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Abstract We introduce complex network analysis and use a commercial vehicle’s

observed trip as a proxy for a business relation between two facilities in its activity chain.

We extract facility locations by applying density-based clustering to GPS data of com-

mercial vehicle activities. The network among the facilities is then extracted by analysing

the activity chains of more than 25,000 commercial vehicles. Centrality metrics prove

useful and novel in identifying and locating key logistics players. Transport planners and

decision makers can benefit from such an approach as it allows them to design more

targeted initiatives and policy interventions.

Keywords Network analysis � Clustering � Transport planning � Freight

Introduction

In this paper we link two bodies of knowledge that both focus on the mobility of vehicles,

people, goods and services. On the one side there is a supply chain management body of

knowledge concerned with the management of a network of interconnected businesses

providing products and services to one another and to end customers. We may not see the

abstract supply chains in our daily lives, yet its manifestation is multitude: we experience

it through services rendered; products being available at our local food courts; and the

seemingly obstructive heavy vehicles during our daily commute. On the other side, the
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body of transport planning deals with the design, operation and evaluation of transport

infrastructure. While supply chain researchers and practitioners are dealing with the

challenge of ‘‘how can we as a firm better compete?’’, the transport planners are trying to

answer an aggregate question: ‘‘how can we provide better supporting infrastructure so
firms and individuals can participate in the economy?’’ amidst the uncertainty caused by

the various competing objectives of the firms and other road users. Our objective in this

paper is to link these two domains using complex networks and network analysis.

To account for commercial vehicles in transport planning models, passenger and private

vehicle models are often just inflated by some fraction to reflect commercial traffic as

background noise. In a recent special issue on the behavioural insights into the modelling

of freight transportation, Hensher and Figliozzi (2007) acknowledge that freight models

and related public policy tools have lagged behind logistics and technological advances.

Extending modelling ideas from passenger transportation to address freight is called into

serious question.

Although commercial vehicles account for a small proportion of all the road users, each

vehicle contributes disproportionately to traffic congestion and emissions. Commercial vehicle

movement, however, can be considered as the manifestation of complex inter-dependent

relationships between enterprises: the delivery of goods across geographically dispersed

locations and the provision of services is the result of supply meeting demand for commodities

and services. Borgatti and Li (2009) make a strong case to analyse and express the complex

supply chain structures of firms as social networks. Following such a path through literature

often highlights knowledge exchange as the focus of social networks amongst firms. Estab-

lishing clear networks of knowledge exchange is arguably leading to innovation systems,

clusters, etc. Rightfully so, Giuliani et al. (2005) report on a large number of case studies

showing how enterprises improved global competitiveness through clustering together.

Our interest in this paper is to consider a complex network perspective on transport

planning, and more specifically related to commercial vehicle movement and its effect on

congestion. We use the discrete interactions between facilities, i.e. the commercial vehicle

trips, as a proxy for the connection, or relationship, between the facilities. More frequent

trips made between facilities suggest that the operations of the two facilities are more

aligned; dependent on one another; and hence other interactions in the form of personal

contacts, documentation and information flow may arise. Previously, Joubert and

Axhausen (2011) extracted vehicle activities and activity chains from raw geographic

positioning system (GPS) data. In this paper, we further our understanding of commercial

vehicle movement, and analyse their activity chains in more detail.

This paper makes three valuable contributions. Firstly, we present and demonstrate a

methodology to extract commercial vehicle facilities from GPS vehicle tracks using a

density-based clustering algorithm, and evaluate the clustering results. The use of clus-

tering on GPS logs per se is not novel, but our application to commercial vehicle activities

and facilities is indeed new. Secondly, we show how to extract a complex network with

weighted, directed arcs from the vehicle activity chains. And thirdly, we demonstrate the

methodology to build a complex network for the province of Gauteng, South Africa, and

conduct a number of analyses on the network.

Contrary to the findings of Hesse and Rodrigue (2004), as a result of the unique spatial

and socioeconomic context, we show that many key facilities, attracting and generating

large numbers of activities, are not on the periphery of the urban areas in South Africa, but

very centrally located. Applying network analysis can prove to be a useful tool to transport

planners and policy makers to identify key players and their associated industries and

facilities. When decision-makers can identify, and subsequently involve and target key
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players, it can open opportunities for more rapid policy implementation and technology

deployment.

The paper is structured as follows. In the next section we tie our work to the existing

bodies of knowledge and provide a link between supply chain management, network

theory and analysis and transport planning. Section 3 describes how we extracted facility

locations from commercial vehicle movement. We show in Sect. 4 how we extracted the

complex network among facilities, and give results of our network analysis. We also

discuss the implications and application of our methodology for transport planning

researchers and practitioners. The paper is concluded in Sect. 5 with final remarks and

comments on future extensions.

Related work

The metaphor of companies forming relational chains is at the heart of supply chain

management (SCM). The field of SCM is well-established and lies at the intersection of

many disciplines: from the more quantitative procurement, operations research and

logistics, to the more qualitative marketing and operations management. Firms invest

millions to develop their supply chains—upstream suppliers, their own enterprises, and

downstream customers—all in an effort to improve their own performance. Often the

return on investment of a chain’s development is difficult to quantify or appreciate. Autry

and Griffis (2008) introduce supply chain capital to value firm-to-firm strategic relation-

ships that were formed and nurtured with suppliers and customers so that the firm could get

a manageable handle on its business.

In the majority of literature a single focal firm is identified as the subject of study. The

supply chain is then expressed, modelled and valued from the focal firm’s perspective. The

supply chain is very often only described and treated at functional and organisational-level.

The different facilities of each member of the supply chain are only addressed in a subfield

of SCM often referred to as network design.

Making different firms in the same supply chain the focal company will result in quite

different views of the same chain. Integrating these different, often linear, views would

typically yield a complex network of interdependencies difficult to usefully analyse using

only the available SCM body of knowledge. Since different focal firms’ objectives are often

competing, attempting to improve their positions in the supply chain will require some trade-

off so that a pareto-optimal solution is achieved. Authors such as Lazzarini et al. (2001)

started to combine SCM with network theory, integrating the horizontal ties between firms at

one level, say suppliers, with vertical ties between firms of different levels. Network theory is

concerned with providing tools to map and analyse various types of relationships between

entities, and thus proves useful to map the interdependencies among firms. Network theory

has also been applied to test the vulnerability of a network to either random or deliberate

attacks on nodes or edges (Albert et al. 2000; Holme et al. 2002).

Barthélemy (2011) provides an extensive review of spatial networks and includes a

variety of transport examples such as road and street, public transport, airline and cargo ship

networks. In a seminal work on complex networks Newman (2003, Sect. 2) identifies these as

technical networks: man-made networks designed to distribute commodities or resources.

Other examples include land-line telephone networks and an electric power grid. Since we

study commercial vehicle movements in this paper, one may argue that many of the trips and

activity chains form part of a fixed delivery network, the result of a freight carrier’s route

optimisation. A complex network derived from such vehicle trips could subsequently fall
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into this type. Another type, social networks, is also applicable. And in the spirit of SCM, one

can consider the relationships between supply chain partners as a form of social interactions,

be it arms-length agreements or more formal contractual relationships. To highlight the

suitability of linking the supply chain concept with social network analysis, Borgatti and Li

(2009) review the development of social network theory and provide a concise introduction

to key concepts and perspectives in social network analysis. Different types of ties (inter-

actions) between firms are identified, such as continuous similarities between firms (located

close to one another); social relations (one company being a subsidiary of another); discrete

interactions (inter-company meetings); or discrete flows (deliveries). Ties may exist between

the firms as entities, or between individuals associated with each firm. The concept of

multiplexity acknowledges that ties of different types may exist simultaneously. The flow of

goods between firms, or more specifically between the different facilities of a firm, or

facilities of different firms is an obvious result of conducting business.

We can see neither supply chains nor social networks. Yet in every day life these

abstract concepts are manifested in the form of people travelling to meet one another

(social interactions), or commercial vehicles carrying shipments from one firm to another.

And all road users share the same network infrastructure. As supply chains evolve into

increasingly complex structures, smaller consignments delivered more frequently con-

tribute to the increasing congestion. The link between transport planning and network

analysis, and social networks in particular, is in its early stages. The interest is often to

analyse and study the truly social network of people to explain and account for their leisure

travel (Hackney and Marchal 2009; Kowald et al. 2009). There is an opportunity to extend

the emerging knowledge of networks in transport planning to the social (business) inter-

action of firms, and how those interactions manifest in the movement of commercial

vehicles. In our paper we aim to contribute by extracting a complex network from firm

interactions, and show how network analysis can improve transport planning by allowing

us to generate more representative and accurate activity chains for commercial vehicles.

Although contributions such as Hensher (2007) and the special issue edited by Hensher

and Figliozzi (2007) start to acknowledge the behavioural insights in freight transport

modelling, Liedtke (2009) is the first, to out knowledge, to develop a model predicting and

simulating actual truck movement resulting from inter-organisational relationships. Others

like Roorda et al. (2010) and Schröder et al. (2012) presented a multi-agent freight transport

model to address the dynamics and complexity in logistics decisions among supply chain

actors. This is a valuable step towards understanding and expressing the tangible result of

supply chain interactions: vehicle movement. Newman (2003) notes that traditional social

network studies often suffer from problems on inaccuracy, subjectivity and small sample

size. This paper benefits from the work of Joubert and Axhausen (2011) in that we have

activity chains parsed from GPS data to generate the complex network from. The extensive

study tracked more than 30 000 vehicles over six months, resulting in excess of 10-million

vehicle activities. The purpose of the study was to study the activity and activity chain

characteristics of commercial vehicles in South Africa, yielding temporal and spatial results

at a disaggregate level. The study only considered the vehicles itself, with no regard for the

facilities at which the activities took place.

Locating facilities

In response to the ease and availability of GPS data, Spaccapietra et al. (2008) introduce a

conceptual model to deal with the analysis of spatio-temporal phenomena. GPS logs—often
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referred to as trajectory data—is but one element of the object’s semantic trajectory, the

latter being made up of meaningful elements that may include the activities the object

participate in, termed stops, or the journey(s) between the activities, termed moves.

Since GPS logs contain a lot of noise as a result of the accuracy of positioning, true

facility location is difficult to infer from GPS records of vehicles, or people. Andrienko

et al. (2011) provide a taxonomy of techniques for movement analysis, one of them being

clustering: a computational analysis method to group items by their similarity such as

closeness. To make sense of the large volume of activity data produced by Joubert and

Axhausen (2011), we used clustering to help automate the process of identifying and

extracting locations where high concentrations of activities exist. If clustered correctly, we

would be able to use the cluster centroid as a good approximation to answer the question:

At which facility did the vehicle perform its activity?
The reader is referred to Jain et al. (1999) for a review of data clustering, and also to

Zhou et al. (2004) for a concise discussion and comparison of different clustering

approaches. In the remainder of this section points refer to vehicle activities in the data set.

Commercial activity clustering

Of the four clustering classifications proposed and reviewed by Halkidi et al. (2001),

namely partitional, hierarchical, density-based and grid-based clustering, our choice fell on

the benefits provided by a density-based approach. Contributions such as Nanni and

Pedreschi (2006) and Pelekis et al. (2011) use density-based clustering to accurately

identify an object’s trajectory from moving point data. We, however, apply the method to

static activity points to identify the actual facilities where commercial vehicles perform

activities.

Density-based algorithms regard clusters as regions with high concentration of points, in

our context vehicle activities, separated by low-density regions. The first benefit is being

able to identify clusters of arbitrary shape. This is especially useful for large freight-

handling areas where facilities may have awkward U and H-shaped layouts to accom-

modate loading bays for vehicles. The second benefit is that irregular points, noise and

outliers are less likely to participate in the final result and be considered part of any cluster.

Since some locations may only be visited very infrequently and will be of little interest. For

example, a household that is visited by a delivery vehicle only once every six months with

a mail delivery from Amazon is not likely to be considered an interesting facility from a

commercial vehicle movement point of view. A third benefit is that although the density-

based clustering approach require algorithmic parameters, they can be identified and set

once, and are less likely to require adjustment by the user for every clustering instance.

Lastly, the DJ-Cluster implementation of Zhou et al. (2004), which we followed, will

always produce the same clustering result given the same data—an attribute we refer to as

a deterministic result.

Following the DJ-Cluster approach, we calculated the neighbourhood of each point p as

all the points within a distance parameter e set by the user. A neighbourhood must consist

of at least pmin points to be considered a valid neighbourhood of p, denoted by N. If no

neighbourhood N exist, p is discarded and considered to be noise. Otherwise, either p and

its neighbours, denoted by p [ N, are considered a new cluster c 2 CH if none of the points

in N are associated with an existing cluster, i.e. N \ CH ¼ f�g; or p and N, and all clusters

associated with N, are merged into a new cluster c0 ¼ p [ N 2 CHj
T

c2CH

c ¼ f�g.
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Cluster evaluation

Although the density-based clustering approach is deterministic, it remains sensitive to the

choice of the search radius, e, and the minimum number of points, pmin. The combination

of these two parameters determines the size and shape of the clusters, and thus the accuracy

of identifying facilities. This section deals with determining appropriate values for both e
and pmin to answer the question: How do we determine when the clustering algorithm
identified the correct facilities?

We use external criteria to validate the results of our clustering approach as described

by Theodoridis and Koutroumbas (2006): the results of the clustering algorithm is com-

pared to a predefined clustering structure. Zhou et al. (2004) provide a concise overview:

To evaluate the performance of a retrieval engine, a corpus of documents is first selected.

A corpus might consists of a large number of articles from the Wall Street Journal, for

example. Then a set of queries is produced: the intention here is to model realistic

information needs within a domain. So, for example, a representative query might be:

What is the best way to ensure the safety of the U.S. beef supply? In the next step, domain

experts determine which documents in the corpus are relevant to (or serve as answers for)

each query. These documents serve as the baseline or ‘‘gold standard’’ for evaluating the

results returned by any given search engine. Two major metrics are traditionally used,

precision and recall. Precision measures the proportion of results returned by a search

engine for a query that were in the ‘‘gold standard’’. Recall measures the proportion of

documents in the ‘‘gold standard’’ for a query that were returned by a search engine.

To establish a baseline, we generated ten validation areas, each with a radius of 1 km

around a centroid that was selected randomly from the kernel density estimate of all

vehicle activities as shown later in Fig. 5a. Our area selection ensured that we would

validate in areas where commercial activity would typically be high. Our choice of the

number of validation areas, and the size of each area, although arbitrary, provided a set of

areas with diverse activity densities and land uses.

For each area we superimposed the vehicle activities on an aerial map of that area, and

applied our judgement on which points should be clustered together to match the under-

lying land use. An example of one of the ten areas is shown in Fig. 1. In Fig. 1a we show

the activity points, as well as polygons representing our baseline of identified clusters. We

note here that, due to the size and layout of large facilities such as shopping centres and

distribution facilities with say H-shaped layouts, a number of independent clusters may

make up a single facility. This has implications for later analysis.

The baseline for each area v is the number, nv, and location of identified clusters. We

denote the set of identified cluster, i.e. baseline clusters, in area v by Bv. For each

parameter combination c ¼ fe; pming we execute the density-based clustering and compare

the resulting clusters, denoted by Rv, against the baseline clusters Bv. Figure 1b shows one

example of the resulting clusters (as spidergraphs) on top of the baseline clusters. A

validation score, sc
v, made up of four penalty components, is then calculated for each area v

and parameter combination c.

1. Each baseline cluster b 2 Bv not covered by any cluster r 2 Rv, i.e. b \ Rv ¼ f�g, is

penalised as a missed cluster. In Fig. 1b there are two such instances.

2. Conversely, a fabricated cluster r 2 Rv is one that is not associated with any b 2 Bv,

i.e. r \ Bv ¼ f�g. Each fabricated point is penalised. This often occurs if pmin is set too

low. In Fig. 1b there is one instance, albeit on the periphery of the validation area.
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3. If multiple clusters, say r1; r2; . . .; rm 2 Rv, were identified in a single baseline cluster

b 2 Bv, we say that b has been split. Since only one of the m clusters would have been

ideal, m - 1 split penalty points are incurred. In Fig. 1b there is only one such

instance: a single baseline cluster covers m = 2 resulting clusters, and a split penalty

of m - 1 = 1 is incurred.

4. If multiple baseline clusters, say b1; b2; . . .; bn 2 Bv were covered by a single resulting

cluster r 2 Rv; the baseline clusters are said to be merged. As for split clusters, a one-

to-one match is sought, and a penalty of n - 1 is incurred for each instance. In Fig. 1b

there are three instances, each merging two baseline clusters, so a penalty of 1?1?1=3

is incurred.

The example in Fig. 1b results in a total verification score of sc
v = 2 ? 1 ? 1 ? 3 = 7. In

an attempt to find the configuration with the lowest validation score, denoted cH, we

identified four possible metrics to calculate (across all ten areas) for each combination c:

1. average of the sum of scores, expressed as 1
10

P10

v¼1

sv
c;

2. average weighted sum of scores, expressed as 1
10

P10

v¼1

sv
c

nv
;

3. worst score, expressed as max
v¼f1;...;10g

sv
c

n o
; and

4. worst weighted score, expressed as max
v¼f1;...;10g

sv
c

nv

n o
.

Validation was done for all the combinations of radii e ¼ 10; 15; 20; 25; 30; 35; 40; 45f g
and minimum number of points pmin = {5, 10, 15, 20, 25, 30}. The results are visualised

in Fig. 2 with shades for each metric scaled between the worst (shaded black) and the best

(shaded white) validation scores. The two extreme values are shown for each metric. The

extreme values itself is of little importance. Of more importance is the configuration of e
and pmin that yields the lower extreme value, shaded white. Although all metrics produce

(a) Activities (b) Clusters

Fig. 1 To evaluate the clustering of activities into facilities, a shows the clustering baseline identified
through expert judgement; while b shows an example of the clustering results and how the result is scored
based on the baseline identified in a. Source GoogleEarth at location 25�44057.400 0S, 28�09000.800 0E,
accessed on 10 December 2009
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very similar result, we argue that using the maximum weighted score metric (Fig. 2d) will

yield robust clustering results that are best suited across a geographic area with diverse

land uses, even more diverse than what we may have sampled.

In the remainder of the paper, we used the search radius e ¼ 30m and the minimum of

pmin = 15 points suggested by Fig. 2d in clustering the vehicle activities. The clustering

algorithm was implemented in Java. Instead of considering clusters strictly within the

province of Gauteng, we extended the study area (due to computational reasons) to be the

bounding box of the province: the tightest rectangle that can be fitted around the extent of

the province. A total of 43 477 facilities were identified in the study area.

Network analysis

To establish a network among the facilities, we considered the detailed activity chains from

the vehicles conducting the activities. As an illustration, consider the four activity chains in

Fig. 3a. From Joubert and Axhausen (2011) we recall that major activities are those lasting

in excess of five hours, representing depot locations where activity chains start and end.

Although the example given in Fig. 3a shows each chain starting and ending at the same

major location, this need not be the case. Minor activities last less than five hours, and

make up the various links in the activity chains.
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Fig. 2 Results from the cluster validation using four different metrics
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Of the twelve activity locations illustrated in the example, only nine were within the

study area, of which seven were identified as facilities by the clustering algorithm and are

included in our vertex set V ¼ fa; b; e; f ; g; i; lg. To create the edge set, E, for our network

graph GðV;EÞ we consider the four vehicle chains, using a vehicle trip between two

facilities, both contained in V, as the directed edge, or arc, connecting the facilities.

The first chain, a! b! c! d ! e! a starts at facility a 2 V and proceeds to

facility b 2 V. The trip originates at a, and so we increase the out-degree of a by one to

keep track of the number of times a facility is the origin of an interaction. We also increase

the in-degree of b by one as the trip terminates at b, keeping track of how many time each

node is the destination of an interaction. Both a and b are within the study area; no network

exists; so we establish a directed edge (dyad) between a and b and assign it a weight of one.

Although the in- and out-degree can be calculated from the graph G ¼ ðV;EÞ directly, note

that we keep a separate record of in- and out degrees. The reason for this is because not all

activities in vehicle chains were identified as facilities, yet they remain activities

nonetheless.

For the next link in the activity chain, b! c, we increase the out-order of b. Since c is

not within the study area, c 3 V, its in-order is of no interest to us, and no edge is

established. Link c! d originates from outside the study area, so c’s out-degree is of no

interest. Since d 3 V has not been identified as a facility, it is considered non-interesting

and we don’t keep track of its in-degree, or create an edge between the two non-interesting

facilities. Link d ! e originates at a non-interesting location, so d’s out-degree is of no

interest, but the interaction terminates at facility e 2 V, so we increase the in-degree of e
by one, and no edge is created between d and e. Link e! a is again between two facilities

in the vertex set, so we increase both the out-degree of e and the in-degree of a with one,

and create an edge from e to a with weight one.

The second chain, a! b! f ! g! a, starts with a link from a 2 V to b 2 V, both

facilities of interest, and we increase the out-degree of a and the in-degree of b by one. The

edge from a to b already exists, so we increase its weight by one. We continue with links

b! f ; f ! g and g! a, increasing the out-degree of the origin and the in-degree of the

destination by one in each case, and creating a directed edge with weight one between each

pair.

bounding box

a

h

k

b

c

e

f

g

i

l

d

j

Clustered
major location
Clustered
minor location
Unclustered
minor location

Chain 1
Chain 2
Chain 3
Chain 4

(a) Activity chains

-tuOoT

degree

From

– 2 – – – – – 2

– – – 1 – – – 2

1 – – – – – – 1

– – – – 1 – – 2

1 – – – – – – 1

– – – 1 – – – 1

– – – – – – – 1

In-degree 2 2 1 2 1 1 1

(b) Resulting adjacency and degree matrix

Fig. 3 Example illustrating the process of extracting a network graph from commercial vehicle activity
chains

Transportation (2013) 40:729–750 737

123



The third chain, k ! l! k, only sees the in-degree and the out-degree of facility l 2 V
increased by one, but no edges are created. The fourth chain’s first link, h! i, will see

facility i’s in-degree be increased by one. Although the facility is not strictly within the

province, it is of interest since it is within the study area. Next, the out-degree of i and the

in-degree of f will be increased by one, and we will create an edge from i to f. Since the

next link, f ! j, originates at an interesting facility, f 2 V’s out-degree will be increased,

but no edge is created. Also, j 3 V’s in-degree is of no interest. The link j! h is also

between non-interesting locations, so we discard the link.

The adjacency matrix and the associated in- and out-degree values of the resulting

weighted network for this illustration is given in Fig. 3b. Of the possible 72 = 49 edges

that may exist, only six entries exist, resulting in a density of 6/49& 12.24%. Usually the

degree of a facility is defined as the number of ties that a vertex has with other vertices in
the network. The commercial vehicles we tracked perform activities across areas that

exceed the study area, yet we were only interested in extracting the network as it exists

within the study area. Hence we report, for example, a degree of 2 for facility l (sum of

reported in- and out-degree) although the adjacency matrix reveals an order of 0 (sum of

the number of row and column entries for l). This is valuable for later analysis.

The complete vehicle data set from which activities were extracted contained 31,053

vehicles, representing approximately 1.5% of the national heavy and light delivery vehicle

population. Of these vehicles, the complete network for Gauteng was established using the

vehicle chains from 25,431 vehicles that travelled through, or conducted at least one

activity within the study area. The network contained 43,477 facilities and 1,313,502

directed edges between facilities, resulting in a density of 0.06949%.

In complex networks there is usually heterogeneity in the degree distribution, with some

vertices connected to very many other vertices, and others to only a few (Barthélemy 2011;

Boccaletti et al. 2006; Newman 2003, 2005; Strogatz 2001). As Lima-Mendez and van

Helden (2009) suggest, one might be tempted to classify a complex network’s degree

distribution, i.e. the number of connections a node has to other nodes in the network,

as following a power law function. After fitting the function to the Gauteng network’s

in-degree distribution (Fig. 4a), we know this is not strictly the case. We also fitted a

truncated power law function by considering a degree threshold, CH, at which to split,

i.e. truncate the data, fitting a separate power law function to each subset. On the x-axis of

Fig. 4a we plot the degree k, and on the y-axis the degree-distribution, p(k), indicating the

number of vertices having a degree k. We estimated CH ¼ 8 in Fig. 4b with the resulting

slope of the first section estimated as b1 = 0.846 with R2 = , 0.9916, and the slope of the

second section as b2 = - 1.914 with R2 = 0.9201. The overall fit of the truncated power

law had an R2 = 0.9212, compared to the much worse R2 = 0.8840 when only fitting a

single power law function to the entire data set. The results were very similar for the out-

degrees.

The highest weight of any edge was 8,468, an average of more than 54 direct trips

per day over the 6-month period (6 working days per week assumed). The 99th,

99.5th, 99.9th, 99.95th and 99.99th weight percentiles are 29, 47, 128, 203 and 533,

respectively.

Identifying key facilities

The notion of centrality is a key concept in network analysis, and relates to the relative

importance of a facility due to its structural position in the network as a whole. Of interest
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to us is identifying who and where the central and/or important players in the network are.

To identify the central actors in a network is useful since disseminating information such as

policy or new technology, for example, will be best achieved when central actors are

targeted. The conjecture in social network analysis is that the central node in a network can

disseminate information fastest throughout the network. Since the central actors may be

very difficult to identify due to the multiobjective nature of what makes an actor central, a

number of centrality measures have been proposed to identify central and key actors, the

latter being those that are most likely to be closely linked to central actors.

A node’s betweenness centrality indicates on how many shortest paths between other

nodes the node occur. Borgatti and Li (2009) note that firms with high betweenness are

structurally important to the economy itself, because if they disappear or become bottle-

necks, they will affect more other firms than if they had lower betweenness. The health of

these facilities are important for the health of the rest of the network.

The number of edges a node has within the network is referred to as its degree cen-
trality. Well-connected nodes will score high on degree centrality, while nodes that are

connected to well-connected nodes may score high on a property known as eigenvalue
centrality. Whereas a node’s degree centrality may be a proxy for the amount of infor-

mation the node has, the eigenvalue centrality suggests that those that are connected to

well-informed nodes may have access to more information than those nodes that are

connected to an equal number, but less-informed nodes.

To compare our network with other complete networks, our key network statistics are

provided in Table 1 while Fig. 5 provides the spatial distribution of the top 1000 ranked

players in each of three centrality scores in subfigures (b) through (d).
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Cape Town

Durban
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(a) Reference map (Adapted from Joubert and Axhausen (2011)).

(b) Weighted degree centrality (c) Betweenness centrality

(d) Eigenvalue centrality

Fig. 5 Spatial distribution of key players based on various centralisation scores. Size and transparency is
related to the centrality score: the larger and more solid the marker, the higher the score
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The eigenvalue centrality should be, in theory at least, an approximately linear function

of the betweenness centrality. Any non-linear outliers will hence be facilities of interest. In

Fig. 6a we plotted the centrality scores with the transparency of each point representing the

absolute size of the residual from the linear model fitted to the centrality scores of all 43

477 facilities. The more solid (darker) the point marker, the larger the absolute residual.

The ten facilities with the highest absolute residuals are identified, and their geographic

locations are shown in Fig. 6b. With the exception of 143, 1364 and a lesser extent 8227,

all facilities are rather centrally located and not on the periphery as might be expected. The

majority of the facilities have close access to the main highways.

The eight nodes with higher betweenness than eigenvalue centrality can be considered

gatekeepers: having the capability for widespread interaction with other (especially cen-

tral) facilities (Graf and Krüger 2009). Why is this important? Gatekeepers are more likely

to be well-informed stakeholders in policy planning. Identifying these facilities allow

planners to target them with specific policy interventions—if it has economic and com-

petitiveness improvement as its objective—potentially increasing the penetration and

speed of effect of such policy interventions in the industry. Of the seven identified gate-

keepers, five were positively identified as depots and distribution centres of the same large

brewery. We were unable to positively identify the other two.

Introducing new technology such as radio-frequency (RF) consignment tracking, for

example, requires large capital investments in infrastructure, but also operational process

changes. Targeting gatekeeping facilities as entry points for new technology may increase

the penetration and acceptance of the technology since gatekeepers are critical to central

actors in the industry.

The two facilities with higher eigenvalue centrality than betweenness, 1364 and 2306,

are regarded as having unique access to central actors. If the direct identification of central

actors remain elusive, targeting these facilities will likely yield access to central actors

otherwise not achievable. Facility 1364 was identified as a large refuelling station on one

of the major highways, while 2306—located close to the Johannesburg International

Airport—was identified as an international distribution centre of industrial electronic

Betweenness Centrality

E
ig

en
va

lu
e 

C
en

tr
al

ity

104 105 106 107 107

10−2

10−1

Absolute value of residual

1.1601 x 10−1

8.7009 x 10−2

5.8006 x 10−2

2.9003 x 10−2

9.1379 x 10−8

7154

515

8227

609

143

8232

6133

7893

2306
1364

Gate
ke

ep
er

s

Uni
qu

e a
cc

es
s

(a)

Major highways

study area

7154

8232

515

8227

6133

7893

609

143

2306

1364

Population (103)

666
500
333
167
0

(b)

Fig. 6 Identifying key facilities as those with largest linear residuals
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components. Again, gaining access to central actors in the network allows for deeper and

more rapid penetration of intervention, be it policy or technology.

Importers and exporters

The in-degree of a facility is usually calculated as the column sum of ties that exist in the

adjacency matrix for the facility. Only arrivals from other facilities within the network are

thus considered. Similarly, the out-degree is calculated as the row sum of existing ties.

However, earlier in this section we noted that we captured the in-degree of a facility as the

total number of times that the facility was the destination of an interaction, whether the

interaction originated from a facility within the network or from outside. Similarly, the out-

degree is the number of times that the facility was the origin of an interaction, irrespective

of whether the destination was within or outside the study area.

In the absence of any further information, we do not know which interaction of a vehicle

with a facility is important: if it arrives at the facility with a delivery and leave empty, we

might argue that the in-degree is actually worthy of our consideration. Or, if the vehicle

arrived empty or partially laden to collect, and leave loaded, we might argue that the out-

degree is of more importance. Unfortunately we do not have any additional information

with regards to what the purpose of the interaction is. For each activity then, both the

arrival and the departure are captured in the in- and out-degree values respectively,

yielding them essentially equal.

An analytical opportunity arises when the two ways of defining in- and out-degrees are

combined. For this purpose we will refer to both our in- and out-degree values, since they are

the same, as dH, and to the more classic approach as din and dout, respectively. The difference,

dH � din, then indicates how many more external than internal interactions a facility had as

destination. A high value indicates a facility that receives more vehicles from outside the

study area. Similarly, a high value obtained for the difference dH � dout indicates a facility

from where a large number of vehicles depart to destinations outside the study area.

For an economy with balanced imports and exports the two differences should be

approximately linear. In Fig. 7 we plot the two differences against one another, and

indicate with the transparency of the markers again the absolute residuals from the fitted

linear model. There is visibly more net exporters in Gauteng than importers. As we have

for the identification of key actors, we identify the top ten facilities in terms of the size of

the absolute residuals. This analysis is useful in identifying the key importers and exporters

in the province. From Fig. 7a there does not seem to be a clear break between the lower left

quadrant and the upper right quadrant to distinguish between internally focused, and

externally focused facilities.

From Fig. 7b we see that key importers and exporters are in close proximity to the main

highways. Since facilities 42, 1999 and 2000 are outside the province we have little interest

in them. Four of the eight net exporters were fuelling stations. Facilities 42, 361 and 414

were all retailer refuelling stations located on major highways, while facility 1549 was

identified as a wholesale diesel outlet close to the Johannesburg International Airport. It

makes intuitive sense that many vehicles refuel before embarking on distant journeys

elsewhere in the country. Unfortunately we were unable to positively identify facility 515

in the central business district of Johannesburg, or facility 2000. Of the two importers,

facility 454 is a distribution centre of a large broiler operator: importing frozen poultry

products from the Western Cape. The other, 2777, is located close to the international

airport and is the distribution centre for industrial bearings and components. One may
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question the usefulness of identifying refuelling facilities. In some settings, we agree, it

may have little value. But if one considers locations to put vehicle weight monitoring and

enforcement infrastructure, you definitely should consider refuelling facilities given their

prominence in the network. Also, when simulating activity chains, they clearly make up a

noticeable portion of the activities and should thus be included if one aims to duplicate

reality.

With the exception of facilities 414 and 361, it is a concern that the majority of the key

importers and exporters are not located closer to the periphery of the urban areas. Joubert

and Axhausen (2011) note that the omnidirectional through-traffic makes Gauteng an

obvious choice as a hub connecting the two main ports from the South-East (Durban) and

South-West (Cape Town) with the northern neighbours. If the importing and exporting of

goods remain, which are economically beneficial, the transport planning challenge is to

ensure flow on the main freeways, especially in the urban centres.

Using commercial vehicle activities and the associated network analysis approach is

very useful to identify the key importing and exporting facilities. It allows transport

planners and provincial and local governments to derive directed and specific policy

measures. Our methodology can help identify key stakeholders to involve in designing,

testing and implementing policy instruments such as concessionary real estate rates or

construction and relocation subsidies that may ensure enhanced competitiveness for the

facilities, and indirectly improve congestion in the urban centres if some of the key

importers and exporters do decide to relocate more towards the urban periphery.

Since large refuelling stations seem to be the last port-of-call for many vehicles, they

may be useful locations to consider the placement of weigh-in-motion facilities to police

and enforce vehicle (especially heavy vehicle) axle overloading.

Cohesive subgroups

We argue that it is beneficial for firms that facilities that are connected with weighty ties

should be located close together, lowering logistic costs. If combined with shared services
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and accessible location choice, as is the case in supplier parks and industrial zones, other

economic benefits may also arise. Urban economics refers to such benefits as economies of
agglomeration. Further benefits related to knowledge diffusion and organisational growth

has also been studied (Giuliani and Bell 2005; Giuliani et al. 2005). We wanted to

investigate whether firms with high volumes of inter-facility flows are indeed located in

close proximity within Gauteng, and also where they are located. If facilities are dispersed,

our analysis would be useful in identifying opportunities where firms can consider the

benefits of relocating into industrial districts to reap economic benefits. Within such

cohesive subgroups, or small economies, various opportunities for load consolidation may

be identified, or empty legs of activity chains might be reduced.

To identify such small economies, we reduced the original network into weak com-

ponents. A weak component is a subgraph in which all nodes (facilities) are connected with

at least one edge, in either direction. To extract the weak components we removed all

directed ties with weight less than 200 (approximately the 99.95th percentile); and

removing all resulting isolates (unconnected facilities).

The resulting network components are illustrated in Fig. 8a. We’ve plotted the directed

graphs of selected components from Fig. 8a over the population densities in Fig. 8b. At

first glance of Fig. 8a one notices the large proportion of components (65%) that only

contains 2 facilities; and those containing 3 facilities (15%). Borgatti and Li (2009) suggest

that such isolated components is often the result of effective links (business transactions)

that drifted off to become independent. In the context of this paper one should be careful to

infer too much from such a suggestion: Many of the two-node components are often two

positions at the same, albeit very large, facility that could not be jointly identified during

clustering. One may be tempted to ask: ‘‘why not then change the clustering parameters?’’
The answer may be given through an example: a large commercial facility like a shopping

mall may be identified as two separate clusters, one at the receiving docks at the back of
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Fig. 8 Cohesive subgroups extracted from the original network. Each component can be considered a small
economy since the facilities have frequent direct interaction. Some components in (a) are selected based on
the edge weights. The selected components are located accordingly in (b)
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the facility, and the other in the parking area in front. These two facilities may represent the

same complex, but are quite different in function. Similarly, a large distribution centre may

have its receiving and despatch areas identified as different facilities by the clustering

algorithm, but again it is arguable that the two areas should be considered separately based

on the functions performed at each. If a vehicle then moves from one facility to another at

the same business complex, it may in fact be doing so to perform a specific, yet different

function than at the first. For this reason we do not want to merely change the clustering

parameters to avoid these occurrences, or artificially merge them postmortem.

We tried to, in the absence of additional land use information, derive the likely business

of each of the components using address searches and aerial photographs. We also report

on the approximate number of vehicle kilometres (vkm) travelled in each component,

using the number of trips and the Euclidean distance between the facilities. Component c1

contains 15,390 trips and accounts for 160,081 vkm (an average of 1026 vkm per day). As

was the case with gatekeepers, c1 is dominated by the brewery’s depots and distributions

centres. Component c2 contains 69,666 trips and accounts for 314,286 vkm (2015 vkm per

day); is located outside of the province; and is related to coal-mining, linking collieries

with processing facilities. Component c3 contains 15,614 trips, accounts for 166,074 vkm

(1065 vkm per day) and is construction-related, linking various cement factories and

depots to facilities which seem like retail construction material and do-it-yourself supply

outlets. We were not able to distinctly identify the businesses in c4 which contains 10,373

trips and accounts for 25,552 vkm (164 vkm per day), although it is likely to be associated

with the textile production industry. Component c5 contains 46,720 trips and accounts for

409,750 vkm (2627 vkm per day). While the various parts of component c5 seem unrelated,

they are linked by a few truck rental depots. We argue that although the business may not

be related, they all make use of outsourced fleets for their transportation needs. A number

of large industrial manufacturing plants and distribution centres are also present in c5. The

majority of facilities in c6, containing 17,610 trips and accounting for 91,199 vkm (585

vkm per day), are located near or at the freight terminal of the Johannesburg International

Airport, while a small number of other facilities seem to be either small storage and

distribution centres, or manufacturing plants.

In Fig. 8b we notice that the number of trips are dominated by c2. At the given scale the

distances travelled seem negligible, yet varied between 171 m (travelled 374 times) and

30.9 km (travelled 447 times). One can conclude that c2 is a small economy well posi-

tioned: facilities are close to one another; and vehicle movement does not seem to interfere

with high population densities. The nature of the business, however, usually sees mining

and processing operations located close to one another.

The positioning of c2 is in contrast with that of c1 and c3 through c6 where frequent trips

are conducted over larger distances, most notably 27.8 km for c1 (2262 times); 55.1 km for

c3 (531 times); 9.6 km for c4 (783 times); 20.1 km for c5 (856 times), and 12.8 km for c6

(2701 times).

Of concern, with the exception of c2 again, is the proximity of the highest activity

components to the densely populated areas. This is further confirmation of Joubert and

Axhausen (2011) where competition for land exist between industry and especially the

low-income portion of the population.

Being able to identify and subsequently rank the cohesive subgroups, urban and

transport planners may identify easy wins if policy instruments are targeted towards the

high-ranked components. Opportunities exist to jointly improve the logistic state-of-affairs

for the small economic components, and at the same time addressing mobility in the urban

centres, assuming the relocation of the components are considered viable.
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Implications for transport planning

Much of our application of network analysis so far has had a strong link with economic

policy and regional science. The link between transport and economic performance is well-

established (Banister and Berechman 2001). In this section we give two examples on using

network analysis more specifically in transport planning.

Having a network graph allows one an array of analysis (Barthélemy 2011). Other than

just the graph’s topology, spatial networks has implications for transport such as distance

and cost. When coupled with observed activity chains, such as those described by Joubert

and Axhausen (2011), one can find similarities between different vehicles’ trajectories

(chains) of the graph (Tiakas et al. 2009). Such similar paths highlights corridors of

activity more accurately than just vehicle counts. Travel demand management measures

such as road pricing, load consolidation, and road space reallocation may be directed at

these corridors. Coupling the activity chains with the graph also provides the ability to

identify those facilities where the diversity of different vehicles are higher. If only vehicle

volumes are used to identify locations for vehicle weight enforcement one stands the

chance to monitor too small a subset of the vehicle population.

The second use of the network relates to transport modelling. Recent developments in

agent-based transport favoured private cars and individuals, while Liedtke (2009), Joubert

et al. (2010) and Schröder et al. (2012) specifically addressed freight vehicles. For such

models, an initial activity chain is required for each agent. In the context of this paper,

agents refer to commercial vehicles and a vehicle’s activity chain represents the sequence

of activities the vehicle will execute in the mobility simulation. Sampling from a weighted

directed network, as we’ve created in this paper, allows the transport modeller to create

synthetic activity chains that accurately reflect reality.

To illustrate the generation of an activity chain, consider the weighted network given

in Fig. 9 that assumes three different weights: one, two and three. From Joubert and

Axhausen (2011) one can sample the start time, duration, and number of activities per

chain. The first activity, say a, can be sampled from a kernel density estimate as provided

in Fig. 5. If one wants to create a synthetic activity chain with n activities, the sequence of

activities is best sampled from the weighted network using a Monte Carlo method. All the

outgoing edges of an activity is taken and its weighted probability is used for sampling the

next activity location. The probability that activity a is followed by activity b is
2

2þ1þ3þ1
¼ 2

7
� 29%. Similarly, the probabilities that a is followed by c is 1

7
� 14%; by

d; 3
7
� 43%; and by e; 1

7
� 14%. Say b is chosen randomly as the activity following a. All

the outgoing edges of b is then considered, and the next activity might be c, with proba-

bility 2
2þ3
¼ 2

5
¼ 40%, or d, with probability 3

5
¼ 60%. Say d is chosen, then the next

activity might be a, with probability 2
2þ1þ2

¼ 2
5
¼ 40%; b, with probability 1

5
¼ 20%, or e,

with probability 2
5
¼ 40%. The process is repeated until n - 1 activities have been sam-

pled, and the last activity location is then the same as the first. Alternatively, if the start and

end locations need not be the same, the process is repeated n times as opposed to n - 1

times.

Using the weighted network to sample activity sequences promises to be more accurate

than sampling n activities, in random sequence, from the kernel density estimate directly.

Modelling commercial vehicles more accurately and realistically results in more

accurate predictions of travel time, for example. Both Gao et al. (2009) and Fourie (2010)

show how agent-based models are more realistic in predicting travel times. When testing

infrastructure investment decisions, say the expansion of a portion of the road network,
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improved travel time prediction allows better evaluation of the direct effects (travel time

savings) of the investment.

Conclusion

With this paper we’ve taken a step in linking the complex network among players in the

supply chain domain with transport planning. To achieve this, we used the movement of

commercial vehicles between facilities as a proxy for the directed edges in a weighted

network. Such an approach has both positive and negative consequences. On the up-side,

we were able to extract a very large complex network among facilities. Applying network

analysis allowed us to make useful and novel discoveries about the relationships among,

and locations of the key facilities. We argue that involving these key players in policy

making will allow government to develop targeted instruments that will better both the

economic position of the stakeholders, and the mobility and level of congestion of the

urban centres.

Towards the down-side we acknowledge that the current approach, in the absence of

any additional information about the trip purposes that we used as proxy, may yield or

strengthen social relationships between facilities that were actually merely incidental.

From Joubert and Axhausen (2011) we know that vehicle chains often contain as many as

25 activities per chain. It is therefore plausible to consider two consecutive facilities in a

chain merely incidental; the result of some route optimisation performed by a logistics

service provider’s scheduler. Further trip-specific information will be needed to refine the

purpose of each network edge. We are closer in contributing towards the work started by

Liedtke (2009), Schröder et al. (2012) and others to predict vehicle movement from the

‘social’, i.e. supply chain networks.

It is our belief that the process followed in this paper remain valid and novel to

demonstrate the extent and location of interactions; identify key players; and yield valuable

characteristics about players. The way in which we extracted high-activity components, for

example, can yield opportunities for companies seeking to identify partners with whom

Fig. 9 An example of a
weighted network with three
different dyad weights: one, two
and three
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they can pursue load consolidation and fleet optimisation benefits. When accompanied with

targeted policy instruments, firms may relocate jointly into more clustered environments

such as industrial development zones or supplier parks and reap logistic cost benefits, as

well as economic benefits from shared services and knowledge exchange. To evaluate the

extent of economic benefits for such a component one would have to extract a more

detailed network for the specific component.

Barthélemy (2011) rightfully indicates that space is relevant in many networks, par-

ticularly distance (and associated costs) in transportation networks. One branch of future

research is to better understand how the topological aspects of the network as we’ve

introduced in this paper correlate to spatial aspects such as the location of facilities, and the

length of trips between them. Another branch of research to pursue is the analysis of

commercial vehicle activity chains to find similarity in its network trajectories (Tiakas

et al. 2009). Such similarities would allow transport planners to generate/simulate activity

chains from spatial networks.
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