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Including joint decision mechanisms in a
multiagent transport simulation

Thibaut Dubernet* and Kay W. Axhausen

In recent years, there has been a growing interest in the social dimension of travel, and how travel

decisions are influenced not only by the global state of the transportation system, but also by joint

decisions and interactions with social contacts. Empirical studies pointed out the relevance of certain

types of social interactions to model travel behavior correctly: synchronization of household members

has been identified as significantly influencing individual’s travel decisions, and friendships were

shown to influence the choice of leisure locations.

Multiagent approaches, by representing decision making at the level of the individual, seem to be

one of the most promising approaches to take into account such interactions when forecasting.

The work presented here extends a state of the art multiagent simulation software, MATSim, with

capabilities to capture joint decisions. It consists of a general framework to allow arbitrary joint

behaviors to be represented, without constraints on the topology of the social network. An

implementation of this framework for the important case of intrahousehold ride sharing is proposed,

and demonstrated on a simple test scenario.

The results show that the extended process is able to find the expected state, and is mature for

validation against travel diary data.

Keywords: Activity based, Joint trips, Households, Car pooling, Microsimulation, MATSim

This paper is part of a special issue on Agent-based Microsimulation Techniques

Introduction
In recent years, there has been a growing interest in the
social dimension of travel, and how travel decisions are
influenced not only by the global state of the transporta-
tion system, but also by joint decisions and interactions
with social contacts.

The study and modeling of intrahousehold interactions
and joint decision making, often using the classical
random utility framework extended to group decision
making, is a very active field of research. A classical way to
cope with the possibly conflicting objectives of different
members of the household is to specify a group level utility
function. For instance, Zhang et al. (2005, 2007) devel-
oped a model where the time for different activity types
are allocated to household members, subject to time
constraints (including equality of participation duration in
joint activities), using a group level utility function,
formulated as a multilinear combination of the indivi-

duals’ utilities; Kato and Matsumoto (2009) use a linear
combination of the utility functions of the household
members as a group utility. The assumption behind this
kind of models is the existence of ‘‘utility transfers’’:
individuals accept to decrease their own utility if it allows
increasing the utility of others by a certain fraction of their
loss. Bradley and Vovsha (2005) focus on the ‘‘daily activity
pattern’’ generation, with household ‘‘maintenance’’ task
(e.g. shopping) allocation and the possibility of joint acti-
vities. To do so, they assume a layered choice structure:
first, a daily activity pattern is assigned to household
members; then, ‘‘episodic’’ joint activities can be generated;
finally, maintenance activities are assigned. Gliebe and
Koppelman (2005) also base their model on the daily
activity pattern concept. In their model, the joint outcome
(the sequence of individual and joint activities) is first
determined, and individuals then choose an individual
pattern compatible with the joint outcome. Those models
rely on an enumeration of the possible household level
patterns. Gliebe and Koppelman (2002) also derived a
constrained time allocation model, which predicts the time
spent by two individuals in joint activities. Rather than
postulating a group level utility function, the models of
those authors specify a special distribution for the error
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terms of the individuals. In this setting, the error term of the
individuals are correlated so that the probability of
choosing a given joint output is the same for all individuals.
Ho and Mulley (2013) also estimate models in which
members of the household perform choices constrained by
the choice of a household level travel pattern. The estimated
models show high joint household activity participation on
weekends, and a high dependence of joint travel on trip
purpose and household mobility resources. Those results
highlight the importance of representing joint household
decisions, in particular when extending beyond the ‘‘typical
working day’’. Vovsha and Gupta (2013) formulate a time
allocation model for multiple worker households, which
considers a positive utility for members of the household to
be home jointly, as it makes joint activities possible. The
estimation results show a significant influence of this kind of
synchronization mechanism. Most models listed in this
paragraph are specific to given household structures; in
particular, separate models need to be estimated for
different household sizes.

Household level decision processes have also been
modeled with approaches that significantly differ from
the classical random utility framework. Golob and
McNally (1997) propose a structural equation model,
which predicts time allocation and trip chaining based on
descriptive variables of a household. Golob (2000) also
used a structural equation model to model the dependency
of time allocations of the two heads (man and woman) of
a household.

Another class of approaches, more oriented toward
multiagent simulation than analysis, is the use of
optimization algorithms to generate household plans.
They handle the household scheduling problem by
transforming it into a deterministic utility maximization
problem. Contrary to the previously presented appro-
aches, these alternatives did not lead to the estimation of a
model against data. The first of these approaches was
introduced by Recker (1995). By extending increasingly
the formulation of the Pick-Up and Delivery Problem with
Time Windows, a well studied combinatorial optimization
problem, he formulates the problem of optimizing the
activity sequence of members of a household as a math-
ematical programing problem, taking into account vehicle
constraints, individual and household level activity,
possibility of choosing whether to perform or not an
activity, with the possibility of shared rides. However, due
to its complexity, the full problem cannot be solved exactly
by standard operations research algorithms, and the
activity durations are not part of the optimized dimen-
sions. Chow and Recker (2012) designed an inverse
optimization method to calibrate the parameters of this
model, including the time window constraints, using
measured data. Also, the formulation from Recker
(1995) was later extended by Gan and Recker (2008) to
introduce the effects of within day rescheduling due to
unexpected events. Another attempt to generate plans for
households uses a genetic algorithm, building on a
previous genetic algorithm for individual plan generation
(Charypar and Nagel, 2005; Meister et al., 2005). This
algorithm optimizes sequence, duration, and activity
choice for a household, rewarding the fact for several

members of the household to perform the same activity
simultaneously, in the way also used by Vovsha and
Gupta (2013). Finally, Liao et al. (2013) formulated the
problem of creating schedules for two persons traveling
together as finding the shortest path in a ‘‘supernetwork’’,
and solved this problem using the exact shortest path
algorithms. They however note that their model is specific
to the two person problem, and that extension to larger
numbers of agents may prove to be computationally
expensive. All those approaches remained experimental,
and were not integrated into multiagent simulation tools.

Another class of methods aiming at multiagent simula-
tions is the development of rule based systems, which use
heuristic rules to construct household plans. Miller et al.
(2005) developed such a model for household mode
choice. The main difference of this model from an
individual mode choice model is the consideration of
household level vehicle allocation. In their model,
individuals first choose modes individually. If a conflict
occurs, the allocation that maximizes the household level
utility is chosen. The members who were not allocated the
vehicle will fall back on their second best choice, and/or
examine shared rides options. Arentze and Timmermans
(2009) develop a rule based model that relies on a
simulated bargaining process within the household.
Though such models can easily represent complex decision
processes, their calibration and validation is cumbersome.

Other authors have investigated the role of more general
social networks on travel. One of the main incentives to
conduct such studies comes from the continuous increase of
the share of trips that are performed for leisure purpose
(Schlich et al., 2004; Axhausen, 2005). This fact represents a
challenge for travel behavior modeling, as those trips are
much more difficult to forecast than commuting trips: they
are performed more sporadically, and data about those
trips is much more difficult to collect. Understanding better
how destination choice for leisure trip is made, is therefore,
essential to improve the accuracy of those forecasts.

Various studies have been conducted with the idea that
an important factor in leisure trip destination choice, or
activity duration choice, is the ability to meet social
contacts. Examples of empirical work include Carrasco
and Habib (2009), Habib and Carrasco (2011), or Moore
et al. (2013). All those studies show a significant influence
of social contacts on the spatial and temporal distribution
of activities. Based on an analysis of social network
involvement and role, Deutsch and Goulias (2013)
advocate considering the role individuals play in different
social networks. Using latent class cluster analysis models
to analyze the role of individuals in the various social
networks they are involved in, they find that ‘‘the decision-
making role of an individual can differ vastly across
different social engagement types’’. Frei (2012) demon-
strated in a simulation experiment how considering social
interactions in leisure location choice can help increase the
accuracy of predicted leisure trip distance distribution.

Another field of empirical research consists in studying the
spatial characteristics of social networks. For instance,
Carrasco et al. (2008) studied the relationship between an
individual’s socioeconomic characteristics and the spatial
distribution of their social contacts. This kind of empirical
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work allows to specify and estimate models capable of
generating synthetic social networks, given sociodemographic
attributes and home location. An example of such a
model, based on the results of a survey in Switzerland, can
be found in Arentze et al. (2012). This kind of model is
essential if one wants to include social network interac-
tions in a microsimulation model.

This integration of social networks in multiagent
simulation frameworks has already been attempted by
other authors. Due to their disaggregated description of
the world, such models are particularly well suited for the
representation of complex social topologies. Han et al.
(2011) present experiments that use social networks to
guide activity location choice set formation in the
FEATHERS multiagent simulation framework. Using a
simple scenario with six agents forming a clique (a
network where all agents have social ties with all other
agents), they consider the influence of various processes
like information exchange and adaptation to the behavior
of social contacts to increase the probability of an
encounter. They do not, however, represent joint deci-
sions, such as the scheduling of a joint activity. The same
kind of processes have been investigated by Hackney
(2009), using more complex network topologies, within the
MATSim framework, used in this paper. Ronald et al.
(2012); Ma et al. (2011, 2012) present agent based systems
that integrate joint decision making mechanisms, based on
rule based simulations of a bargaining processes. They are
not yet integrated into any operational mobility simula-
tion platform.

Building on all those ideas, the work presented in this
paper aims at including explicit coordination of indivi-
duals in a multiagent simulation software framework. This
is done by generalizing the process of the MATSim
simulation framework to allow taking into account joint
decisions. The process is designed to be able to handle
complex social network topologies, but the current
implementation is restrained to a network consisting of
isolated cliques. Such a network is a good abstraction for
the network of intrahousehold relationships, the impor-
tance of which should be clear from the review above. This
generalized process is presented here in detail, and the
results of a small test scenario are analyzed.

Method
The work presented herein aims at including joint
decisions into the MATSim simulation framework.
Before presenting the proposed simulation process, this
section proposes a short introduction to the MATSim
framework.

MATSim simulation framework
MATSim is an open source simulation framework that
provides a platform for running multiagent large scale
travel behavior simulations (MATSim, 2013). It has been
used and validated in several areas, including whole
Switzerland (Meister et al., 2010), Berlin (Germany), and
Singapore (Erath et al., 2012).

The MATSim process uses a co-evolutionary approach
to search for an approximation of a stochastic user

equilibrium, where the expected utility of the daily plan of
individuals is optimal given all other individuals’ choices.

The basic modeling idea is that individuals associate a
utility value to their day, which increases with the time
spent performing activities and decreases with the time
spent traveling. Different parameters can be used for
different modes or activity types, using the functional form
from Charypar and Nagel (2005). Travel time is influenced
by other agents via congestion. The justification for the
equilibrium hypothesis is that individuals, via trial and
error, learn the average time dependent travel times they
can experience during a typical day, and make their plans
based on this knowledge. It is called stochastic user
equilibrium, because it considers the probability of an
individual executing a given daily schedule, given the
probability distribution of travel times, which is a function
of the randomized behavior of all individuals in the
population.

The MATSim process searches for an equilibrium state
using a co-evolutionary algorithm, inspired from the
behavioral hypothesis described above, following the ideas
from Nagel and Marchal (2006). In this process, each
agent performs an evolutionary algorithm to improve the
utility it gets from its daily plan. The steps of this process,
represented on Fig. 1, are the following:

1. Initial demand All agents have an initial daily plan,
which will serve as a starting point for the iterative
improvement process. Some characteristics of the
plans are left untouched during the simulation, and
should therefore come from data or external model.
This is typically the case of long-term decisions, such
as home and work locations, or decisions involving a
larger time frame than a single day (e.g. to do the
weekly shopping or not).

2. Mobility simulation Plans of all agents are executed
concurrently, to allow estimating the influence of the
plans of the agents on each other. This step typically
uses a queue simulation to simulate car traffic, which
gives estimates of the congested travel time.
Simulation of bus delays due to congestion and bus
bunching can also be included.

3. Scoring the information from the simulation is used
to estimate the score of each individual plan. This
information typically takes the form of travel times
and time spent performing activities; experiments
also included information such as facility crowding.
This experienced utility is used to update the score
associated to the plan. Averaging all experienced
utilities for a given plan allows the score of the plans
to converge to the expected utility of the plan, but

1 MATSim iterative process
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tends to slow down convergence by limiting reactivity
from iteration to iteration. Hence, scores are usually
updated by allocating the last experienced utility to
each plan.

4. Replanning Then, part of the agents select a past plan
based on the experienced score, following a Logit like
selection probability; the other agents copy and
mutate one of their past plans. If the number of
plans in an agent’s memory exceeds a predefined
threshold (usually 4 or 5), the worst plan is deleted,
pushing the evolution toward plans with higher
scores. Steps 2 to 4 are then iterated until the system
reaches a stable state.

What kind of mutation is performed determines which
alternative plans will be tried out by the agent. Typical
replanning strategies include least cost rerouting using
travel time estimates from the previous iteration, depar-
ture time mutation, and mode mutation at the subtour
level. Experiments included secondary activity location
choice (Horni et al., 2009) and activity sequence (Feil,
2010).

Generalizing MATSim process to represent joint
decisions
The MATSim process, though well suited to represent
individual decision making, is not yet adapted to represent
joint decision making, as an agent’s decisions are only
based on the average behavior of other agents.

The generalization proposed here is based on the joint
plan concept, and allows the representation of coordina-
tion in arbitrary social structures. As for the usual
MATSim process, it uses an evolutionary algorithm to
optimize full daily plans that the agents execute in a
mobility simulation to obtain scores. Explicit coordination
between agents is included by linking a selection of plans
corresponding to joint decisions, such as joint trips or joint
activities. This linkage is done using two complementary
constraints on the possibility to select a specific plan for an
individual, given the plans selected by relevant social
contacts or household members:

1. Joint plan: a joint plan is a set of plans of several
agents, which must always be selected together. An
example is the plan of a driver and his passenger, or
plans of two household members coordinating for the
use of the same vehicle. It may be seen as a
representation of the agreement of several agents to
cooperate.

2. Incompatible plans: There are also cases when one does
not want two or more plans to be selected at the same

time: for instance, two joint plans representing
coordination for the usage of the same vehicle by
two non-overlapping groups of members of a house-
hold should not be selected together, though it is
allowed by the previous constraint. It may be seen as
the agreement of several agents not to interfere with
each other.

Given those constraints on which combinations of
individual plans can be chosen together, one needs a
way to create new plans from old ones, and a way to select
past plans based on the experienced score.

To achieve this, it is not possible anymore to consider
agents in isolation, and one has to identify groups of
agents to replan jointly. Figure 2 illustrates the process to
identify agents which are replanned together. In this
figure, circles represent agents. Solid lines represent the
existence of joint plans between agents, snaked lines
represent the existence of incompatible plans, and
discontinuous lines represent ‘social ties’, that is, the
possibility to create new joint or incompatible plans. For
replanning, agents having joint plans or incompatible
plans are put in the same group, as is the case for agents 0,
1, 2 and 3, 5 for joint plans, and of agents 7, 9 and 8 for
incompatible plans. Agents being linked by social ties can,
but must not necessarily, be put in the same group. In the
figure, for instance, agent 5 and 6 are put in the same
group, allowing them to generate a new joint plan
containing individual plans for each of those agents, while
agent 4 is replanned alone. The groups used in different
iterations need not be the same, as long as the constraints
are respected. During the process, each agent should
however be replanned together with each of its social
contacts, to allow the search algorithm to try interactions
between any pair of social contacts. In the current
implementation, the groups are fixed, each agent being
always replanned with all its identified social contacts.

Once groups are identified, the process is similar to the
individual case: the first mandatory step, is to select an
individual plan for each agent in the group, considering
the constraints. This is done by selecting the feasible
combination of individual plans, which maximizes the sum
of weights allocated to plans. Those weights can be the
scores, possibly weighted by some agent-specific value (to
obtain a selection scheme analogous to the weighted sum
group utility), with or without random error term (to
obtain a selection scheme analogous to a random utility
choice model), or be completely random (in order to draw
a feasible combination at random). This combinatorial
problem can be solved efficiently using a branch and
bound approach (Lawler and Wood, 1966). When weights
are interpreted as utility values, this selection scheme
corresponds to a ‘utility transfer’ assumption: agents are
interested in maximizing the average utility for the
replanning group, rather then their own individual utility.
A nice feature of this selection scheme is that in the
absence of joint plan and incompatibility constraints, it is
equivalent to choosing the plan of the highest weight for
each agent, which makes it a generalization of the current
MATSim selection scheme. Moreover, as long as the
replanning groups are identified following the rules listed
above, the same plan weights will lead to the same plan

2 Group identification
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being selected for every agent, independently of the groups
identified for replanning.

The second, optional step, is to create new individual
plans, by copying and modifying the plans identified by
the selection process. All the strategies used at the
individual level can, of course, be applied on the individual
plans; group level strategies, which modify the joint plan
structure (for instance by creating new shared rides) or act
on joint plans (for instance by synchronizing plans of
cotravelers), can also be applied.

Figure 3 illustrates this replanning process. Each
column represents the memory of an agent, where each
square corresponds to a plan. Joint plan constraints are
represented by solid lines, incompatibility constraints by
discontinuous lines. The black squares represent a feasible
combination, selected for mutation. The mutated copies
are the gray squares: a new interaction (e.g. a shared ride)
is generated between agents 3 and 4, and time allocation
for agent 5 is mutated.

As in the individual case, the number of plans an agent
can remember is limited. To push the evolution toward
better plans, the plans pertaining to the feasible combina-
tion which minimizes the sum of the plans’ scores are
removed from the agents’ memories, taking care not to
create states where no feasible combination remains.

This updated process allows to confirm that the choice
of individual plans corresponding to a joint decision is
linked.

Implementation
The general simulation framework described above is
designed to be applicable for general social networks. The
actual implementation for such a case is however
cumbersome for several reasons.

First, using social networks in a microsimulation
requires being able to accurately generate a synthetic
population-wide network. Though efforts are being made
in this direction, no attempt to use those models to
generate large scale networks is done yet (Arentze et al.,
2012). Second, this would require modeling different
decision roles depending on the type of social contact, as
identified by Deutsch and Goulias (2013). In particular, it
is not clear how the plan selection process described in the
MATSim simulation framework section can allow to
account for the variability of decision power for the same
agent with different social contacts.

Owing to those current uncertainties, the implementa-
tion used here uses a network composed of isolated cliques,
where the population is divided into groups within which all
individuals have (unweighted) social ties with all individuals
of the group. Such networks are a good abstraction for the
network of intrahousehold relationships.

At the replanning step, all individuals of the same clique
are always replanned together, even in the absence of joint
or incompatible plans, to allow the replanning strategies to
generate new interactions between any pair of agents
within the clique.

For the application to joint trips, presented in this
paper, a specific group level replanning strategy had to be
designed, which inserts or removes joint trips in plans.
Insertion works by choosing a car trip and a public
transport trip, and making the car driver drive to the
public transport passenger’s origin, pick the agent up and
drop it off at its destination. The restriction to public
transport trips for the potential passenger trips is done in
order not to break trip chaining constraints, which are
that vehicles must be used for full subtours anchored at
the home location. As mode allocation is continuously
mutated during the process, this does not restrict
passenger trips to agents that would have chosen public
transport without joint trip opportunities.

After removal and after each mutation of the time
allocation, the end times of activities preceding joint trips
in a passenger’s plan are modified so as to end at the
expected arrivals of the drivers at the drop-off points.

Results
To assess the validity of the proposed process to represent
joint decision making, it is applied to a simplistic ‘toy’ test
case, for which one can predict the outcome.

This test case introduces the possibility to travel
together with other household members. The network is
a simple grid network of 60 by 60 bidirectional links of
1 km each, with a free flow speed of 75 km h21. Those
links have infinite capacity, which means that they are not
subject to congestion. The population contains 506 agents,
grouped in even sized households of 2 to 20 members, with
only half of them having a driver’s license. All agents have
home-work-leisure-home plans. All members of a house-
hold have the same home location. Work and leisure
locations are randomly drawn for pairs of members, one
with driving license, one without. This means that each
agent without a driving license can find a driver which can
drive it without making any detours. Initial departure
times are random, and differ from agent to agent. In
particular, this means that plans of potential cotravelers
are not synchronized at the beginning, and that the
process has to be able to achieve this synchronization.

All modes have the same disutility of travel time, and
parameters for the three activity types are the same for all
agents. This means in particular that driving alone or with
a passenger have the same utility, as long as the driver
does not have to wait for the passenger.

Public transport takes twice as long as car travel.

Three scenarios are considered:

3 Group replanning
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1. Without joint trips, and without considering driving
license ownership, i.e. all agents are allowed to drive a
car. This serves as a base case.

2. With joint trips and driving license ownership, starting
with public transport trips for all agents.

3. With joint trips and driving license ownership, starting
with bike trips for all agents.

Scenarios 2 and 3 are made to verify that the strategy of
including joint trips as replacement for public transport
trips does not include any bias.

Each run is run 11 times with different random seeds.

The probability of the different replanning modules is
shown in Table 1. All replanning modules except Logit
like plan selection are stopped after 900 iterations, and the
process is continued for 100 additional iterations. Note
that as this specific scenario does not include congestion, it
is not necessary to regularly compute new routes, because
the shortest path depends neither on the behavior of other
agents nor on time of day.

Figures 4–6 show the evolution of mode shares with
iterations, for runs of the three scenarios.

For the base case, Fig. 4 shows mode share convergence in
around 300 iterations. High variability is observable between
consecutive iterations while innovation is enabled, as the
mode mutation module reinserts trips of all modes randomly
for full plans, as the plans contain only one tour. When
innovation is disabled, the agents only choose car plans.

For the runs with joint trips, Figs. 5 and 6 show slower
convergence, in about 700 iterations. Variability between
consecutive iterations is much lower, because subtour
mode choice does not touch joint trips, which are inserted
and removed on a unit basis, rather than for the whole

Table 1 Probability of the different replanning modules

Module Description Probability

Logit like selection Selects past plans using Gumbel distributed scores 0?4
Time allocation mutation Randomly mutates activity end times.

It adds or removes a random amount to all activity
end times in a plan, within a range that decreases
with iterations, from [212 h; z12] h at the beginning
to [20?5 h; z0?5 h] from iteration 750 on.

0?2

Subtour mode mutation Changes randomly the mode of all trips of a subtour 0?2
Joint trip mutation Inserts or removes joint trips randomly.

This module is deactivated in Scenario 1
0?2

4 Mode share evolution for a run of base scenario

6 Mode share evolution for a run of the scenario with joint

trips, with initial bike demand

5 Mode share evolution for a run of the scenario with joint

trips, with initial public transport demand
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subtour, and make for a large part of all trips. When
switching off innovation, plans with joint trips tend to be
more often selected than plans without. Evolution for the
two initial demands look pretty similar: when starting with
bike trips, public transport trips quickly appear and then
get replaced by passenger trips.

Table 2 shows the minimum, average, and maximum
final mode shares across the different runs of each
scenario. When all agents are allowed to use a car, the
process ends with all trips being performed with this mode.
Hence, one should expect that when allowing joint trips,
the share of the different car modes sum up to close to
100%. In both scenarios with joint trips, on average the
total share of car modes is around 94%, which is
reasonably close. Interestingly, the final share of joint
trips when starting with only bike trips is higher than the
one when starting with only public transport trips. It is
difficult to assert what the reason is. Starting with bike
trips may leave more time for the time allocation mutation
to generate good time allocation to serve as a basis for
joint trip insertion, while when starting with public
transport trips, joint trips get inserted more quickly, and
make time adaptation slower due to the synchronization
mechanism.

Table 3 shows the number of joint trips and cotravelers
in agents’ plans, for one particular run of the process
starting with public transport trips. By construction of the
scenario, it is possible for each driver to drive one agent
without a driver’s license without any utility loss. One
should therefore expect most agents to perform their three
trips as joint trips, with one single co-traveler for the
whole day. This is what is observed: 382 agents (75% of
the population) follow this strategy, and only seven agents
perform different joint trips with different cotravelers.

However, a significant share of the agents (16%) perform
only one joint trip during the day. More surprising, there
are four times more agents which perform only one joint
trip than agents which perform only two. Looking at the
plans, it seems that it corresponds to drivers whose time
allocation is stuck in a suboptimal state. In fact, initial
activity end times being totally random, it is possible that
the end time of an activity is planned for long before the
end time of the previous activity. Such plans result in null
duration activities during the mobility simulation phase,
and get bad scores. However, as the difference between
planned and actual end time is not considered in scoring,
changing the activity end time in the range resulting in null
activity durations does not change the score. Thus the
random mutation process can have difficulties in finding
end times resulting in positive durations, and remain stuck
on this plateau. Due to the synchronization mechanism
that estimates arrival times at the pick-up point using the
end time of the previous activity, including a new joint trip
in this setting means including this inconsistency in the
time allocation of the passenger, most probably decreasing
the utility of its plan much more than the improvement
due to shorter travel time. Performing a single joint trip
however improves the travel times of the passenger, without
introducing any bad time allocation, and plans with one
single joint trip fill the memory of those agents. This is not a
critical problem, as in real scenarios one usually initializes
time allocation close to the expected optimum, to minimize
the number of iterations needed for convergence. This
tendency to remain stuck could moreover be decreased by
adding a penalty which increases with the difference
between the planned and executed end time.

The results of this test scenario show that the proposed
process is able to find a state close to the expected
equilibrium. In particular, the analysis shows that the
process is able to identify the best joint traveling patterns,
and can synchronize the plans of co-travelers starting from
initially unsynchronized plans.

Conclusion
Social interactions in general, and intrahousehold inter-
actions in particular, are gaining increasing attention in
the travel behavior modeling literature. Those interactions
are recognized as an important factor conditioning travel
behavior.

Table 2 Final mode shares for the three scenarios (minimum, average, and maximum over 11 runs)

Mode

Mode shares (%)

No. joint trip Joint trips from PT Joint trips from bike

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

Car (alone) 100?0 100?0 100?0 4?0 5?3 7?3 4?0 5?3 6?5
Car (driver) 0?0 0?0 0?0 42?5 44?3 45?4 43?3 44?5 45?7
Car (passenger) 0?0 0?0 0?0 42?5 44?3 45?4 43?3 44?5 45?7
Car (all) 100?0 100?0 100?0 92?3 94?0 94?8 93?0 94?3 95?5
Public transport 0?0 0?0 0?0 5?1 5?9 7?7 4?4 5?6 6?9
Bike 0?0 0?0 0?0 0?0 0?4 0?13 0?0 0?13 0?3
Walk 0?0 0?0 0?0 0?0 0?0 0?0 0?0 0?0 0?0

Table 3 Number of joint trips and co-travelers per agent

# Joint trips
in plan

Number of agents

All w/1 co-trav. w/2 co-trav. w/3 co-trav.

0 13
1 83 83
2 23 21 2
3 387 382 5 0
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The work presented in this paper aims at including such
interactions in a state of the art travel microsimulation
platform, MATSim.

MATSim uses an iterative algorithm to search for an
approximation of a stochastic user equilibrium. In its basic
formulation, this process is unable to take into account
coordination. A generalization of this process was
introduced, which relies on the specification of a group
replanning procedure.

While this generalized process is specified so as to be
applicable to general social networks, it was implemented
for the simplest case of a network consisting of isolated
cliques, which is an abstraction for the network of
intrahousehold ties.

This implementation is tested on a simple test scenario
for joint travel. The results show that the process is able to
converge to a state close to the expected equilibrium.

This analysis opens a large range of possible future
work. First, a validation of the joint trips generation
process against travel diary data for the urban area of
Zurich, Switzerland, is currently in progress. Depending
on the observed accuracy, several improvements are
possible. First, the current process does not include joint
activities, while such activities are an important cause for
joint travel. Including such activities, even in a simplistic
way, may allow improvement in the results. The inclusion
of joint activities includes joint activity location choice as a
subproblem, which was shown to be a difficult problem
even in the case of isolated agents (Horni et al., 2012).
Second, no experiments with alternative scoring functions
have yet been undertaken. One should however consider
separate parameters for joint travel, or experiment giving
different weights to different roles in the household. A
positive valuation of being at home together with other
household members, such as the ones used by Vovsha and
Gupta (2013) and Meister et al. (2005) could also be
experimented with, and its impact on global properties of
the mobility patterns investigated. One should however be
careful when adding new parameters to the scoring
function, as this makes the calibration process more
cumbersome and error prone.

Finally, experiments with more general social networks
should be undertaken. The model of Arentze et al. (2012)
is planned to be used to generate a synthetic social
network for the Swiss population. This social network
could be used to test the behavior of the proposed
framework in such a setting. The usage of synthetic social
networks in actual forecasting runs is however still far
away, and a large amount of work still has to be done to
make this kind of simulation operational.
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