with point mass at zero. With probability π1=0.8, α ~N(-1,1), 

and with probability π2=0.2, α=0 

- 2N data: Mixture of two Normals, with π1=0.5, α ~N(-1,0.5), and with π2=0.5, α 

~N(1,0.5) 

- U data: Uniform distribution, α ~U[-1,1] 

 

3.2. The number of parameters 

 

The Normal, Uniform and symmetrical Triangular distributions all have just two 

parameters to be estimated, while the Johnson SB distribution is more flexible with four 

parameters to be estimated. In addition there is the parameter µ for the scale of the 

model. The MOD approach has three parameters for each Normal distribution used 

(location, variance and mass), minus one since the masses sum to one. With a mixture 

of two Normals there are thus six parameters to be estimated. Therefore we also elect to 

use a total of six parameters for the Fosgerau-Bierlaire approach. Generally, we expect 

the ability of a distribution to approximate an arbitrary true distribution to increase with 

the number of parameters. Thus we expect the worst performance from the Normal, 

                                                 
6
 With real data it is possible to use bootstrap methods to generate confidence intervals around the 

estimated distribution. These confidence intervals can then be used to learn how much is determined from 

the data about the estimated distribution. 
7
 This is an issue in real applications, where data may not be sufficiently rich to identify distributions of 

interest. Such a failure may be hard to detect, see Fosgerau (2006) for discussion of this point. 
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Uniform and symmetrical Triangular distributions because they depend on fewer 

parameters, while the best performance is expected from the Fosgerau-Bierlaire 

approach and the MOD approach, since these can rely on more parameters. 

 

3.3 Results 

 

In this section, we discuss the results of the Monte Carlo analysis carried out to 

compare the different methods for representing random taste heterogeneity. All 

estimation is carried out in Ox (Doornik, 2001) using customised code.
8
 Altogether we 

have estimated six models
9
 on each of seven datasets, with fifty replications of each 

dataset. Given the high number of models estimated, only summary results across runs 

can be presented here. The two advanced models are identified as M(MOD) (mixture of 

Normals) and M(FB) (Fosgerau-Bierlaire approach), while the four more basic models 

are identified as M(N) (Normal), M(U)(Uniform), M(T) (symmetrical Triangular) and 

M(SB) (Johnson SB). In addition, a standard Multinomial Logit (MNL) model was 

estimated on the data. 

Two different criteria are used in the presentation of the results. These are the ability 

to recover the shape of the true distribution and the estimated log-likelihoods. A 

combination of tables and graphs are used in the presentation of the results. 

 

- The performance of the various methods in terms of the recovery of the shape of 

the true distribution is illustrated with the help of CDF plots for the true and 

estimated distributions, where, for the latter, the mean CDF across runs is 

presented alongside a pointwise 90%  confidence band for the CDF. The various 

plots are shown in Figure 3 for the DM(2) data, Figure 4 for the DM(3) data, 

Figure 5 for the LN data, Figure 6 for the N data, Figure 7 for the NM data, Figure 

8 for the 2N data, and Figure 9 for the U data. 

- These CDF plots are the main result of the analysis as they directly inform on the 

ability to estimate the unknown true distributions. Vertical distances in the CDF 

plots correspond to the L∞ norm of the difference between true and estimated 

CDFs; indeed, in the space of CDFs, convergence of estimates to the true 

distribution, as the number of terms increases, takes place in L∞ norm. We have 

chosen to present CDFs rather than densities, since many of the true distributions 

that we use have point masses and hence no ordinary densities. Moreover, 

convergence in L∞ norm is easier to interpret visually than convergence in L1 

norm, which corresponds to densities. 

- Table 1 shows the final log-likelihood (LL) obtained in estimation of the various 

models. Here, we give the mean LL obtained across the fifty runs in each model 

and dataset combination, along with the 5
th

 and 95
th

 percentiles of the distribution 

of the LL measure across runs, giving an indication of the stability of the methods. 

 

 

 

                                                 
8
 Available from the authors on request. 

9
 One for each distribution 
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Table 1: Model fit statistics across datasets and models. 

Data  MNL M(N) M(SB) M(T) M(MOD) M(U) M(FB) 

5
th
 perc. -4707.76 -3708.26 -3565.42 -3697.21 -3565.34 -3644.74 -3579.57 

mean -4643.54 -3642.45 -3497.32 -3633.74 -3497.10 -3583.83 -3515.96 DM(2) 

95
th
 perc. -4575.35 -3567.01 -3428.72 -3558.48 -3428.74 -3510.46 -3444.96 

5
th
 perc. -4456.99 -3866.13 -3846.47 -3860.49 -3845.40 -3849.76 -3845.82 

mean -4380.80 -3798.70 -3781.05 -3793.08 -3779.00 -3782.95 -3779.66 DM(3) 

95
th
 perc. -4313.91 -3741.58 -3723.33 -3736.87 -3722.72 -3725.52 -3722.66 

5
th
 perc. -4263.78 -3860.01 -3781.90 -3874.35 -3782.62 -3897.44 -3784.43 

mean -4165.97 -3792.01 -3713.90 -3805.26 -3716.43 -3827.84 -3718.88 LN 

95
th
 perc. -4077.56 -3720.00 -3650.01 -3729.76 -3651.23 -3749.12 -3652.85 

5
th
 perc. -4555.32 -3821.56 -3821.31 -3822.62 -3821.56 -3834.73 -3820.58 

mean -4495.58 -3767.88 -3767.63 -3768.38 -3766.50 -3778.44 -3766.68 N 

95
th
 perc. -4444.89 -3713.47 -3713.51 -3714.31 -3712.40 -3722.20 -3712.29 

5
th
 perc. -4078.98 -3537.69 -3525.39 -3534.45 -3522.67 -3531.87 -3522.63 

mean -3990.94 -3456.36 -3446.07 -3455.45 -3442.26 -3454.97 -3442.83 NM 

95
th
 perc. -3904.82 -3370.11 -3363.78 -3368.02 -3361.03 -3370.84 -3360.67 

5
th
 perc. -4748.22 -3698.21 -3669.81 -3692.69 -3669.53 -3672.41 -3669.80 

mean -4687.77 -3616.24 -3584.53 -3611.91 -3583.00 -3591.84 -3583.47 2N 

95
th
 perc. -4616.72 -3542.69 -3505.81 -3538.92 -3503.21 -3516.07 -3503.19 

5
th
 perc. -4170.72 -3936.54 -3935.41 -3937.16 -3935.38 -3939.82 -3935.76 

mean -4088.26 -3855.56 -3850.91 -3853.54 -3850.60 -3851.85 -3850.78 U 

95
th
 perc. -4025.88 -3778.32 -3776.16 -3776.89 -3775.04 -3776.54 -3775.61 

 

We will now proceed with a discussion of the results obtained in the various datasets. 

 

DM(2) data: For the data generated by a discrete mixture with two support points, we 

expect the M(MOD) and the M(SB) to perform best due to their ability to become 

degenerate. The M(MOD) can accommodate the DM(2) distribution with two 

Normals with zero variance, while the M(SB) can have infinite variance for the 

Normal distribution. 

Figure 3 shows that M(MOD) and M(SB) are able to reproduce the true 

distribution quite closely. The M(SB) finds the two mass points and puts almost all 

the mass there through a very large variance of the underlying Normal 

distribution. The same goes for the M(MOD), which assigns very low variances to 

the two Normal distributions at the two mass points. The M(FB) is able to indicate 

roughly the shape of the true distribution but is seemingly not able to generate 

very sharp kinks in the estimated CDF. Note that the estimated confidence bands 

are somewhat tighter for the M(FB) than for the M(MOD). The approximations 

given by M(U), M(T) and M(N) are not able to reveal much about the true 

distribution except its location and range. 
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Figure 3: CDF plots for α in models estimated on DM(2) data. 

 

DM(3) data: Now we are looking at a distribution with three mass points. It is clearly 

outside the capabilities of all the estimated models to reproduce such a shape, 

except possibly the M(FB) which may have more than two modes with five 

parameters, the same number of parameters as a mixture of two normals. We 

therefore replace the mixture of two normals by a mixture of three Normals. This 

introduces three additional parameters (location, variance and mass), so we also 

increase the number of parameters in the M(FB) model by three. Given the data, 

this increase in parameters does not yield a significant improvement of the mean 

log-likelihood. But it does allow the M(MOD) to reproduce the true distribution 

under investigation, in principle perfectly.  

Figure 4 now shows, as expected, that none of the four simplest distributions are 

able to provide any information about the true distribution other than its location 

and rough range. Both the M(MOD) and the M(FB) with the increased number of 

parameters are able to indicate the shape of the true distribution. The M(MOD) is 

able to concentrate more of the mass near the three mass points of the true 

distribution but again at the cost of larger confidence bands. In other words, the 

M(MOD) is able to estimate the true distribution with smaller bias but larger 

variance. 

The log-likelihoods fits obtained by M(MOD) and M(FB) are best, but not much 

better than M(SB) and M(U). 
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Figure 4: CDF plots for α in models estimated on DM(3) data. 

 

 
Figure 5: CDF plots for α in models estimated on LN data. 

 

LN data: For the data generated by a Lognormal distribution, we find in Figure 5 that 

the two advanced distributions along with the M(SB) are able to recover the 

lognormal shape quite well. This is quite remarkable, since it implies that a true 
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continuous distribution can be recovered even though it is quite different from the 

Normal distribution which is used as a base. This should be important in applied 

work where a priori information about the shape of the true distribution is not 

available. The M(SB) is even able to find the lower bound on the true distribution. 

These models produce much better log-likelihoods than the simpler models based 

on normal, triangular and uniform distributions. 

 

N data: For the data generated with a standard Normal distribution we expect the 

M(N), M(MOD) and M(FB) to do well, since they nest the true model. Also the 

M(SB) should do well by letting the range of the distribution be large. This is 

confirmed by the results in Figure 6. In fact, even the Triangular distribution is 

able to reproduce the shape of the Normal distribution quite closely. Like before, 

it seems that the estimated CDF from the M(MOD) has somewhat higher variance 

than M(FB). 

The log-likelihoods are close with only the M(U) doing noticeably worse than the 

rest. The M(MOD) and M(FB) nest the true distribution and given the small 

differences in the estimated log-likelihoods, it would be almost always possible to 

accept the null hypothesis that the true distribution is in fact Normal, which is 

reassuring. 
 

 
Figure 6: CDF plots for α in models estimated on N data. 

 

NM data: The Normal with an added mass at 0 is a difficult distribution to 

approximate, even though the M(MOD) does nest this when one variance is set to 

zero such that the distribution becomes degenerate. 

While all the estimated models are able to indicate the location and range of the 

true distribution, it is only the M(MOD) that is able to provide a hint about the 
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point mass (Figure 7). The cost is, however, that the M(MOD) again seems to 

have a higher variance.  

In terms of log-likelihoods, the M(MOD) and the M(FB) achieve similar fits, 

while the M(SB) is somewhat poorer and the remaining are further behind. 
 

 
Figure 7: CDF plots for α in models estimated on NM data. 

 

 
Figure 8: CDF plots for α in models estimated on 2N data. 
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2N data: For the data generated by a mixture of two Normals, the MOD model 

M(MOD) obtains the best model fit. This is as expected since the model is the 

same as the data generating process. The M(FB) and the M(SB) are however very 

close. As Figure 8 shows, the M(MOD) and also the M(FB) are both able to 

reproduce the main features of the true 2N distribution. Again, the M(MOD) 

seems to have higher variance. 

 

U data: For the final dataset, generated with a Uniform distribution, the performance 

of the various models is very similar. From Figure 9, we note that the M(MOD) 

again has somewhat higher variance than the M(FB) distribution. In terms of log-

likelihood, all models are quite similar. 
 

 
Figure 9: CDF plots for α in models estimated on U data. 

 

 

4. Experiment on real data 

 

For our analysis on real world data, we make use of data collected as part of a recent 

VTTS study in Switzerland (cf. Axhausen et al., 2008). Specifically, we look at a public 

transport route choice experiment, with 3,501 observations collected from 389 

respondents. The two alternatives are described in terms of travel time (TT), travel cost 

(TC), headway (HW) and interchanges (CH). With this, the utility function for 

alternative 1 is given by: 

 

TT 1 TC 1 HW 1 CH 11 1 TT TC HW CHU δ β β β β= + + + +  (4) 

 

with a corresponding formulation for alternative 2, except for the absence of a constant. 
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A number of different models were estimated on this data. We first estimated a MNL 

model, followed by MMNL models making use of Normal, Uniform, symmetrical 

Triangular and SB independent distributions for each coefficient. All MMNL models 

were estimated on the basis of variations in tastes across respondents but constant tastes 

across observations for the same respondent. In addition, a number of MOD and FB 

formulations were estimated. For the MOD models, no further improvements could be 

obtained beyond the use of two points in the mixture, partly due to problems with 

degeneracy. On the other hand, using the FB approach, models were estimated with up 

to 6 SNP terms for each taste coefficient. There was no indication that it would not be 

possible to estimate models with even more SNP terms.  

We first look at the achieved likelihoods of the various estimated structures, with a 

summary given in Table 2. As expected, all mixture models offer significant 

improvements in model fit over the MNL model, highlighting the presence of 

significant levels of taste heterogeneity relative to the linear specification of indirect 

utility. Here, for the more basic specifications, the performance with the Normal, 

Uniform and symmetrical Triangular distributions is very similar, with better 

performance being obtained with the more flexible SB distribution. 

Table 2: Model performance on Swiss route choice data. 

Model Final LL par adj. ρ
2
 

MNL -1667.97 5 0.3106 

NORMAL -1466.73 9 0.3919 

UNIFORM -1467.04 9 0.3918 

TRIANGULAR -1466.75 9 0.3919 

SB
 

-1439.32 17 0.3999 

MOD2 -1435.47 21 0.3999 

SNP1 -1463.6 13 0.3915 

SNP2 -1460.08 17 0.3913 

SNP3 -1443.29 21 0.3966 

SNP4 -1435.49 25 0.3982 

SNP5 -1429.29 29 0.3991 

SNP6 -1423.68 33 0.3997 

 

Moving on to the MOD and FB models, we can see that, while MOD2 obtains a better 

log-likelihood than the model using the SB distribution, the additional parameters mean 

that in terms of adjusted ρ
2
, the performance of the two models is virtually identical. For 

the FB models, the adjusted ρ
2
 is always below that of the MOD2 model and the SB 

model, but there is a gradual and significant improvement in model fit as we increase 

the number of terms in the series expansions.  

We proceed with a graphical analysis of the implied distributions resulting from the 

various models. As we are looking at the shapes of the estimated distributions this is 

much more informative than looking at the estimated parameters. Here, Figure 10 shows 

the CDF for βTT in the various models, with Figure 11 looking at βTC, Figure 12 looking 

at βHW and Figure 13 looking at βCH. In each case, the presentation of the FB results is 

limited to FB3, FB5 and FB6. 
 



European Transport \ Trasporti Europei  n. 42 (2009): 1-25 

 17 

 
Figure 10: CDF plots for βTT in models estimated on Swiss route choice data. 
 

 
Figure 11: CDF plots for βTC in models estimated on Swiss route choice data. 

 

For βTT, we observe strong similarities between FB3 and the Normal distribution, 

while FB5 and the very similar FB6 are clearly different. The SB distribution degenerates 

to a mass point distribution, while the MOD2 distribution only becomes degenerate for 

one mass point. The findings for βTC are quite similar, although this time, the SB 

distribution only becomes degenerate for one mass point, along with MOD2. For βHW, 

MOD2 reduces to a Normal distribution, with FB5 and FB6 showing some differences. 

Finally, for βCH, MOD2 becomes degenerate for one point, while the SB distribution 

again turns into a mass point distribution. What we are observing seems to be that the 

SB and the MOD risk becoming degenerate in ranges where the true density places a lot 
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of mass, even if it is unlikely to be point masses. The FB approach does not have this 

problem. 
 

 
Figure 12: CDF plots for βHW in models estimated on Swiss route choice data. 
 

 
Figure 13: CDF plots for βCH in models estimated on Swiss route choice data. 

 

While the results demonstrate that the advanced approaches are practical and reveal 

information about the data that would otherwise have been hard to discern, the results 

are somewhat worrying from a different perspective. All four parameter distributions 

seem to have two modes and it is hard to accept that this is a true feature of the 

distribution of preferences in the population. We can think of two potential 

explanations. The first potential explanation is that the effect is an artefact of the stated 

preference design. If this is true, then we are in effect measuring the design and not only 

the preferences which are the object of interest. It would then be prudent to seek to 
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improve the design. We have not investigated this issue. The other potential explanation 

is that we are seeing a reference point effect (De Borger and Fosgerau, 2008), whereby 

the size of a parameter is influenced by whether the attribute being valued is larger or 

smaller than some reference. In any case, it is a real advantage of the flexible 

approaches that they allow such issues to be discovered. The potential problems here 

would have been invisible with the standard approaches. 

The estimated parameters are presented in Table 3 for the standard models and the 

MOD2 while Table 4 presents the estimates for the FB models. Here, δ1 is constant; the 

p1 parameters are used as fixed parameters in MNL, the mean in Normal, boundary to 

one side for Uniform and Triangular (turns out to be right hand boundary), mean of 

underlying Normal in SB and mean of first Normal in MOD2; p2 parameters are used as 

standard deviations in Normal, interval width in Uniform and Triangular, standard 

deviation of underlying Normal in SB and std.dev. of first Normal in MOD2; p3 

parameters give the left boundary for SB and mean for second Normal in MOD2; p4 

parameters give interval width for SB and std.dev. for second Normal in MOD2; π 

parameters give mass for first Normal in MOD2. 

Table 3: Model estimation on Swiss route choice data (part 1, asy. t-ratios in brackets). 

Model MNL NORMAL UNIFORM TRIANGULAR SB
 

MOD2 

Final LL: -1,667.97 -1,466.73 -1,467.04 -1,466.75 -1,439.32 -1,435.47 

adj. ρ
2
 0.3106 0.3919 0.3918 0.3919 0.3999 0.3999 

par. 5 9 9 9 17 21 

δ1 -0.0192 (-0.45) -0.0488 (-0.79) -0.0417 (-0.68) -0.0436 (-0.71) -0.0452 (-0.71) -0.0558 (-0.86) 

βTT(p1) -0.0598 (-11.22) -0.1405 (-12.04) -0.0409 (-2.99) -0.0165 (-0.99) -0.2417 (-12.25) -0.2463 (-10.37) 

βTC(p1) -0.132 (-7.01) -0.4484 (-8.59) 0.1301 (3.24) 0.499 (6.37) 0.7224 (2.77) -0.2124 (-8) 

βHW(p1) -0.0376 (-19.31) -0.0642 (-13.71) 0.0042 (0.61) 0.0337 (3.18) 5.2499 (1.14) -0.679 (-2) 

βCH(p1) -1.15 (-25.21) -2.11 (-15.94) 0.0584 (0.41) 0.9297 (4.07) 0.2986 (66.61) -2.6108 (-8.35) 

βTT(p2) - 0.0548 (7.39) -0.2253 (-7.81) -0.2661 (-7.08) 0.011 (0.71) -0.0203 (-0.57) 

βTC(p2) - -0.4264 (-9.01) -1.3133 (-8.99) -1.9888 (-9.12) -0.2181 (-1.53) 0.0041 (0.15) 

βHW(p2) - -0.0401 (-7.47) -0.1359 (-7.5) -0.1947 (-7.67) -0.9541 (-1.98) -0.4684 (-2.11) 

βCH(p2) - -1.2102 (-8.91) -4.4646 (-10.41) -6.1639 (-10.28) 0.0007 (0.18) -1.3447 (-6.02) 

βTT(p3) - - - - -0.261 (-12) -0.0919 (-8.55) 

βTC(p3) - - - - -1.8974 (-5.09) -1.1795 (-8.96) 

βHW(p3) - - - - -10.789 (-0.23) -0.0589 (-11.29) 

βCH(p3) - - - - -3.1556 (-14.14) -0.6568 (-1.98) 

βTT(p4) - - - - 0.1685 (8.58) 0.0004 (0.03) 

βTC(p4) - - - - 1.7052 (4.39) 0.587 (6.16) 

βHW(p4) - - - - 10.78 (0.23) 0.0296 (4.53) 

βCH(p4) - - - - 2.464 (10.94) 0.043 (0.09) 

π1(βTT) - - - - - 0.4383 (5.37) 

π1(βTC) - - - - - 0.5883 (9.48) 

π1(βHW) - - - - - 0.0715 (2.34) 

π1(βCH) - - - - - 0.8397 (8.66) 
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Table 4: Model estimation on Swiss route choice data (part 2, asy. t-ratios in brackets). 

 FB1 FB2 FB3 FB4 FB5 FB6 

 -1463.6 -1460.08 -1443.29 -1435.49 -1429.29 -1423.68 

 0.391521353 0.391323554 0.396594069 0.398159976 0.399066554 0.399730005 

 13 17 21 25 29 33 

δ1 -0.051 (-0.82) -0.0388 (-0.61) -0.0441 (-1.08) -0.041 (-1) -0.0362 (-0.88) -0.0414 (-0.66) 

βTT(p1) -0.1671 (-7.8) -0.1343 (-8.7) -0.1448 (-0.34) -0.1447 (-0.33) -0.1386 (-0.3) -0.1447 (-12.43) 

βTC(p1) -0.3709 (-8.65) -0.3693 (-8.64) -0.5261 (-3.59) -0.5187 (-3.21) -0.5121 (-3.02) -0.5097 (-11.43) 

βHW(p1) -0.0588 (-5.02) -0.0593 (-6.49) -0.0021 (0) 0.0062 (0.01) 0.0068 (0.01) 0.0149 (1.43) 

βCH(p1) -1.5041 (-5.37) -1.4773 (-6.38) -2.0936 (-73.2) -2.0604 (-68.61) -2.0324 (-67.69) -2.069 (-11.23) 

βTT(p2) 0.0714 (6.32) 0.0682 (8.03) 0.1009 (0.42) 0.0983 (0.36) 0.1044 (0.42) 0.1078 (7.5) 

βTC(p2) -0.4103 (-9.18) -0.4794 (-8.63) -0.6313 (-6.85) -0.6296 (-6.68) -0.6227 (-6.29) -0.6108 (-10.18) 

βHW(p2) -0.043 (-7.76) -0.0579 (-5.74) -0.078 (-0.15) -0.0938 (-0.19) -0.091 (-0.18) -0.1072 (-6.61) 

βCH(p2) -1.3728 (-8.44) -2.1955 (-7.47) -1.3169 (-51.61) -1.1934 (-36.59) -1.2595 (-42.68) -1.2923 (-7.9) 

βTT(FB1) 0.1804 (1.26) -0.0884 (-0.88) -0.0551 (-1.3) -0.068 (-1.42) -0.3148 (-10.3) -0.2685 (-2.38) 

βTT(FB2)  0.1095 (0.9) -0.3179 (-10) -0.2491 (-7.28) -0.4765 (-15.91) -0.4173 (-3.8) 

βTT(FB3)   -0.2346 (-7.85) -0.1306 (-3.71) -0.2235 (-8.1) -0.3013 (-2.62) 

βTT(FB4)    -0.1234 (-3.53) -0.0115 (-0.42) -0.0395 (-0.38) 

βTT(FB5)     0.5322 (25.2) 0.5114 (3.44) 

βTT(FB6)      0.1453 (1.52) 

βTC(FB1) 0.1107 (1.62) 0.1455 (2.28) -1.2582 (-98.99) -1.2316 (-82.24) -1.7933 (-167.63) -0.9804 (-3.03) 

βTC(FB2)  -0.0905 (-1.18) -1.4785 (-100.24) -1.4101 (-82.01) -1.7686 (-157.62) -1.3941 (-4.96) 

βTC(FB3)   0.465 (22.15) 0.3879 (17.55) 0.8431 (53.89) 0.2308 (1.07) 

βTC(FB4)    0.1474 (7.02) 0.268 (16.79) -0.0117 (-0.07) 

βTC(FB5)     -0.3262 (-24.4) -0.0346 (-0.24) 

βTC(FB6)      0.3543 (1.93) 

βHW(FB1) 0.0936 (0.74) 0.101 (0.97) 0.8733 (30.43) 0.8376 (25.92) 0.8871 (27.94) 0.888 (7.76) 

βHW(FB2)  -0.2015 (-2.15) 0.0444 (1.1) 0.0096 (0.22) 0.059 (1.42) 0.0571 (0.64) 

βHW(FB3)   -0.4095 (-11.23) -0.4616 (-12.18) -0.4907 (-12.4) -0.5049 (-4.85) 

βHW(FB4)    -0.0878 (-2.03) -0.1158 (-2.72) -0.127 (-1.41) 

βHW(FB5)     0.0126 (0.33) 0.1476 (1.47) 

βHW(FB6)      0.1737 (1.87) 

βCH(FB1) 0.2542 (2.36) 0.3062 (3.32) 0.0312 (0.45) 0.0549 (0.88) 0.0632 (0.93) 0.008 (0.12) 

βCH(FB2)  -0.2815 (-3.23) 0.0096 (0.21) 0.1855 (5.91) 0.0855 (2.07) -0.0482 (-0.52) 

βCH(FB3)   0.0913 (2.26) -0.0308 (-0.97) 0.0512 (1.28) 0.0227 (0.28) 

βCH(FB4)    -0.4063 (-15.9) -0.2555 (-7.32) -0.2864 (-3.23) 

βCH(FB5)     0.0043 (0.11) -0.1206 (-1.45) 

βCH(FB6)      -0.2296 (-2.81) 
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In the FB results presented in Table 4, the δ, β(p1) and β(p2) parameters are the same 

as in the Normal model in Table 3. The β(FB) parameters are the terms in the series 

expansions of the distributions for each coefficient.  

On the estimated parameters we note in particular the low standard deviations (p2 and 

p4 parameters) for the MOD2 model, corresponding to almost point masses. On the FB 

models we note that most of the terms in the series expansion are quite significant in t-

tests, with the exception of the last FB6 model. 

 

 

5. Conclusions 

 

This paper has reported the findings of a systematic study using Monte Carlo 

experiments aimed at comparing the performance of various methods in retrieving 

random taste heterogeneity in a discrete choice context. Specifically, the analysis has 

compared the performance of four commonly used continuous distribution functions, 

the Normal, symmetrical Triangular, Uniform and Johnson SB, to that of two more 

advanced approaches discussed in this paper. The first of these two approaches, the FB 

approach, improves on the flexibility of a base distribution by adding in a series 

approximation using here Legendre polynomials, while the Normal distribution was 

chosen as the base. The second approach, the MOD approach, uses a discrete mixture of 

continuous distributions, where again, in the present study, the base distributions are all 

Normal. 

The simulation study compared the performance of the six resulting models across 

seven separate case studies, making use of different assumptions for the true distribution 

of the single random parameter in the model. In each case study, fifty random versions 

of the data were generated to allow us to gauge the stability of the various approaches. 

We find as expected that the ability to reproduce an underlying true distribution 

depends on the number of parameters in the estimated distribution. The most flexible 

distributions are able to approximate a variety of different shapes and they result in 

higher log-likelihoods. Good performance was also obtained by the models using the 

Johnson SB distribution. The latter has, however, the drawback that it cannot be made 

more flexible. So even though the Johnson SB distribution may do well in a particular 

application it is not possible to assess whether it does well enough. In contrast, one may 

just increase the number of parameters in the two flexible approaches and use a 

likelihood ratio test to decide when the number of parameters is sufficient.  

The performance of the two-parameter distributions is poor in comparison. Even 

though this could be expected, we consider it illuminating to illustrate how these 

distributions fail and compare this to the application of more flexible distributions. 

Many past applications of the Mixed Logit model have relied on such two-parameter 

distributions. On the other hand, the two advanced approaches discussed in this paper 

seem to perform very well across all the cases studied here, suggesting that they can 

approximate well a variety of distributions, ranging from the most trivial (Uniform) to 

more complex multi-modal distributions.  

In the present simulation study, the MOD approach has a slight advantage over the FB 

approach in terms of model fit. This finding is conditional on the selection of true 

distributions that we have chosen to investigate. The selection includes a number of 

cases with point masses which the FB approach cannot accommodate. On the other 



European Transport \ Trasporti Europei  n. 42 (2009): 1-25 

 22 

hand, it seems that the MOD estimates of the CDF have somewhat higher variance than 

the FB estimates.  

For non-smooth distributions, the MOD approach has the ability to become 

degenerate and have a point mass. The FB approach does not allow for point masses. 

This may be viewed as an advantage of the MOD approach if one believes in mass-

points, a concept that, in an applied discrete choice context, only really makes sense for 

a mass-point at zero. However, this degeneracy is also a problem for the ability of the 

estimator to approximate smooth distributions and the estimator must be constrained in 

some way (cf. Coppejans, 2001). It may be conjectured that the higher variance of the 

MOD approach is related to this degeneracy problem. 

In our application to the Swiss value of time data we have demonstrated that the 

flexible approaches are practical for real data. We found that all four coefficients tended 

to have bimodal distributions. This is something that deserves an explanation and we 

have put forward two potential explanations. The contribution of the flexible approaches 

that is relevant for the current paper is that they were able to reveal these features of the 

data that the less flexible approaches did not detect. The Johnson SB distribution and the 

MOD did have problems with degeneracy and it was not computationally possible to 

increase the MOD beyond MOD2. It is a possibility that this problem is related to weak 

identification of the distributions in the data. The FB approach did not have problems of 

degeneracy and there were no computational problems involved in increasing the 

number of parameters in the series expansions.  

The flexibility of either of the two approaches can be increased by estimating 

additional parameters, in terms of additional terms in the series expansion in the FB 

approach, or additional distributions in the MOD approach. Here, an important 

advantage of the FB approach is that it is possible to add just one parameter at a time, 

while, with the MOD approach, it is necessary to add three parameters at the same time 

(location, variance and mass). Increasing the number of parameters inevitably leads to 

increased estimation cost, and issues of convergence to local maxima become more 

prominent. 

Both approaches are not restricted to being based on the Normal distribution, but can 

use any continuous distribution as the base. Both approaches are also relatively easy to 

implement, where the FB approach has already been implemented in BIOGEME 

(Bierlaire, 2003), and where estimation code for the MOD approach is available from 

the second author on request. 

It should also be noted that the potential of these approaches is not limited solely to 

the estimation of models with flexible distributions. Indeed, as in the present application 

to the Swiss value of time data, they can also be seen as a diagnostic tool that can be 

used to get an idea of the shape of the true distribution or to reveal what is in the data; 

this knowledge can then be used in the choice of an appropriate model. In one of the 

case studies in the simulation study discussed in this paper, one would, for example, be 

able to reveal that the lognormal distribution was an appropriate choice without 

imposing that distribution initially. 

In a direct comparison of the two advanced approaches discussed in this paper, we 

can conclude that they are very similar in their ability to approximate smooth 

distributions. In general there is no reason to suppose that one approach should be better 

than the other, since both are able to approximate any distribution arbitrarily well by 

increasing the number of parameters. Our application to real data did however show that 
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the MOD approach ran problems. These problems may however be related to the data 

and not the MOD approach itself. 

An important avenue for further research is related to development and testing of the 

two approaches in more complex scenarios, such as in the presence of multiple random 

coefficients with potential correlation between them. This issue is related to the issue of 

the degree of model complexity that data will allow. There is clearly a limit in sight 

where normal-sized datasets will not allow us to identify all we would like to know 

about heterogeneous preferences. 
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